Notes on Production Compilation

While the ultimate specification of production compilation is contained in the code the following are notes written by John Anderson in explaining a prototype version of that code. There were two documents. The first specified when it was safe to compile a pair of productions and the second was concerned with how to calculate the resulting production.

Safe Productions

Productions to which compilation will apply only contain

1. Safe evals

2. Safe binds

3. Goal-type buffers -- these are buffers distinguished by immediate effects, no strict harvesting, and the potential for right-hand side modifications. Compilation will apply only to productions with the following buffer actions:

	{} ==> {}

	{} ==> {+}

	{=} ==> {}

	{=} ==> {=}

	{=} ==> {+}

	{=} ==> {=,+}

They will apply to all combination except in the case where both productions would result in a + action. This is avoided to bound growth of rules.

4. Motor-type buffers -- these are buffers with no result chunk from requests, take time to have their effects, and have problems with buffer jamming. Compilation will apply only to productions with the following buffer actions:

	{} ==> {}

	{} ==> {+}

	{?} ==> {}

	{?} ==> {+}

If the first production has a + the second cannot to avoid buffer jamming. Also if the first production has a + and the second a ?, that ? must be to check that the state is busy (or perhaps this should better be put as not checking that the state is free). If both productions contain a ? test and the first does not have a +, then both state tests have to agree.

5. Perceptual-type buffers. These buffers can have chunks placed into them in response to a request. The request can take time. Either an = test or + action in the first empties the buffer. I am not sure we want to regulate that one cannot have = actions on the right hand side, but I am not going to extend the definition of compilation to apply to this case. One might think an = action is needed to prevent strict harvesting. However, I would prefer that to prevent strict harvesting by using a new + encode and to transform a perception one also used a + action. So defined, compilation will apply only to productions with the following buffer actions:

	{} ==> {}

	{} ==> {+}

	{=} ==> {}

	{=} ==> {+}

	{?} ==> {}

	{?} ==> {+}

	{=,?} ==> {}

	{=,?} ==> {+}

If the first production has a + action, the only thing the second can have is a ?test of busy. If both productions have ? tests and the first does not have a +action, the ? tests must match.

6. Retrieval type buffers. These are like perceptual-type buffers with two added features. First the effect of a + action can be predicted reliably because it does not depend on the external world and there is not a matter of buffer-jamming – a second request just replaces the first. There are the same legal productions and the same constraints on compilation with one added feature which is that a + followed by an = are eliminated by proceduralization and for this reason many compilations involving a + in the first production are not blocked where they would be blocked for perceptual type buffers.

7. There be no direct buffer operations like +retrieval> =element

Calculating the New Production

Compiling two productions involves three steps – calculating their variable unification, substituting that unification into the rules, and then collapsing the two rules into one.

A. Unification:

The first task in production a compilation is to produce a unification of the buffer descriptions. I call this unification because of its similarity to unification in first-order logic (see Russell & Norvig) but it is not exactly serving the same purpose. To consider the need for unification consider the production pair in the following program:

(clearall)

(sgp :epl t)

(chunk-type goal arg1 arg2 arg3 arg4)

(chunk-type fact arg1 arg2 arg3 arg 4)

(add-dm (goal isa goal arg1 3 arg2 1 arg3 1 arg4 6)

 (fact isa fact arg1 3 arg2 3 arg3 5 arg4 1))

(goal-focus goal)

(p first

=goal>

 isa goal

 arg1 =v1

 arg2 =v2

 arg3 =v2

 arg4 =v3

 - arg4 =v2

==>
=goal>

 arg1 =v2

 arg2 =v3

 arg3 =v1

+retrieval>

 isa fact

 arg1 3

 arg2 =v1)

(p second

=goal>

 isa goal

 arg1 =v0

 arg2 =v1

 arg3 3

 =retrieval>

 isa fact

 arg3 =v2
==>
 =goal>

 arg2 =v2

 arg3 =v1

 arg4 =v0)

With the following composition:

(p Production2

 =goal>

 isa GOAL

 arg1 3

 arg2 =v2

 arg3 =v2

 arg4 =v3

 - arg4 =v2

 ==>

 =goal>

 arg1 =v2

 arg2 5

 arg3 =v3

 arg4 =v2

)

One has to track the different identities of the variables =v1 and =v2 in the two productions and track the final state of the goal chunk.

