
Declarative Memory Related Issues

In this text we are going to investigate some of the most common problems which can arise

when working with models that rely on the use of declarative retrievals when the subsymbolic

calculations are enabled and thus activation affects the results. Unlike the models in previous

debugging texts, the model which accompanies this text will not be performing any particular

task. Instead, it is just a set of productions and declarative knowledge which allows us to see

some of the issues which can occur when working with declarative memory and discuss how to

determine what has happened and ways to address that in the model.

The Model Design

The model for this exercise, declarative-issues.lisp, is designed to perform a sequence of

declarative retrievals and its declarative memory has been initialized with chunks that allow for

the demonstration of specific retrieval situations. The goal and imaginal buffers will be used to

control the sequencing of the productions and also to facilitate some of the retrieval situations.

The specific details of the chunk-types and chunks involved will be described in the sections

where it is meaningful below. The subsymbolic calculations for the model have been enabled

using all of the activation equation’s components. Most of the other parameters are left at their

default values, or, in the case of those which are off by default like noise, have been set to values

which reflect reasonable starting points based on the models from the tutorial and/or past ACT-R

research.

Loading the Model

When we load the model we see the following warnings:

#|Warning: Productions request a value for the VAL2 slot in a request to the
IMAGINAL buffer for the type CONTEXT, but that slot is not used in other
productions. |#
#|Warning: Productions request a value for the VAL1 slot in a request to the
IMAGINAL buffer for the type CONTEXT, but that slot is not used in other
productions. |#
#|Warning: Productions modify the GOAL slot in the IMAGINAL buffer for the
type CONTEXT, but that slot is not used in other productions. |#
#|Warning: Productions modify the VAL3 slot in the IMAGINAL buffer for the
type CONTEXT, but that slot is not used in other productions. |#

Those indicate that we are setting slots in the imaginal buffer which are not used by any of the

productions in the model. They are not serious warnings indicating a problem which needs to be

fixed, but that doesn’t mean they should just be ignored, because they could indicate a flaw in

the logic of the productions. In this model they can be safely ignored because the model is only

using the imaginal buffer to hold information to demonstrate spreading activation, thus it is

alright that the model doesn’t directly use the values it is setting. If you want to turn off those

warnings then you can add this parameter setting to the model definition:

(sgp :style-warnings nil)

That will disable all of the warnings from the procedural module about possible issues with

unused or unexpected buffer settings and tests.

First Retrieval Request

There are no warnings when this model is loaded. So, there are no syntax errors or other

problems which we must fix before trying to run it. Because there is no task associated with this

model we will just use the ACT-R run command to run it. The first retrieval which this model

makes is for a chunk of type simple-value which has some value in the result slot (it is not nil)

made by this production:

 (p p1
 ?goal>
 buffer empty
 ==>
 +goal>
 isa task-state
 +retrieval>
 isa simple-value
 - result nil
)

 This is the definition of the simple-value chunk-type:

(chunk-type simple-value result)

and here are the initial chunks of that type which are placed into the model’s declarative memory

with add-dm:

(v1 isa simple-value result "true")
(v2 isa simple-value result "false")
(v3 isa simple-value result nil)

In addition to that, the initial activations of those chunks have been set as follows:

(set-base-levels (v1 1 -1500)
 (v2 1 -1500)
 (v3 1 -1500))

Those settings reflect one past occurrence for each chunk 1500 seconds ago. We will consider

that as an unchangeable property of these chunks for purposes of addressing issues with their

retrieval (assume that they were learned as the result of some previous actions which we consider

to be working correctly). Based on the initial declarative memory and the request that p1 makes

we expect either chunk v1 or v2 to be retrieved. When we run the model for up to 10 seconds we

get the following result:

> (run 10)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 1.050 DECLARATIVE RETRIEVAL-FAILURE
 1.050 PROCEDURAL CONFLICT-RESOLUTION
 1.050 ------ Stopped because no events left to process

The model stopped because it failed to retrieve a chunk which prevents any further productions

from firing. We now need to figure out why it didn’t retrieve either of those chunks. There are

several ways one could go about doing that. We will start with the most straightforward and then

discuss some of the other things that could be done. The basic mechanism for investigating

issues with retrievals is to turn on the activation trace in the model and run it again. That is done

by setting the :act parameter to a non-nil value. In the unit texts it was set to t, but like the trace-

detail parameter, it can also be set to values of high, medium, or low to control how much detail

is shown. We will run the model with each value below to show the differences in information

provided.

We could make that change in the model file, save the model, and then load it, but since the

model itself hasn’t changed we don’t really need to perform those steps. Instead, we can reset

the model (using either the reset command or the Reset button in the Environment) and then just

call sgp from the prompt to change the parameter value before running it again. Changing the

parameters interactively like that can be a convenient way to debug a model, but may not always

be possible; particularly if there is additional Lisp code involved which is responsible for

resetting and running the model. Here is the trace of the actions taken to get the activation trace

with a value of t (which is the same as the high detail trace):

> (reset)
DEFAULT
> (sgp :act t)
(T)
> (run 10)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
Chunk V3 does not match
Computing activation for chunk V1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references NIL
 creation time: -1500.0 decay: 0.5 Optimized-learning: T
base-level value: -2.9634798
Total base-level: -2.9634798
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: NIL
Total spreading activation: 0.0
Computing partial matching component
 comparing slot RESULT
 Requested: - NIL Chunk's slot value: "true"
 similarity: -1.0
 negation test with similarity not ms has no effect
 effective similarity value is 0.0
Total similarity score 0.0
Adding transient noise -0.17835411
Adding permanent noise 0.0
Chunk V1 has an activation of: -3.1418338
Chunk V1 has the current best activation -3.1418338
Computing activation for chunk V2
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references NIL
 creation time: -1500.0 decay: 0.5 Optimized-learning: T
base-level value: -2.9634798
Total base-level: -2.9634798
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: NIL
Total spreading activation: 0.0
Computing partial matching component
 comparing slot RESULT
 Requested: - NIL Chunk's slot value: "false"
 similarity: -1.0
 negation test with similarity not ms has no effect
 effective similarity value is 0.0
Total similarity score 0.0
Adding transient noise 0.23814109
Adding permanent noise 0.0

Chunk V2 has an activation of: -2.7253387
Chunk V2 is now the current best with activation -2.7253387
No chunk above the retrieval threshold: 0.0
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 1.050 DECLARATIVE RETRIEVAL-FAILURE
 1.050 PROCEDURAL CONFLICT-RESOLUTION
 1.050 ------ Stopped because no events left to process

Here is what we get when it is set to medium:

> (reset)
DEFAULT
> (sgp :act medium)
(MEDIUM)
> (run 10)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
Computing activation for chunk V1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references NIL
 creation time: -1500.0 decay: 0.5 Optimized-learning: T
base-level value: -2.9634798
Total base-level: -2.9634798
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: NIL
Total spreading activation: 0.0
Computing partial matching component
 comparing slot RESULT
 Requested: - NIL Chunk's slot value: "true"
 similarity: -1.0
 negation test with similarity not ms has no effect
 effective similarity value is 0.0
Total similarity score 0.0
Adding transient noise -0.17835411
Adding permanent noise 0.0
Chunk V1 has an activation of: -3.1418338
Chunk V1 has the current best activation -3.1418338
Computing activation for chunk V2
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references NIL
 creation time: -1500.0 decay: 0.5 Optimized-learning: T
base-level value: -2.9634798
Total base-level: -2.9634798
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: NIL
Total spreading activation: 0.0
Computing partial matching component
 comparing slot RESULT
 Requested: - NIL Chunk's slot value: "false"
 similarity: -1.0
 negation test with similarity not ms has no effect
 effective similarity value is 0.0
Total similarity score 0.0

Adding transient noise 0.23814109
Adding permanent noise 0.0
Chunk V2 has an activation of: -2.7253387
Chunk V2 is now the current best with activation -2.7253387
No chunk above the retrieval threshold: 0.0
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 1.050 DECLARATIVE RETRIEVAL-FAILURE
 1.050 PROCEDURAL CONFLICT-RESOLUTION
 1.050 ------ Stopped because no events left to process

Both of those traces display all of the details of the activation calculations for the chunks which

matched the request. The difference between them is that the high detail trace also indicates the

chunks which were of the requested chunk-type but which did not match the other constraints of

the request.

Here is what we get when it is set to low:

> (reset)
DEFAULT
> (sgp :act low)
(LOW)
> (run 10)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
Chunk V1 has an activation of: -3.1418338
Chunk V2 has an activation of: -2.7253387
No chunk above the retrieval threshold: 0.0
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 1.050 DECLARATIVE RETRIEVAL-FAILURE
 1.050 PROCEDURAL CONFLICT-RESOLUTION
 1.050 ------ Stopped because no events left to process

When set to low only the final activation values are shown instead of all the details.

Before looking at the details of that retrieval, we will introduce another command which can also

be useful for interactively debugging a model: with-parameters. Instead of changing the value of

a parameter with sgp one can use the with-parameters command to temporarily set parameter

values and evaluate some other commands. Thus, instead of setting the activation trace to low

and then running the model we could have done the following to set both the activation trace and

the standard trace detail to low and then run with those settings:

> (reset)
DEFAULT
> (with-parameters (:trace-detail low :act low)
 (run 10))

 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
Chunk V1 has an activation of: -3.1418338
Chunk V2 has an activation of: -2.7253387
No chunk above the retrieval threshold: 0.0
 1.050 DECLARATIVE RETRIEVAL-FAILURE
 1.050 ------ Stopped because no events left to process

After the with-parameters call is done the parameter values will be automatically returned to the

values that they had previously.

As for the retrieval, regardless of which trace we look at, the critical line is the last one:

No chunk above the retrieval threshold: 0.0

No chunk is retrieved because they all have activations below the current retrieval threshold.

Another way we could have investigated the chunks’ activations is by using the sdp command to

see the current declarative parameters for each chunk. That will include the current activation as

well as the activation it had the last time it was attempted to be retrieved. When the model

stopped we could call sdp to print out all of those chunks and their parameters like this:

> (sdp v1 v2 v3)
Declarative parameters for chunk V1:
 :Activation -2.875
 :Permanent-Noise 0.000
 :Base-Level -2.964
 :Reference-Count 1.000
 :Creation-Time -1500.000
 :Source-Spread 0.000
 :Sjis ((V1 . 3.0))
 :Similarities ((V1 . 0.0))
 :Last-Retrieval-Activation -3.142
 :Last-Retrieval-Time 0.050
Declarative parameters for chunk V2:
 :Activation -2.888
 :Permanent-Noise 0.000
 :Base-Level -2.964
 :Reference-Count 1.000
 :Creation-Time -1500.000
 :Source-Spread 0.000
 :Sjis ((V2 . 3.0))
 :Similarities ((V2 . 0.0))
 :Last-Retrieval-Activation -2.725
 :Last-Retrieval-Time 0.050
Declarative parameters for chunk V3:
 :Activation -2.990
 :Permanent-Noise 0.000
 :Base-Level -2.964
 :Reference-Count 1.000
 :Creation-Time -1500.000
 :Source-Spread 0.000
 :Sjis ((V3 . 3.0))

 :Similarities ((V3 . 0.0))
(V1 V2 V3)

That doesn’t completely explain why things failed, but if we knew the retrieval threshold in

advance and suspected that to be the problem then sdp may have been useful without having to

run the model again. That same information is shown in the declarative memory viewer of the

Environment, so that could also be used to investigate the chunks’ activations.

Now that we know the problem is that the chunk activations are below the retrieval threshold

there are basically two ways to address that: either lower the retrieval threshold or increase the

activation of those chunks in some way. Decreasing the threshold is an easy thing to do since all

it takes is adding the parameter setting to the model. Changing the activation of the chunks can

be accomplished in several ways, but given our constraint of not adjusting their histories limits

us to essentially two options. One way to increase their activations would be to use the :blc

(base-level constant) parameter to add a fixed value to all chunk activations. Another way would

be to add additional information to those chunks which could provide a way for spreading

activation to increase their activations.

As is usually the case, there is no one “right” answer as to how to fix this. A modeler will have

to consider his or her theory as to how people are performing the task, any data which is

available, and the possible implications of making the change to other components of the model.

For this model we do not have a theory or data since we are not modeling a real task. The effects

on other parts of the model are also not relevant at this point for the same reason. So, since we

don’t have any reason to pick one option over the others, for the purpose of the exercise we will

set the retrieval threshold lower and then note the consequences this has later on in the model.

Before doing so we will look at some of the potential issues from the other changes which one

might want to consider.

If the :blc parameter is adjusted that will affect the activation of all of the chunks which are

retrieved by the model. Since the time to retrieve a chunk depends on its activation, not only will

setting :blc affect whether a chunk is retrieved but also how long it will take. Thus, that may

then necessitate the adjustments of other parameters as well to keep the response times in line

with the data if that is important. However, if response time is not important to the data being

modeled, then adjusting :blc might be a simple way to help ensure that chunks exceed the

retrieval threshold and are retrieved quickly (since a higher activation will mean faster retrieval).

Using spreading activation to increase the activation of the chunks might be a plausible

mechanism for the task. If the knowledge is prespecified for the model, like we are doing here,

then it may be easy to add some additional context to that information to facilitate spreading

activation. For example, although the grouped recall example from unit 5 didn’t use spreading

activation it did have a chunk which represented the current list itself as a member of the group

chunks which could have been used for that purpose. If the model is learning the chunks on its

own however then one needs to have a way for the model to generate its own context. One way

that is often done is to include the model’s current goal or imaginal chunk as a slot value in the

memories it creates. That way, each new goal or problem representation provides a particular

context. The biggest downside to using this approach is primarily the additional complexity it

requires in the model. One now has to have that context information available to spread the

activation in a slot of a buffer at the time of retrieval, and it may require additional retrievals to

remember past contexts as well as the needed information.

Now we will set the threshold lower and see how that affects the model. The first question is

how low do we want to set it? To really answer that we need to decide how likely we want the

model to fail to retrieve a chunk when there is one which can be retrieved, and to determine that

we need to know what the activation of the chunks are and how much noise there is in the

activations. Knowing the activation and noise value we can compute the recall probability for a

chunk using the equation presented in unit 4. However, right now for this model, we just want it

to succeed essentially every time. Thus we want to pick a value significantly lower than the

activation of the chunks involved. From the activation trace we see that the chunks involved

have activations of about -3.14 and -2.73. Therefore if we set the threshold to -10 that should be

sufficient since with the model’s activation noise set to .25 the recall probability for a chunk with

an activation of -3.14 will be extremely close to 1.0 with that threshold. So we will add that

additional setting to the sgp call in the model:

(sgp :esc t :v t :bll .5 :ans .25 :mas 3 :mp 10 :rt -10)

We need to save that change, load the model, and run it again. [Of course, like the :act setting

above, we could have tried that parameter change at the prompt instead of making that change in

the file, but since we will likely require it as a part of this model it makes sense to add it now.]

Here is the trace that we get now:

> (run 10)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 10.000 ------ Stopped because time limit reached

The model stopped because it reached the end of the 10 seconds we asked it to run and it did not

retrieve the chunk in that time. There are a couple of things to consider now. First, did the

model successfully retrieve the chunk? If so, why did it take at least 10 seconds to complete?

Then we have to decide if that amount of time is reasonable for the model in performing this

task.

As to whether or not the model successfully retrieved the chunk we have several options for

testing that. First, we could just run the model some more until we find either a successful

retrieval or a retrieval failure. In this case that would work just fine because there are no other

productions that could fire to interfere with that. Alternatively, we could reset it and enable the

activation trace so that we have the details of what happened. Again, for this model that is not a

difficult task since this happens early in the run and because there is no task which is running the

model it’s easy to stop it where we want without having to use the stepper. Instead of using

those however we are going to introduce a new command that can also be helpful in situations

like this. That command is called mp-show-queue and it allows us to look ahead in time to see

what the model is expecting to do in the future without actually running it. Here is what we get

when we call that now:

> (mp-show-queue)
Events in the queue:
 15.312 DECLARATIVE RETRIEVED-CHUNK V2
 15.312 PROCEDURAL CONFLICT-RESOLUTION

That shows us that the model will complete the retrieval at time 15.312 and then perform another

conflict-resolution action. Just because we see an event scheduled to occur at some future time

with mp-show-queue however does not mean that we will necessarily see that same action in the

trace if we continue to run the model. That’s because things can happen to change the situation

before that time arrives. Thus, looking ahead at the model’s actions like that can be very useful

in situations where a delayed action, like a retrieval completion, could be superseded by a new

retrieval. For example, if another production were to fire and make a retrieval request at time

11.0 that would interrupt the ongoing retrieval and we would not actually see that retrieved-

chunk action at time 15.312 if we were to run the model. That doesn’t happen in this model, and

we would have seen the same results if we were to just run it that long:

> (run 15.32)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 15.312 DECLARATIVE RETRIEVED-CHUNK V2
 15.312 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V2
 15.312 PROCEDURAL CONFLICT-RESOLUTION
 15.320 ------ Stopped because time limit reached

Although it’s not really necessary here, mp-show-queue is a useful tool to know about and can

be very helpful in some situations.

Now that we know the retrieval did succeed we should consider the time that it took to do so. As

shown in unit 4 the time it takes to retrieve a chunk depends on its activation by the equation:

AFeTime −=

The activation of our chunk is about -2.73 and the value of F is the latency factor parameter (:lf)

in the model which defaults to 1. Since we don’t set that parameter in our model the time to

retrieve the chunk should be about e2.73 ≈ 15.3 seconds, which is what we see in the trace.

If the model were performing a real task, particularly if we had data for comparison, we might

now want to consider if a retrieval of that length is acceptable for the model, and if not, what we

should do about it. Since this model is not performing any particular task we don’t really have

any basis for judging the length of that retrieval time, but we can still consider how we would

change it if we wanted to. Based on the equation for the retrieval time there are two things we

can do to affect the time. The first would be to change the activation of the chunk, and that could

be done in the same ways as were discussed previously. The other option would be to change

the :lf parameter. The thing to keep in mind when changing :lf is that it will affect all of the

retrievals which the model performs. As an example we will change :lf for this model to

decrease the time it takes to complete retrievals by setting it to .8:

 (sgp :esc t :v t :bll .5 :ans .25 :mas 2 :mp 10 :rt -10 :lf .8)

Saving that change and then reloading the model here is what the trace looks like now with the

activation trace set to low to show that while the time of the retrieval has changed the activations

of the chunks are the same as they were previously:

> (run 12.26)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
Chunk V1 has an activation of: -3.1418338
Chunk V2 has an activation of: -2.7253387
Chunk V2 with activation -2.7253387 is the best
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 12.259 DECLARATIVE RETRIEVED-CHUNK V2
 12.259 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V2
 12.259 PROCEDURAL CONFLICT-RESOLUTION
 12.260 ------ Stopped because time limit reached

Second Retrieval Request

The second retrieval request the model makes is very similar to the first one. The only difference

is that in this request there is no constraint placed on the retrieved chunk other than that it be of

type simple-fact:

 (p p2
 =goal>
 isa task-state
 state r2
 =retrieval>
 isa simple-value
 ==>
 =goal>
 state r3
 +retrieval>
 isa simple-value)

Here is a portion of the trace from running the model for this retrieval with the activation trace

enabled:

> (run 19.52)
...
 12.309 PROCEDURAL PRODUCTION-FIRED P2
 12.309 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 12.309 DECLARATIVE START-RETRIEVAL

Computing activation for chunk V1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references NIL
 creation time: -1500.0 decay: 0.5 Optimized-learning: T
base-level value: -2.9675493
Total base-level: -2.9675493
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: (R3)
 Spreading activation 0.0 from source R3 level 1.0 times Sji 0.0
Total spreading activation: 0.0
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.08887799
Adding permanent noise 0.0
Chunk V1 has an activation of: -2.8786714
Chunk V1 has the current best activation -2.8786714
Computing activation for chunk V2
Computing base-level
Starting with blc: 0.0
Computing base-level from 2 references NIL
 creation time: -1500.0 decay: 0.5 Optimized-learning: T
base-level value: -2.2744021
Total base-level: -2.2744021
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: (R3)
 Spreading activation 0.0 from source R3 level 1.0 times Sji 0.0
Total spreading activation: 0.0
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.07606379
Adding permanent noise 0.0
Chunk V2 has an activation of: -2.1983383
Chunk V2 is now the current best with activation -2.1983383
Computing activation for chunk V3
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references NIL
 creation time: -1500.0 decay: 0.5 Optimized-learning: T
base-level value: -2.9675493
Total base-level: -2.9675493
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: (R3)
 Spreading activation 0.0 from source R3 level 1.0 times Sji 0.0
Total spreading activation: 0.0
Computing partial matching component
Total similarity score 0.0
Adding transient noise -0.026406968
Adding permanent noise 0.0
Chunk V3 has an activation of: -2.9939563
Chunk V2 with activation -2.1983383 is the best
 12.309 PROCEDURAL CONFLICT-RESOLUTION
 19.517 DECLARATIVE RETRIEVED-CHUNK V2
 19.517 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V2
 19.517 PROCEDURAL CONFLICT-RESOLUTION
 19.520 ------ Stopped because time limit reached

We see that it retrieves chunk v2 again this time, and that this retrieval is faster than the last time

requiring only a little more than 7 seconds instead of around 12. That is because the chunk has

an extra reference now since it was retrieved previously and thus it has a higher base-level

activation than the other two chunks of type simple-value.

That is the expected result of base-level learning, activation of the chunk increases with practice

which makes it more likely to be retrieved and faster when it is. However, there is a potential

issue that can arise with respect to base-level learning. The issue to be wary of is that when

using requests to declarative memory with few constraints on the contents of that chunk a single

chunk may come to dominate and always be retrieved. In some situations that may be desirable,

but in other situations one may not want one chunk to dominate like that.

If one does not want a single chunk to dominate, but can’t provide additional constraints in the

request or change the context to affect the other components of the activation equation, then one

may need to take advantage of the declarative finsts which were described in unit 3 of the

tutorial. They can be used to suppress the retrieval of a chunk which has been recently retrieved

so that a single chunk is not retrieved repeatedly. To do so one needs to add the :recently-

retrieved request parameter to the request which is made to the retrieval buffer with a value of

nil. That will then remove chunks which are currently marked with a declarative finst from those

considered for that request. For demonstration purposes we will make that change to the request

made in p2 and see the difference. Here is the new version of p2:

 (p p2
 =goal>
 isa task-state
 state r2
 =retrieval>
 isa simple-value
 ==>
 =goal>
 state r3
 +retrieval>
 isa simple-value
 :recently-retrieved nil)

and here is the trace showing that retrieval now:

> (run 26.55)
...
 12.309 PROCEDURAL PRODUCTION-FIRED P2
 12.309 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 12.309 DECLARATIVE START-RETRIEVAL

Removing recently retrieved chunks:
V2
Computing activation for chunk V1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references NIL
 creation time: -1500.0 decay: 0.5 Optimized-learning: T
base-level value: -2.9675493
Total base-level: -2.9675493
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: (R3)
 Spreading activation 0.0 from source R3 level 1.0 times Sji 0.0
Total spreading activation: 0.0
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.08887799
Adding permanent noise 0.0
Chunk V1 has an activation of: -2.8786714
Chunk V1 has the current best activation -2.8786714
Computing activation for chunk V3
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references NIL
 creation time: -1500.0 decay: 0.5 Optimized-learning: T
base-level value: -2.9675493
Total base-level: -2.9675493
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: (R3)
 Spreading activation 0.0 from source R3 level 1.0 times Sji 0.0
Total spreading activation: 0.0
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.07606379
Adding permanent noise 0.0
Chunk V3 has an activation of: -2.8914855
Chunk V1 with activation -2.8786714 is the best
 12.309 PROCEDURAL CONFLICT-RESOLUTION
 26.541 DECLARATIVE RETRIEVED-CHUNK V1
 26.541 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V1
 26.541 PROCEDURAL CONFLICT-RESOLUTION
 26.550 ------ Stopped because time limit reached

This time chunk v1 was retrieved because chunk v2 was removed from consideration since it has

a declarative finst on it from the previous retrieval. If one wants to see which chunks are

currently marked with a declarative finst the print-dm-finsts command can be used. Here is the

result of that after the run shown above:

> (print-dm-finsts)

Chunk name Time Stamp

V1 26.541

Note that only v1 currently has a finst on it at this time because the default duration of

declarative finsts is 3 seconds and more than that amount of time has passed since v2 was

retrieved. If we instead check at time 12.3, after the first retrieval has completed and just before

the second request is made, we will see that v2 does have a declarative finst on it:

> (reset)
DEFAULT
> (run 12.3)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 12.259 DECLARATIVE RETRIEVED-CHUNK V2
 12.259 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V2
 12.259 PROCEDURAL CONFLICT-RESOLUTION
 12.300 ------ Stopped because time limit reached
12.3
22
NIL
> (print-dm-finsts)

Chunk name Time Stamp

V2 12.259

If one cannot use finsts or some mechanism to affect the activation of the chunks, but still needs

to avoid issues with a single chunk becoming dominant there are some other options available if

one adds optional components to the ACT-R system. Distributed with the ACT-R source code

are several extensions which have been developed for ACT-R. Those optional components are

found in the extras directory of the distribution and each one is found in a separate subdirectory.

Two of the extensions available affect the base-level learning equation and may help avoid the

dominant chunk problem. Those two particular extras are in the spacing-effect and base-level-

inhibition directories. Because they are not part of the standard ACT-R system we will not be

describing them in the tutorial materials, but one can find details and instructions on their use in

the extra files provided.

Third Retrieval Request

The next retrieval request this model makes is for a chunk of type simple-fact which is defined

like this:

(chunk-type simple-fact item attribute)

The production which makes the request is this one:

 (p p3
 =goal>
 isa task-state
 state r3
 =retrieval>
 isa simple-value
 ==>
 =goal>
 state r4
 +retrieval>
 isa simple-fact
 attribute pink)

It matches the goal state and retrieval which result from the previous production’s actions and

makes a request for a simple-fact with an attribute slot value of pink.

Here are the simple-fact chunks which the model starts with in its declarative memory from the

add-dm command in the model definition:

 (f1 isa simple-fact item sky attribute blue)
 (f2 isa simple-fact item rose attribute red)
 (f3 isa simple-fact item grass attribute green)

There are no base-level activation values set for those chunks, thus for now they will each have

one reference which occurs at time 0 because that’s when they are added to the model’s

declarative memory.

Notice that none of the chunks have an attribute which matches the request which is being made,

but this model does have partial matching enabled so perhaps one of them will still be retrieved.

We will run it to find out what happens, and here is the result of running the model for 30

seconds:

> (run 30)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 12.259 DECLARATIVE RETRIEVED-CHUNK V2
 12.259 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V2
 12.259 PROCEDURAL CONFLICT-RESOLUTION
 12.309 PROCEDURAL PRODUCTION-FIRED P2
 12.309 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 12.309 DECLARATIVE START-RETRIEVAL
 12.309 PROCEDURAL CONFLICT-RESOLUTION

 26.541 DECLARATIVE RETRIEVED-CHUNK V1
 26.541 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V1
 26.541 PROCEDURAL CONFLICT-RESOLUTION
 26.591 PROCEDURAL PRODUCTION-FIRED P3
 26.591 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 26.591 DECLARATIVE START-RETRIEVAL
 26.591 PROCEDURAL CONFLICT-RESOLUTION
 30.000 ------ Stopped because time limit reached

It has not retrieved a chunk at that point. Instead of continuing to run, we will again look ahead

with mp-show-queue:

> (mp-show-queue)
Events in the queue:
 17647.763 DECLARATIVE RETRIEVAL-FAILURE
 17647.763 PROCEDURAL CONFLICT-RESOLUTION

That shows that the model has failed to retrieve a chunk as a result of that request and that it is

going to take over 17000 seconds while trying. First we will look at why the model failed to

retrieve a chunk and then we will consider why it takes so long when it fails.