As a step to calculating this rule we need to calculate the most-general unifier. I will detail the steps by which this is done:

Step 1. Renaming

We rename any of the variables that are the same (and potentially clashes) in the second production. So, in our example above it would become:

(p second-a

=goal>

 isa goal

 arg1 =v0

 arg2 =v1-a

 arg3 3

 =retrieval>

 isa fact

 arg3 =v2-a
==>
 =goal>

 arg2 =v2-a

 arg3 =v1-a

 arg4 =v0)

Step 2: Extracting buffer descriptions to map

We now map the buffer descriptions in the two productions. There are three cases to consider depending on whether there is a +buffer> in the first production (note we assume that we are dealing with legal cases and so it is not the case that these two productions are blocked by a +buffer> as they might well be for a perceptual or motor buffer):

Step 2a: No +buffer> in first production.
In this case, we want to make consistent the description of the buffer at the end of the first production and its description at the beginning of the second production. For the first production, this is the description of the buffer in the condition plus any updates produced by the action. In the case of our goal buffer in the first production we had

=goal>

 isa goal

 arg1 =v1

 arg2 =v2

 arg3 =v2

 arg4 =v3

 - arg4 =v2

==>
=goal>

 arg1 =v2

 arg2 =v3

 arg3 =v1

which implies that the final state of the goal buffer was

=goal>

 isa goal

 arg1 =v2

 arg2 =v3

 arg3 =v1

 arg4 =v3

 - arg4 =v2

The condition of the second production specifies the state at the beginning of the second production:

=goal>

 isa goal

 arg1 =v0

 arg2 =v1-a

 arg3 3

Step 2b: A non-retrieval-type +buffer> in first production

(Note that while this description applies to non-goal buffers, it is a no-op since these buffers cannot have a =buffer in the second production). Suppose our goal description from the first production had been

=goal>

 isa goal

 arg1 =v1

 arg2 =v2

 arg3 =v2

 arg4 =v3

 - arg4 =v2

==>
+goal>

 isa goal

 arg1 =v2

 arg2 =v3

 arg3 =v1

Then the condition would have been irrelevant to the buffer state at the end of the first production and our buffer description would have been:

=goal>

 isa goal

 arg1 =v2

 arg2 =v3

 arg3 =v1

This would have been paired with the same condition from the second description.

Step 2c: A retrieval-type +buffer> in first production

In this case there are three descriptions to relate. The first is the buffer description at the end of the first production:

+retrieval>

 isa fact

 arg1 3

 arg2 =v1

The second is the actual chunk placed in the buffer:

Fact

 isa FACT

 arg1 3

 arg2 3

 arg3 5

 arg4 1

And the third is the condition of the third production:

=retrieval>

 isa fact

 arg3 =v2-a

Step 3: Extract Mappings from buffer descriptions.

We now take the buffer descriptions and map the elements that fill comparable slots. In the case of the goal descriptions we would get the mappings:

=v0 (=v2

=v1-a (=v3

=v1 (3

In the first two mappings it really does not matter whether we map production 1 variables onto production 2 variables or vice versa. However, because of our renaming of production 2 clashes, it is better to map production 2 variables onto production 1. However, if a variable is mapped onto a constant then we have no choice but to map from that variable name. In the case above this is a production 1 variable.

One of the complications is caused by slot modifiers. Had the condition of the second production included arg4 =v4 in its condition we would have the potential of the following two mappings
=v4 (v3

=v4 ((- =v2)
However, the second is not a condition that we really want to try to map through the second production and so we ignore it. In general, we only consider mappings of variables onto variables and constants.

(Note that in general it is possible that we might have two constants in the same slot and these would conflict. However, this will not happen with productions that follow each other.)