Turning on the activation trace and running again we see these activation computations for this

request:

...
 26.591 PROCEDURAL PRODUCTION-FIRED P3
 26.591 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 26.591 DECLARATIVE START-RETRIEVAL
 26.591 DECLARATIVE START-RETRIEVAL
Computing activation for chunk F1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.9471392
Total base-level: -0.9471392
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: (R3)
 Spreading activation 0.0 from source R3 level 1.0 times Sji 0.0
Total spreading activation: 0.0
Computing partial matching component
 comparing slot ATTRIBUTE
 Requested: = PINK Chunk's slot value: BLUE
 similarity: -1.0
 effective similarity value is -10.0
Total similarity score -10.0
Adding transient noise -0.026406968
Adding permanent noise 0.0
Chunk F1 has an activation of: -10.973546
Chunk F1 has the current best activation -10.973546
Computing activation for chunk F2
Computing base-level
Starting with blc: 0.0

Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.9471392
Total base-level: -0.9471392
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: (R3)
 Spreading activation 0.0 from source R3 level 1.0 times Sji 0.0
Total spreading activation: 0.0
Computing partial matching component
 comparing slot ATTRIBUTE
 Requested: = PINK Chunk's slot value: RED
 similarity: -1.0
 effective similarity value is -10.0
Total similarity score -10.0
Adding transient noise -0.42355087
Adding permanent noise 0.0
Chunk F2 has an activation of: -11.370689
Computing activation for chunk F3
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.9471392
Total base-level: -0.9471392
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: (R3)
 Spreading activation 0.0 from source R3 level 1.0 times Sji 0.0
Total spreading activation: 0.0
Computing partial matching component
 comparing slot ATTRIBUTE
 Requested: = PINK Chunk's slot value: GREEN
 similarity: -1.0
 effective similarity value is -10.0
Total similarity score -10.0
Adding transient noise 0.43639642
Adding permanent noise 0.0
Chunk F3 has an activation of: -10.510742
Chunk F3 is now the current best with activation -10.510742
No chunk above the retrieval threshold: -10.0

Each chunk has a base-level activation of around -.947 but then loses more activation because of

the mismatch to the requested slot value. Because we have not set any similarities in this model

they all default to the worst mismatch value of -1, and because the :mp parameter is set to 10 in

the sgp settings for the model, each chunk then has 10 * -1 added to its activation for a total of

around -10.947 before noise is added. None of the noise values are large enough to bring a

chunk above the retrieval threshold which we set previously at -10. Thus, the model fails to

retrieve any of them.

When there is a retrieval failure the time that it will take uses the same equation as for a

successful retrieval, except that the retrieval threshold is used instead of a chunk’s activation.

Thus, with our current parameter settings a retrieval failure will take .8*e10 seconds, which is

almost 5 hours of simulated time in which the model sits trying to retrieve a chunk before it fails.

A delay of that long is likely to be unacceptable in any reasonable model, so we need to decide

what to do about it. Since we don’t have a task to guide us, we’re free to explore many possible

alternatives for how to address that. First we will consider options for making it more likely that

one of the existing chunks will be retrieved, and then we will consider how we can handle things

if the model does still have retrieval failures.

If we want one of these chunks to be retrieved then we need to either raise their activations or

lower the retrieval threshold again. If we were to lower the threshold then the retrieval of these

chunks would take as long as the retrieval failure did now, and the lower we make the threshold

the worse things are with respect to the time it takes when there is a failure. So we will not

consider that a good choice at this point. Instead, we will look at how we can raise the activation

of these chunks.

There are three components to the activation equation: base-level, spreading activation, and

partial matching and each of those provides opportunities to increase the chunk’s activation. We

discussed the spreading activation change with respect to the first retrieval, and again will not

choose to modify the model in that way for this retrieval. Instead we will look at the options for

affecting the other two components of activation.

For the chunks’ base-levels we again have the option of setting the :blc parameter to increase

every chunk’s base-level. Having seen the problem of very long retrieval times for low threshold

and activations, we may want to consider doing that so we can shift things to a level that

produces more reasonable times, but we will come back to that in a later section. Another option

which we have available for changing the base-level of these chunks is to explicitly set their

base-level activations using the set-base-levels command. For the first retrieval we had

considered the base-level settings of the chunks involved as fixed values, but for these chunks we

will not. Thus, we could set their creation time and number of references to values that provide

sufficiently large base-level activations. When choosing to modify the base-levels of chunks one

should take into account what those chunks represent and what the values for creation time and

references mean for the model. For example, if the chunks represent information which the

model would not have learned prior to doing the task then their creation times probably shouldn’t

be any earlier than when the model would have started the task, and similarly they shouldn’t

have more references than would be reasonable in that time. However, if the chunks are

representing background knowledge that is meant to represent information the model had long

before doing the task then a much earlier creation time and larger reference count are warranted.

For background knowledge of that nature it’s often difficult to determine what would be an

appropriate creation time and number of references so more arbitrary values are used to achieve

an appropriate activation for the task.

Setting the base-levels of the chunks for this retrieval seems like it would be a reasonable thing

to do since they are representing facts one would assume a person would have learned long

before the task and which have been encountered frequently. Thus, as a first step we will give

those chunks a strong history with this setting:

(set-base-levels (f1 1000 -10000)
 (f2 1000 -10000)
 (f3 1000 -10000))

That gives the chunks a history which, while in absolute terms is probably not likely (having

only learned the chunk 10000 seconds ago and having used it 1000 times since then), but may be

sufficient to provide a fairly stable and relatively strong base-level activation over the course of

the current task.

Running the model now we see that it does succeed in retrieving one of those chunks, but it still

takes a significant amount of time:

> (run 30)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 12.259 DECLARATIVE RETRIEVED-CHUNK V2
 12.259 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V2
 12.259 PROCEDURAL CONFLICT-RESOLUTION
 12.309 PROCEDURAL PRODUCTION-FIRED P2
 12.309 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 12.309 DECLARATIVE START-RETRIEVAL
 12.309 PROCEDURAL CONFLICT-RESOLUTION
 26.541 DECLARATIVE RETRIEVED-CHUNK V1
 26.541 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V1
 26.541 PROCEDURAL CONFLICT-RESOLUTION
 26.591 PROCEDURAL PRODUCTION-FIRED P3
 26.591 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 26.591 DECLARATIVE START-RETRIEVAL
 26.591 PROCEDURAL CONFLICT-RESOLUTION
 30.000 ------ Stopped because time limit reached

> (mp-show-queue)

Events in the queue:
 596.830 DECLARATIVE RETRIEVED-CHUNK F3
 596.830 PROCEDURAL CONFLICT-RESOLUTION

We could turn the activation trace on to see why that happens, but instead we will introduce

another tool available in the Environment. The “Retrieval History” tool can be used to record all

of the activation trace information which occurs as the model runs without printing it in the trace.

To use the tool it needs to be opened prior to running the model, like the other tracing and history

tools. It will show a window which looks something like this:

With the window open the model should then be reset and run again. When it is done running,

clicking the “Get History” button in the upper left of the Retrieval History window will cause the

“Times” section to display all the times in the model run at which a retrieval request was made.

Picking one of those times will then cause all of the chunks which matched the request to be

displayed in the “Matching Chunks” section and the request which was made to be shown in the

“Request” section. The top chunk in the list will be the one which was selected for retrieval, or it

will be the symbol :retrieval-failure if there was no matching chunk with an activation above the

retrieval threshold. Picking one of those chunks will then cause the “Details” section to display

the chunk and its parameters at that time and the “Activation” section to display the complete

activation trace for how that chunk’s activation was computed for that retrieval request at that

time. Here is what we see for the chunk F3 which is the one that will be retrieved for the request

made at time 26.591:

and here is all of the information from the activation section:

Computing activation for chunk F3
Computing base-level
Starting with blc: 0.0
Computing base-level from 1000 references NIL
 creation time: -10000.0 decay: 0.5 Optimized-learning: T
base-level value: 2.9944046
Total base-level: 2.9944046
Computing activation spreading from buffers
 Spreading 1.0 from buffer GOAL chunk TASK-STATE0-0
 sources of activation are: (R3)
 Spreading activation 0.0 from source R3 level 1.0 times Sji 0.0
Total spreading activation: 0.0
Computing partial matching component
 comparing slot ATTRIBUTE
 Requested: = PINK Chunk's slot value: GREEN

 similarity: -1.0
 effective similarity value is -10.0
Total similarity score -10.0
Adding transient noise 0.43639642
Adding permanent noise 0.0
Chunk F3 has an activation of: -6.5691986

Before looking at those results we will first mention that one can also get that information at the

command line after the model runs instead of through the ACT-R Environment. First, the :sact

parameter must be set to t before the model runs so that the declarative module saves the

information. Then, the saved-activation-history command can be used to see when the retrievals

occurred and which chunks were attempted, and the print-activation-trace and print-chunk-

activation-trace commands can be used to get the activation information for a specific time

and/or chunk. More details on those commands can be found in the reference manual.

Looking at the information in the trace we see that the base-level of that chunk looks strong (it

would take less than 50ms to retrieve a chunk with an activation of ~3 with the current parameter

settings) but it takes a big negative hit from the partial matching component of the equation. The

other two chunks show a similar pattern, and it’s only the noise value which differentiates them

making f3 the one to be retrieved. Since the base-level looks strong we will now consider

adjusting the partial matching component of the activations.

For partial matching there are three things to consider: what values are requested in the slots of

the retrieval request, what the similarities are between those requested values and the values in

the slots of the chunks in declarative memory, and the mismatch penalty parameter (:mp) setting.

We will consider some of the issues related to each of those, and then decide what changes, if

any, to make to the model.

Choosing how specific to make the retrieval request can be important in determining how likely

that request is to succeed when using partial matching because each additional constraint in the

request is an added opportunity to decrease the activation of the target chunks. That is because

partial matching provides a penalty to chunks which do not match the request – it does not

increase the activation of chunks which do (at least not under default and recommended

parameter settings). If there is a chunk which matches the request then the specificity of the

request doesn’t really matter since there will be no penalty to that matching chunk. However,

when the model is making requests in situations where it may not have a perfectly matching

chunk (for instance in the one-hit blackjack game from the unit 5 assignment) one will need to

carefully determine what is important to put in the request. If there are too many constraints the

model may fail to find any chunk which is close enough to all of the constraints to be above the

threshold, but conversely if there are two few constraints put on the request it may retrieve a

chunk which is not really relevant to the current situation.

In the current model the chunks of interest for this request do not have a lot of slots to test and

the request for a chunk based on a single constraint seems reasonable for the chunks involved.

So, we will not adjust that aspect of the model.

The settings of the similarities between items and the :mp parameter are related, so we will

discuss them together. By default a chunk is maximally similar to itself and it is maximally

dissimilar to all other values. To have chunks related by some intermediate similarity the

modeler must set those values. The question becomes how to decide what to make similar and

how to set those similarities so that they provide the desired effects. In setting the similarities

there are two things to consider: the magnitude of the effect a single mismatch will have on the

activation and the relative similarity values among the items involved.

The total effect of similarity depends on how many mismatches there are as discussed with

respect to the specificity of the request above, but the effect that each individual mismatch has is

based on the similarity setting between the items involved and the setting of :mp. The default

range for similarities is from -1 to 0, and the similarity value between the items is multiplied by

the setting of the :mp parameter to determine the penalty to the activation. Setting similarities in

the default range and then using :mp to scale them often works out well. However, because

the :mp parameter is a constant used in all retrieval requests when one needs there to be different

similarity effects for different types of items it may be necessary to change the range of

similarities instead of just scaling them all with :mp. To do that one can change the similarity

range by setting the :md and :ms parameters (maximum difference and maximum similarity

respectively). The recommendation is to always leave :ms at 0, but :md can be set to any value

needed to provide an appropriate range. When changing the range, it’s often best to then just

set :mp to 1 so the similarity values directly reflect the effect on activation, but that’s not

required and one can still scale them with :mp as well if desired.

How to set the relative similarities between items depends on what sorts of effects one would

like the model to show. While it is possible to set each possible similarity value explicitly in the

model to produce specific results, it’s usually more plausible to set them systematically. In some

situations one can rely on other experimental results for guidance in how to set them, for instance

research on numbers, language, or perceptual effects may provide a general equation or metric to

use in those situations, but other times one may need to determine values appropriate for the

current task by parameter exploration or analysis of the data. If parameter estimation is required,

one thing that may be useful in determining similarity values is to look at the activations of the

competing chunks at the time of the request along with the activation noise value. Assuming all

the chunks are sufficiently above the retrieval threshold this equation describes the probability of

chunk i being retrieved among those which are being considered (the set j):

∑
=

j

sA

sA

j

i

e

e
iobability

2/

2/

)(Pr

Using that equation for probability of retrieval one can then determine the expected changes in

retrieval probability based on the differences in similarity values. Of course, that level of

analysis will not always be necessary, but sometimes it’s useful to be able to investigate things in

that way.

For this model we do not have any similarity values set and thus since there is no simple-fact

chunk which has an attribute of pink they all get the maximum penalty of -10 (:mp of 10 times

the default mismatch value of -1). If we want the model to have a preference for particular items

then we will need to set some similarities and we may want to adjust the :mp value as well.

Based on this retrieval request and the initial declarative memory chunks, all we need are the

similarities between pink and each of blue, red, and green since those are the only items involved

that could be partial-matched to the request. However, if this were a task which required a richer

set of information and which may involve requests for any color then we would likely want to set

all of the possible similarities, and using a sim-hook function like the 1-hit blackjack model does

for similarities between numbers might be a good way to do so. For the purposes of the

demonstration model however we will just set one similarity value so that red is considered more

similar to pink than pink is to blue or green. That way the model will be most likely to retrieve

the chunk f2 when requesting a simple-fact with an attribute of pink, and since we are not

concerned with exactly how similar the items are or exactly how much more likely it should be

for this model we will just set that to a similarity of -.4 by adding this setting to the model

definition:

(set-similarities (pink red -.4))

and then investigate the effect that has before considering further changes.

Here is the trace of the model run with that addition made:

> (run 30)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 12.259 DECLARATIVE RETRIEVED-CHUNK V2
 12.259 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V2
 12.259 PROCEDURAL CONFLICT-RESOLUTION
 12.309 PROCEDURAL PRODUCTION-FIRED P2
 12.309 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 12.309 DECLARATIVE START-RETRIEVAL
 12.309 PROCEDURAL CONFLICT-RESOLUTION
 26.541 DECLARATIVE RETRIEVED-CHUNK V1
 26.541 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V1
 26.541 PROCEDURAL CONFLICT-RESOLUTION
 26.591 PROCEDURAL PRODUCTION-FIRED P3
 26.591 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 26.591 DECLARATIVE START-RETRIEVAL
 26.591 PROCEDURAL CONFLICT-RESOLUTION
 29.931 DECLARATIVE RETRIEVED-CHUNK F2
 29.931 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL F2
 29.931 PROCEDURAL CONFLICT-RESOLUTION
 29.981 PROCEDURAL PRODUCTION-FIRED P4
 29.981 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 29.981 DECLARATIVE START-RETRIEVAL
 29.981 PROCEDURAL CONFLICT-RESOLUTION
 30.000 ------ Stopped because time limit reached

Now we see that the chunk f2 is retrieved in about 3 seconds for this request. That is sufficient

for this demonstration so we will not change anything else to affect that retrieval.

Fourth Retrieval Request

The next retrieval request this model makes is very similar to the previous one, except this time

the request is for a simple-fact with an attribute of black:

 (p p4
 =goal>

 isa task-state
 state r4
 ?retrieval>
 state free
 ==>
 =goal>
 state r5
 +retrieval>
 isa simple-fact
 attribute black)

Like the previous request there is no matching chunk and thus this request will either fail or be

satisfied by a partially matched result if there is one above the retrieval threshold. The previous

run shows that production firing and here is what we see when we look ahead to determine what

the result will be:

> (mp-show-queue)
Events in the queue:
 261.522 DECLARATIVE RETRIEVED-CHUNK F1
 261.522 PROCEDURAL CONFLICT-RESOLUTION

It will retrieve the chunk f1 after more than a 200 second delay. That delay seems unreasonable

thus we need to do something to change that, and there are multiple options available depending

on what exactly we want to have happen in the model.

If we want it to retrieve some chunk in a reasonable amount of time, then we will need to do

something to either change the retrieval time or activation values. The options for doing that

have been discussed in previous sections, and we will just summarize them here. We can change

the latency factor parameter to make the retrieval faster. We can increase the activation of the

potential chunks by changing their base-level activation either by giving them a stronger history

or setting the base-level constant. We can decrease the penalty for partial matching by setting

similarity values or changing the :mp parameter. Finally, we can add additional context to the

buffers so that spreading activation will increase the chunk’s activation.

If we don’t mind having the request fail, then we can increase the retrieval threshold so that the

model fails to retrieve in a shorter time than that. Since the time for a failure is determined by

the setting of the retrieval threshold and the latency factor the settings of those parameters

effectively specify the upper bound for how long the model can take to perform any retrieval.

However, changing those parameters will affect all of the retrieval requests which the model

makes. Another way to handle that would be to use the temporal module in the model so that it

can monitor the time that has passed explicitly and then stop waiting once too much time has

passed. That allows the model to have a flexible “failure time”, but it will typically require the

model having additional productions to set up and use the temporal information. Details on

using the temporal module are not yet available in the tutorial, but you can find information on

using it in the ACT-R reference manual. Another option is available if it’s possible for the

model to produce the response without completing the retrieval, for example if it can also find

the information by searching for it visually. In situations like that, while the retrieval is

happening the model can also be engaged in the alternate process of determining the information.

If the retrieval completes before the other method then the model can stop and use the retrieved

information. If the other method completes first, then the model will not have to wait until the

retrieval succeeds or fails. That can work very well in a learning model as long as the result of

the alternate process results in strengthening the same declarative information each time. Then,

as the activation of that chunk increases the model will shift from always having to do the

deliberate process to being able to rely entirely on the retrieved information. That is similar to

how the zbrodoff model in unit 4 of the tutorial operated, except that it did not perform the

retrieval of the information in parallel with the alternative mechanism since in that case, the other

process, counting, also required the use of declarative retrievals and the model can only perform

one retrieval at a time.

In this model we would like some chunk to be retrieved and there is no alternative method

available for producing a result. Thus, we need to make some adjustment to change the retrieval

time. We are again going to avoid using spreading activation. So that leaves us with partial

matching, base-level activation, or the latency factor to be adjusted. For partial matching we

could adjust the similarities as we did with the previous retrieval, but that doesn’t seem as

appropriate to do for black and the target colors. We could also adjust the mismatch penalty,

which might work well in this situation though changing it will also affect all of the other

partially matched retrievals as well. Since we have already set the chunks’ base-level histories to

something fairly strong, we don’t want to adjust that any further. Changing the base-level

constant would also affect the base-level activations, but we will again avoid doing that. If we

change the latency factor that is going to affect all of the retrievals which the model makes, and

while they might be useful we are not going to do so here. So, among the options available,

changing the mismatch penalty is the one that we will investigate further for this retrieval.