In the case of the retrieval extraction what we want to do is to map the variables from both production descriptions onto the constants of the chunk:

=v1 (3

=v2-a (5

Step 4: Merging Mappings to be Consistent

The mappings from different buffers have to be combined. In the case above the combination is just the union the two mappings:

=v0 (=v2

=v1-a (=v3

=v1 (3

=v2-a (5

However, in other cases it can become more complicated. For instance, suppose the retrieval condition in the second production had been:

 =retrieval>

 isa fact

 arg3 =v2-a

 arg4 =v0

Then we would have added the mapping

=v0 (1

which has to be combined with v0 (=v2. Depending on order in unification we can either get the resulting pair:

=v0 (=v2 and =v2(1

or

=v2(1 and =v0(1

but applied in sequence would result =v0 and =v2 both being replaced by 1 (the sequence =v2(1 and =v0(=v2 would not achieve this).

and the resulting production would have been:

(p Production39

 =goal>

 isa GOAL

 arg1 3

 arg2 1

 arg3 1

 arg4 =v3

 - arg4 1

 ==>

 =goal>

 arg2 5

 arg3 =v3

 arg4 1

 arg1 1

)

The unification algorithm I coded is based on the general unification algorithm as described in Figure 9.1 of Russell & Norvig. However, it is simpler because we are not mapping compound expressions. In the Russell&Norvig algorithm there is the possibility for unification to fail but this actually cannot occur when two productions have fired one after another.

B. Substitution:

Having now obtained a set of substitutions from the unification process, one needs to go throught the original productions performing the substitution on them. Given our set of substitutions

=v0 (=v2

=v1-a (=v3

=v1 (3

=v2-a (5

This transforms our original productions into:

(p First*

 =goal>

 isa GOAL

 arg1 3

 arg2 =v2

 arg3 =v2

 arg4 =v3

 - arg4 =v2

 ==>

 =goal>

 arg1 =v2

 arg2 =v3

 arg3 3

 +retrieval>

 isa FACT

 arg1 3

 arg2 3

)

(p Second*

 =goal>

 isa GOAL

 arg1 =v2

 arg2 =v3

 arg3 3

 =retrieval>

 isa FACT

 arg3 5

 ==>

 =goal>

 arg2 5

 arg3 =v3

 arg4 =v2

)

which provides a consistent labelling from which we can begin the merging step. The example above does not have any safe-evals, safe-binds, and ?buffers but the substituions should apply to these as well. It is not clear that there would ever be anything that would be substituted into the ?buffers.

C. Collapsing:

The discussion below will focus on the =buffers and +buffers. There are also safe-evals, safe-binds, and ?buffers to consider. With respect to the first two, the only thing to deal with is avoiding duplicates. With respect to ?buffers, the ?buffer in the first is used if there is one. If there is not a ?buffer in the first, but one in the second, and not a +buffer in the first, the ?buffer from the second is used. If there is not a ?buffer in the first, but one in the second, and a +buffer in the first, then no ?buffer is used (the ?buffer in the second had to be a busy test according to our rules for when to compose productions)

With respect to =buffers and +buffers, the specification below can be applied independently on a buffer-by-buffer basis. There are different cases to consider depending on whether there is a +buffer in the first and whether that is a retrieval-type buffer.

1. No +buffer in the first production:

The condition of the new production will be formed by determining C1 + (C2 – A1) where C1 is the first condition (=buffer), C2- A1 is the difference between the second condition (=buffer) and the action (=buffer) of the first production, and + denotes the union of the two conditions.

The =action of the new production will be obtained by unioning =A2 with that of =A1 that is not changed by A2.

The +action of the new production is just the +A2 of the second production if there is one.

2. A +buffer in the first production that is not retrieval type:

The condition of the new production will just be the condition of the first

The =action of the new production will be the =action of the first if there is one.

The +action of the new production will be formed by unioning =A2 with that of +A1 that is not changed by =A2.

3. A +buffer in the first production that is retrieval type:

The condition of the new production will be the condition of the first if there is one

There can be no =action.

The +action of the new production will be the +action of the second if there is one.