The current setting in the model is 10 and with the default maximum dissimilarity value of -1

causes the chunks which mismatch the requested value of black in the attribute slot to have -10

added to their activations. We want the activation of those chunks to increase so that they are

retrieved faster, thus we need to decrease the penalty. If we had data to fit that would give us a

guide as to how long the retrievals should be taking and suggest a more specific change to make,

but since this is just for demonstration purposes we will just set it to something lower and look at

the result. If we decrease the :mp value to 2 and run the model again here is what we get:

> (run 26.9)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED P1
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 GOAL SET-BUFFER-CHUNK GOAL TASK-STATE0
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 12.259 DECLARATIVE RETRIEVED-CHUNK V2
 12.259 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V2
 12.259 PROCEDURAL CONFLICT-RESOLUTION
 12.309 PROCEDURAL PRODUCTION-FIRED P2
 12.309 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 12.309 DECLARATIVE START-RETRIEVAL
 12.309 PROCEDURAL CONFLICT-RESOLUTION
 26.541 DECLARATIVE RETRIEVED-CHUNK V1
 26.541 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL V1
 26.541 PROCEDURAL CONFLICT-RESOLUTION
 26.591 PROCEDURAL PRODUCTION-FIRED P3
 26.591 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 26.591 DECLARATIVE START-RETRIEVAL
 26.591 PROCEDURAL CONFLICT-RESOLUTION
 26.727 DECLARATIVE RETRIEVED-CHUNK F2
 26.727 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL F2
 26.727 PROCEDURAL CONFLICT-RESOLUTION
 26.777 PROCEDURAL PRODUCTION-FIRED P4
 26.777 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 26.777 DECLARATIVE START-RETRIEVAL
 26.777 PROCEDURAL CONFLICT-RESOLUTION
 26.855 DECLARATIVE RETRIEVED-CHUNK F1
 26.855 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL F1
 26.855 PROCEDURAL CONFLICT-RESOLUTION
 26.900 ------ Stopped because time limit reached

The fourth retrieval now completes in less than 200 ms as does the third retrieval which

previously took more than 3 seconds. If we look closely at the activation traces we will see that

without any similarities set f1 is the chunk chosen here because of noise since the other

activation quantities of the potential chunks are very similar to each other, with the only

difference being that f2 has a slightly higher base-level activation than f1 and f3 since it has an

extra reference. We are going to consider that sufficient for this request and move on to the next

one the model performs.

Fifth Retrieval Request

Up to this point we have avoided the effects of spreading activation on retrievals, but for this

request we will investigate issues related to using it. To do that we are going to use chunks with

the following types:

 (chunk-type number representation)
 (chunk-type math-fact arg1 arg2 result operator)
 (chunk-type context val1 val2 val3 goal)

and these initial chunks in declarative memory:

(zero isa number representation "0")
(one isa number representation "1")
(two isa number representation "2")
(three isa number representation "3")

(1+1 isa math-fact arg1 one arg2 one result two operator add)
(1+2 isa math-fact arg1 one arg2 two result three operator add)
(1-1 isa math-fact arg1 one arg2 one result zero operator subtract)
(2-1 isa math-fact arg1 two arg2 one result one operator subtract)
(3-2 isa math-fact arg1 three arg2 two result one operator subtract)

The first thing to consider when using spreading activation is which buffers the model is going to

use as sources for spreading activation. By default, only the goal buffer is considered a source of

activation, but typically one also will want to use the imaginal buffer. Doing that will require

setting the :imaginal-activation parameter to enable the imaginal buffer as a source. For this

model we will only be using the imaginal buffer as a source since our goal buffer is only being

used to hold state information which is not related to items in declarative memory and turning off

the goal buffer as a source will simplify the activation trace information. To do that we will add

these parameter settings to the model to turn off the goal buffer as a source of activation and

enable the imaginal buffer as a source of activation:

(sgp :ga 0 :imaginal-activation 1)

The value used in setting the source spread from a buffer is often set at 1, as we have done here,

but other values may be used and some researchers have found that adjustments to the source

spread parameters can account very well for differences between individuals. For this model we

will not adjust that parameter, but you may want to investigate that on your own after working

through the demonstrations to see how it affects things.

The only other parameter required for using spreading activation is :mas which when set to a

number both enables spreading activation and specifies the value of S in the equation for S
ji

values. In this model we have set that parameter to a value of 2 initially, but we may need to

modify that as we go along.

The next request which the model makes is with this production:

(p p5
 =goal>
 isa task-state
 state r5
 ?imaginal>
 state free
 =retrieval>
 isa simple-fact
 ==>
 =goal>
 state r6
 +imaginal>
 isa context
 val1 one
 val2 two
 +retrieval>
 isa math-fact)

That production makes both a request to the imaginal buffer to create a chunk of type context

and a retrieval request for a math-fact. Running the model with the activation trace enabled

produces this output for that retrieval request:

> (run 27)
...
 26.905 PROCEDURAL PRODUCTION-FIRED P5
 26.905 PROCEDURAL CLEAR-BUFFER IMAGINAL
 26.905 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 26.905 DECLARATIVE START-RETRIEVAL
Computing activation for chunk 1-1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.9530089
Total base-level: -0.9530089
Computing activation spreading from buffers
Total spreading activation: 0.0
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.36828277
Adding permanent noise 0.0
Chunk 1-1 has an activation of: -0.5847261
Chunk 1-1 has the current best activation -0.5847261
Computing activation for chunk 2-1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)

 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.9530089
Total base-level: -0.9530089
Computing activation spreading from buffers
Total spreading activation: 0.0
Computing partial matching component
Total similarity score 0.0
Adding transient noise -0.17789373
Adding permanent noise 0.0
Chunk 2-1 has an activation of: -1.1309026
Computing activation for chunk 3-2
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.9530089
Total base-level: -0.9530089
Computing activation spreading from buffers
Total spreading activation: 0.0
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.33106902
Adding permanent noise 0.0
Chunk 3-2 has an activation of: -0.6219399
Computing activation for chunk 1+1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.9530089
Total base-level: -0.9530089
Computing activation spreading from buffers
Total spreading activation: 0.0
Computing partial matching component
Total similarity score 0.0
Adding transient noise -0.38912883
Adding permanent noise 0.0
Chunk 1+1 has an activation of: -1.3421377
Computing activation for chunk 1+2
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.9530089
Total base-level: -0.9530089
Computing activation spreading from buffers
Total spreading activation: 0.0
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.0474016
Adding permanent noise 0.0
Chunk 1+2 has an activation of: -0.9056073
Chunk 1-1 with activation -0.5847261 is the best

The thing to note there is that there is no spreading activation occurring even though that

production made a request to create a chunk in the imaginal buffer. The reason for that is

because the sources of activation are determined at the time the request is made, but it takes the

imaginal module time to create the chunk. Thus, there is no chunk in the imaginal buffer at the

time the retrieval request occurs from which to spread activation. Since we want to see the

effects of spreading activation from that chunk we will change the model so that production p5

does not make a retrieval request and then look at the next production, p6, which makes that

same request:

 (p p5
 =goal>
 isa task-state
 state r5
 =retrieval>
 isa simple-fact
 ==>
 =goal>
 state r6
 +imaginal>
 isa context
 val1 one
 val2 two)

 (p p6
 =goal>
 isa task-state
 state r6
 =imaginal>
 isa context
 ==>
 +retrieval>
 isa math-fact
 =goal>
 state r7
 =imaginal>
 val3 add)

Production p6 will not fire until there is a chunk in the imaginal buffer. It then modifies the

chunk in the imaginal buffer along with making a retrieval request for a math-fact. Thus, there

should now be some activation spreading and here is the activation trace generated from this

request:

> (run 28)
...
 27.155 PROCEDURAL PRODUCTION-FIRED P6
 27.155 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 27.155 DECLARATIVE START-RETRIEVAL
Computing activation for chunk 1-1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.95763344
Total base-level: -0.95763344
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
 Spreading activation 0.13018736 from source ONE level 0.333 times Sji 0.39056206
 Spreading activation 0.0 from source TWO level 0.333 times Sji 0.0

 Spreading activation 0.0 from source ADD level 0.333 times Sji 0.0
Total spreading activation: 0.13018736
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.36828277
Adding permanent noise 0.0
Chunk 1-1 has an activation of: -0.45916334
Chunk 1-1 has the current best activation -0.45916334
Computing activation for chunk 2-1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.95763344
Total base-level: -0.95763344
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
 Spreading activation 0.13018736 from source ONE level 0.333 times Sji 0.39056206
 Spreading activation 0.069413505 from source TWO level 0.333 times Sji 0.2082405
 Spreading activation 0.0 from source ADD level 0.333 times Sji 0.0
Total spreading activation: 0.19960088
Computing partial matching component
Total similarity score 0.0
Adding transient noise -0.17789373
Adding permanent noise 0.0
Chunk 2-1 has an activation of: -0.9359263
Computing activation for chunk 3-2
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.95763344
Total base-level: -0.95763344
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
#|Warning: Calculated Sji value between ONE and 3-2 is negative, but using a value of 0. |#
 Spreading activation 0.0 from source ONE level 0.333 times Sji 0.0
 Spreading activation 0.069413505 from source TWO level 0.333 times Sji 0.2082405
 Spreading activation 0.0 from source ADD level 0.333 times Sji 0.0
Total spreading activation: 0.069413505
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.33106902
Adding permanent noise 0.0
Chunk 3-2 has an activation of: -0.55715096
Computing activation for chunk 1+1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.95763344
Total base-level: -0.95763344
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
 Spreading activation 0.13018736 from source ONE level 0.333 times Sji 0.39056206
 Spreading activation 0.069413505 from source TWO level 0.333 times Sji 0.20824051
 Spreading activation 0.20456855 from source ADD level 0.333 times Sji 0.61370564
Total spreading activation: 0.40416944
Computing partial matching component
Total similarity score 0.0

Adding transient noise -0.38912883
Adding permanent noise 0.0
Chunk 1+1 has an activation of: -0.94259286
Computing activation for chunk 1+2
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.95763344
Total base-level: -0.95763344
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
#|Warning: Calculated Sji value between ONE and 1+2 is negative, but using a value of 0. |#
 Spreading activation 0.0 from source ONE level 0.333 times Sji 0.0
 Spreading activation 0.069413505 from source TWO level 0.333 times Sji 0.2082405
 Spreading activation 0.20456855 from source ADD level 0.333 times Sji 0.61370564
Total spreading activation: 0.27398205
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.0474016
Adding permanent noise 0.0
Chunk 1+2 has an activation of: -0.6362498
Chunk 1-1 with activation -0.45916334 is the best

Before looking at the final result of the request we will first look at what the sources of activation

are. From the activation trace we see that it lists these three chunks as sources: one, two, and

add. The thing to note is that the chunk add being in a slot of the imaginal buffer chunk was the

result of a modification to the chunk made as an action in that production. Modifications made

directly by the production will always take effect before the retrieval request starts. If we enable

the high detail trace and run it again that can be seen in this sequence of events following the

production firing:

 27.155 PROCEDURAL PRODUCTION-FIRED P6
 27.155 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 27.155 PROCEDURAL MOD-BUFFER-CHUNK IMAGINAL
 27.155 PROCEDURAL MODULE-REQUEST RETRIEVAL
 27.155 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 27.155 DECLARATIVE START-RETRIEVAL

The mod-buffer-chunk actions for the goal and imaginal buffer occur before the declarative

module starts the retrieval. Also worth noting is that the clearing of buffers by the production

will also precede the start of the declarative retrieval. Using the high detail trace can be helpful

to determine why items are or are not sources when looking at other situations because to be a

source the change must occur prior to the start-retrieval action of the declarative module.

Looking at the result of that retrieval we see that it retrieved the chunk 1-1:

 28.421 DECLARATIVE RETRIEVED-CHUNK 1-1
 28.421 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL 1-1

which looks like this:

1-1
 ISA MATH-FACT
 ARG1 ONE
 ARG2 ONE
 RESULT ZERO
 OPERATOR SUBTRACT

That seems unusual given that we have sources of one, two, and add and there’s another chunk

which looks like this that seems like it should be getting more spreading activation:

1+2
 ISA MATH-FACT
 ARG1 ONE
 ARG2 TWO
 RESULT THREE
 OPERATOR ADD

We will look at the activation trace for those two items to see what causes the difference, and

here are the relevant traces:

Computing activation for chunk 1-1
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.95763344
Total base-level: -0.95763344
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
 Spreading activation 0.13018736 from source ONE level 0.333 times Sji 0.39056206
 Spreading activation 0.0 from source TWO level 0.333 times Sji 0.0
 Spreading activation 0.0 from source ADD level 0.333 times Sji 0.0
Total spreading activation: 0.13018736
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.36828277
Adding permanent noise 0.0
Chunk 1-1 has an activation of: -0.45916334
Chunk 1-1 has the current best activation -0.45916334

Computing activation for chunk 1+2
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (0.0)
 creation time: 0.0 decay: 0.5 Optimized-learning: T
base-level value: -0.95763344
Total base-level: -0.95763344
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
#|Warning: Calculated Sji value between ONE and 1+2 is negative, but using a value of 0. |#
 Spreading activation 0.0 from source ONE level 0.333 times Sji 0.0

 Spreading activation 0.069413505 from source TWO level 0.333 times Sji 0.2082405
 Spreading activation 0.20456855 from source ADD level 0.333 times Sji 0.61370564
Total spreading activation: 0.27398205
Computing partial matching component
Total similarity score 0.0
Adding transient noise 0.0474016
Adding permanent noise 0.0
Chunk 1+2 has an activation of: -0.6362498

Looking at those traces we see that those two chunks have the same base-level activation and

chunk 1+2 does have a higher total spreading activation value. Chunk 1-1 gets a greater boost

from noise than 1+2, so the first though might be that it’s just an issue with noise. However, a

closer look at the spreading activation calculations reveals a warning and raises some interesting

questions:

Computing activation for chunk 1-1
…
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
 Spreading activation 0.13018736 from source ONE level 0.333 times Sji 0.39056206
 Spreading activation 0.0 from source TWO level 0.333 times Sji 0.0
 Spreading activation 0.0 from source ADD level 0.333 times Sji 0.0
Total spreading activation: 0.13018736

Computing activation for chunk 1+2
…
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
#|Warning: Calculated Sji value between ONE and 1+2 is negative, but using a value of 0. |#
 Spreading activation 0.0 from source ONE level 0.333 times Sji 0.0
 Spreading activation 0.069413505 from source TWO level 0.333 times Sji 0.2082405
 Spreading activation 0.20456855 from source ADD level 0.333 times Sji 0.61370564
Total spreading activation: 0.27398205

Ignoring the warning for now, one question is why does the S
ji
 from one to 1-1 differ from the S

ji

from one to 1+2, and another is why is the S
ji
 from one to 1+2 zero?

The answer to the first issue has to do with how S
ji
s are computed when there are multiple

references within a chunk. The equation for S
ji
 from the main unit 5 text:

)ln(jji fanSS −=

is a simplification of the full calculation which is only true when there’s a single link between

chunks j and i, but in this case the chunk one occurs in two different slots of the chunk 1-1. The

more general form of the equation for S
ji
 uses the value fan

ji
 instead of fan

j
 where fan

ji
 is defined

as:

ji

j
ji slotsof

slots
fan

+
=

1

slotsj: the number of slots in which j is the value across all chunks in declarative memory
slotsofji: the number of slots in chunk i which have j as the value (plus 1 if chunk i is chunk j)

In this case, j is the chunk one and i is the chunk 1-1. Chunk one is a value in nine slots of the

chunks in declarative memory, so that is slots
j
, and it occurs in two slots of chunk 1-1, so that is

the value for slots
ji
. Combining that with the value of 2 for S as was set in the model we get:

0.39056206 1.6094382
2

91
ln2 =−=

 +−=jiS

which is what we see in the trace. For the S
ji
 between the chunk one and the chunk 1+2 the

equation is:

2-0.3025851 2.30258512
1

91
ln2 =−=

 +−=jiS

which is actually a negative spreading of activation. The warning before that calculation:

#|Warning: Calculated Sji value between ONE and 1+2 is negative, but using a value of 0. |#

 indicates that a negative activation spread is treated as 0 by default. This is a safety test that is

enabled by default to prevent negative associations since they would be inhibiting the retrieval of

related information instead of supporting it. The easy way to fix that is to make sure that the S

value is set high enough to avoid the negative value. Occasionally situations occur where one

may want that inhibitory behavior, and in those situations it’s still advised to set S high enough

that items don’t automatically get negative S
ji
 values. Instead, the recommendation is to set

those desired negative associations explicitly with the add-sji command.

To fix the issue with negative associations in the model we will set our S value to 4 which should

be sufficient to keep all S
ji
 values positive (as long as fan

ji
 is less than 54 it will be positive).

When we run the model after making that change we see that the model does retrieve the chunk

we expected it to:

 27.155 PROCEDURAL PRODUCTION-FIRED P6
 27.155 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 27.155 PROCEDURAL MOD-BUFFER-CHUNK IMAGINAL
 27.155 PROCEDURAL MODULE-REQUEST RETRIEVAL
 27.155 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 27.155 DECLARATIVE START-RETRIEVAL
 27.155 PROCEDURAL CONFLICT-RESOLUTION
 27.381 DECLARATIVE RETRIEVED-CHUNK 1+2
 27.381 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL 1+2

However, to be sure things are doing what we expect we should look at the activation trace to

make sure, and here is the trace with the base-level and similarity sections removed since those

are identical among these chunks:

Computing activation for chunk 1-1
...
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
 Spreading activation 0.796854 from source ONE level 0.333 times Sji 2.390562
 Spreading activation 0.0 from source TWO level 0.333 times Sji 0.0
 Spreading activation 0.0 from source ADD level 0.333 times Sji 0.0
Total spreading activation: 0.796854
...
Adding transient noise 0.36828277
Adding permanent noise 0.0
Chunk 1-1 has an activation of: 0.20750335
Chunk 1-1 has the current best activation 0.20750335

Computing activation for chunk 2-1
...
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
 Spreading activation 0.796854 from source ONE level 0.333 times Sji 2.390562
 Spreading activation 0.73608017 from source TWO level 0.333 times Sji 2.2082405
 Spreading activation 0.0 from source ADD level 0.333 times Sji 0.0
Total spreading activation: 1.5329342
...
Adding transient noise -0.17789373
Adding permanent noise 0.0
Chunk 2-1 has an activation of: 0.39740703
Chunk 2-1 is now the current best with activation 0.39740703

Computing activation for chunk 3-2
...
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
 Spreading activation 0.56580496 from source ONE level 0.333 times Sji 1.6974149
 Spreading activation 0.73608017 from source TWO level 0.333 times Sji 2.2082405

 Spreading activation 0.0 from source ADD level 0.333 times Sji 0.0
Total spreading activation: 1.3018851
...
Adding transient noise 0.33106902
Adding permanent noise 0.0
Chunk 3-2 has an activation of: 0.67532074
Chunk 3-2 is now the current best with activation 0.67532074

Computing activation for chunk 1+1
...
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
 Spreading activation 0.796854 from source ONE level 0.333 times Sji 2.390562
 Spreading activation 0.73608017 from source TWO level 0.333 times Sji 2.2082405
 Spreading activation 0.87123525 from source ADD level 0.333 times Sji 2.6137056
Total spreading activation: 2.4041696
...
Adding transient noise -0.38912883
Adding permanent noise 0.0
Chunk 1+1 has an activation of: 1.0574073
Chunk 1+1 is now the current best with activation 1.0574073

Computing activation for chunk 1+2
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CONTEXT0-0
 sources of activation are: (ONE TWO ADD)
 Spreading activation 0.56580496 from source ONE level 0.333 times Sji 1.6974149
 Spreading activation 0.73608017 from source TWO level 0.333 times Sji 2.2082405
 Spreading activation 0.87123525 from source ADD level 0.333 times Sji 2.6137056
Total spreading activation: 2.1731205
...
Adding transient noise 0.0474016
Adding permanent noise 0.0
Chunk 1+2 has an activation of: 1.2628886
Chunk 1+2 is now the current best with activation 1.2628886

Looking over the spreading activation values shows that in fact the chunk 1+1 gets more

spreading activation than chunk 1+2 and it is only because of noise that we retrieved 1+2 this

time. The reason for that is because the chunk 1+1 is also receiving activation spread from each

of the sources since it also contains each of those chunks in some slot, and because it has two

occurrences of the chunk one it has a greater S
ji
 from one than the chunk 1+2 does.

This highlights a big distinction between spreading activation and partial matching. Spreading

activation is a bottom-up mechanism which increases the activation of chunks relative to how

well they match the current context without regard for the specific structure of that information

in the target chunks. Whereas partial matching is a top-down process which penalizes those

chunks which do not match the specific pattern provided in the request. In models of simple

tasks often only one effect or the other is desired and to keep things simple only that particular

mechanism is enabled, as was the case for the tutorial unit models, but in more complex models

both effects may be desirable in which case one has to be more careful about both maintaining an

appropriate context and making appropriate requests to achieve the desired results.

If we want this model to be relatively certain of retrieving the fact associated with adding one

and two we will need to add that pattern of information into the request. We will not make that

change to the model as part of the demonstration, but you should feel free to try that and see how

the activations change. You may also want to try changing the similarities between the number

chunks to see how that affects things as well because the current model does not set any

similarities between the number chunks.

Last two productions

The final issue we will look at does not involve a retrieval. Instead we will look at a potential

issue which can arise when creating chunks that will be merged into declarative memory. In

most situations chunks will merge and strengthen existing declarative chunks as one would

expect, but there is a situation which can sometimes occur which is worth discussing here

because it can be confusing. The issue can arise when a model creates a chunk which has slot

values that are chunks which are not in declarative memory (typically because they reference a

chunk currently in a buffer) and then merges that chunk into declarative memory.

For the example we will investigate what happens when these two productions fire:

 (p p7
 =goal>
 isa task-state
 state r7
 =imaginal>
 isa context
 =retrieval>
 isa math-fact
 ==>
 =goal>
 state r8
 =imaginal>
 goal =goal)

 (p p8
 =goal>
 isa task-state
 state r8
 =imaginal>
 isa context
 ==>
 +goal>
 isa task-state
 -imaginal>)

in the context of these chunks existing in declarative memory:

G1
 ISA TASK-STATE
 STATE R8

OLD-CONTEXT
 ISA CONTEXT
 VAL1 ONE
 VAL2 TWO
 VAL3 ADD
 GOAL G1

Before running the model we will look at what we might expect to happen. Production p7 waits

for the previous retrieval to complete and then modifies the chunks in the goal and imaginal

buffers. The goal chunk is modified such that it now looks just like g1 and the imaginal chunk

has that current goal buffer chunk placed into its goal slot. Production p8 fires next since the

goal buffer state matches and then it performs two explicit actions. It makes a request to the goal

module to create a new task-state chunk, which will implicitly clear the current chunk from the

goal buffer, and it clears the chunk from the imaginal buffer. What we might expect to happen

here is that the goal buffer’s chunk will merge with chunk g1 and then the imaginal buffer’s

chunk will merge with the chunk old-context.

After running the model however here is what we see in declarative memory with respect to task-

state and context chunks (found using the sdm command here but using the filter in the

declarative viewer could also be used):

> (sdm isa task-state)
G1
 ISA TASK-STATE
 STATE R8

(G1)
> (sdm isa context)
OLD-CONTEXT
 ISA CONTEXT
 VAL1 ONE
 VAL2 TWO
 VAL3 ADD
 GOAL G1

CONTEXT0-0
 ISA CONTEXT
 VAL1 ONE
 VAL2 TWO
 VAL3 ADD
 GOAL G1

(OLD-CONTEXT CONTEXT0-0)

We see that there is only one task-state chunk as we expected, but there are two apparently

identical context chunks. One way to see why that happens would be to step through the actions

which occur as a result of that production firing and inspect things carefully after each event. If

you would like to do that you can do so, but here we will just inspect the actions in the trace and

explain the outcome.

Before doing that, there is something else which we can do that might make things clearer. If we

turn off the :ncnar parameter the model will not automatically normalize the chunk names when

chunks are merged and that might also help to see what has happened. Thus, before running the

model again we should add that to the sgp call in the model:

 (sgp ... :ncnar nil)

Now, after we run the model this is what is shown for the chunks of type context in declarative

memory:

> (sdm isa context)
OLD-CONTEXT
 ISA CONTEXT
 VAL1 ONE
 VAL2 TWO
 VAL3 ADD
 GOAL G1

CONTEXT0-0
 ISA CONTEXT
 VAL1 ONE
 VAL2 TWO
 VAL3 ADD
 GOAL TASK-STATE0-0

An important thing to note is that while the context0-0 chunk now looks different than it did after

the previous run when :ncnar was enabled there is no difference between them in terms of the

model’s operation because changing the :ncnar parameter only changes how the information is

displayed to the modeler.

Here are the events from the trace, which may suggest what has happened, but we will still go

over the details:

 27.481 PROCEDURAL PRODUCTION-FIRED P8

 27.481 PROCEDURAL MODULE-REQUEST GOAL
 27.481 PROCEDURAL CLEAR-BUFFER IMAGINAL
 27.481 PROCEDURAL CLEAR-BUFFER GOAL

While all of those events are listed as occurring at the same time, as we’ve seen using the

stepper, each is executed individually in the order that they are shown. Thus, first the production

fires, then the request is made to the goal buffer, then the imaginal buffer gets cleared, and

finally the goal buffer gets cleared.

The important question is then how does declarative memory handle merging chunks? The

answer is that it only attempts to merge chunks immediately upon their being cleared from a

buffer, and it will only merge chunks if all of their contents are perfect matches. When the slot

values are chunk names a perfect match means that they must refer to the same chunk (note

however that that doesn’t mean that the slot values must have the same chunk name because

merged chunks can still be referenced by either name).

Thus, when the imaginal buffer gets cleared the chunk in it looks like this:

CONTEXT0-0
 ISA CONTEXT
 VAL1 ONE
 VAL2 TWO
 VAL3 ADD
 GOAL TASK-STATE0-0

At that time the chunk task-state0-0 is still in the goal buffer and has not been merged with

chunk g1 in declarative memory. Because of that the chunk context0-0 is not a perfect match to

the chunk old-context which is in declarative memory since the value of their goal slots, task-

state0-0 and g1, are different chunks. That means context0-0 must be added to declarative

memory as a new chunk. Then, the goal buffer gets cleared. Because chunk task-state0-0 is a

perfect match to the chunk g1 those two chunks are then merged. The merging of those task-

state chunks does not make the declarative module retroactively merge the chunks old-context

and context0-0. Thus, declarative memory still has two context chunks; one with a value of g1

in the goal slot and one with a value of task-state0-0 in the goal slot, but both of those values

now reference a single chunk (that is why when :ncnar is turned on we see the same value, g1,

displayed for both).

That may seem like a problem with how merging works, but there are good reasons for having it

work sequentially like that. One of those reasons is that it allows the modeler to control what

happens – sometimes one might want separate chunks instead of having them merged. If we do

not want separate chunks, then we have to ensure that all the chunks in the slots of the chunk we

want to merge with a chunk in declarative memory are merged into declarative memory first (in

this case the chunk in the goal buffer must be merged into declarative memory before the chunk

in the imaginal buffer since that goal buffer chunk is in a slot of the chunk in the imaginal

buffer). If we want that to happen within a single production, then this becomes one of the very

rare situations where controlling the order in which a production’s actions occur matters.

Generally, the order in which a production performs its actions does not matter since they are all

happening at the same time and there are usually no interactions among them. However, since

the simulation has to perform the actions sequentially, in situations like this one the modeler may

need to make sure some things happen in a particular order, but the modeler cannot arbitrarily

order a production’s actions. A production will always perform its actions in the following

order: all user actions (!eval!, !bind!, and !output!), all buffer modifications, all requests, then all

buffer clearing actions. Within a particular type of action it will perform the explicit specified

actions in the order provided in the production followed by any implicit actions of that type (like

clearing the buffer due to strict harvesting or as a result of a request) in no particular order.

Thus, if we want the goal buffer to be cleared prior to the imaginal buffer we will have to

explicitly perform that action in the production instead of letting it happen implicitly, and it will

have to be placed before the imaginal buffer clearing.

Here is a modified version of p8 which adds an explicit clearing of the goal buffer before the

clearing of the imaginal buffer:

 (p p8
 =goal>
 isa task-state
 state r8
 =imaginal>
 isa context
 ==>
 +goal>
 isa task-state
 -goal>
 -imaginal>)

When we run the model after saving that change and reloading we get the following result for

chunks of type context in declarative memory:

> (sdm isa context)
OLD-CONTEXT
 ISA CONTEXT
 VAL1 ONE
 VAL2 TWO
 VAL3 ADD
 GOAL G1

(OLD-CONTEXT)

which shows that there is only one chunk now thus the imaginal chunk has been merged with the

old-context chunk. If we wanted to investigate further we could make sure that that chunk has

two references by looking at the details in the declarative viewer or by using the sdp command to

check its parameters, and if we do so we find that it does have a value of two for its reference-

count:

> (sdp old-context)
Declarative parameters for chunk OLD-CONTEXT:
 :Activation -0.746
 :Permanent-Noise 0.000
 :Base-Level -0.270
 :Reference-Count 2.000
 :Creation-Time 0.000
 :Source-Spread 0.000
 :Sjis ((OLD-CONTEXT . 4.0) (ONE . 1.6974149) (TWO . 2.2082405) (ADD . 2.6137056)
 (G1 . 3.3068528))
 :Similarities ((OLD-CONTEXT . 0.0))
(OLD-CONTEXT)

	Declarative Memory Related Issues
	The Model Design
	Loading the Model
	First Retrieval Request
	Second Retrieval Request
	Third Retrieval Request
	Fourth Retrieval Request
	Fifth Retrieval Request
	Last two productions

