
ACT-R Tutorial 22-Dec-14 Unit Three

Unit 3: Attention

This unit is concerned with developing a better understanding of how perceptual attention works
in ACT-R, particularly as it is concerned with visual attention.

3.1 Visual Locations

When a visual display such as this

 V N T Z

 C R Y K

 W J G F

is presented to ACT-R a representation of all the visual information is immediately accessible in a
visual icon. One can view the contents of this icon using the “Visicon” button in the environment
or with the command print-visicon:

> (print-visicon)

Loc Att Kind Value Color ID
--------- --- ------------- ---------------- -------------- -------------
(80 107) NEW TEXT "v" BLACK VISUAL-LOCATION0
(80 157) NEW TEXT "c" BLACK VISUAL-LOCATION1
(80 207) NEW TEXT "w" BLACK VISUAL-LOCATION2
(130 107) NEW TEXT "n" BLACK VISUAL-LOCATION3
(130 157) NEW TEXT "r" BLACK VISUAL-LOCATION4
(130 207) NEW TEXT "j" BLACK VISUAL-LOCATION5
(180 107) NEW TEXT "t" BLACK VISUAL-LOCATION6
(180 157) NEW TEXT "y" BLACK VISUAL-LOCATION7
(180 207) NEW TEXT "g" BLACK VISUAL-LOCATION8
(230 107) NEW TEXT "z" BLACK VISUAL-LOCATION9
(230 157) NEW TEXT "k" BLACK VISUAL-LOCATION10
(230 207) NEW TEXT "f" BLACK VISUAL-LOCATION11

This prints the information of all the features that are available for the model to see. For each
feature it shows the screen location, attentional status, general object type, specific value
information, color, and a name by which it will be referenced. This low-level feature set is what
is searched when a visual-location request is made.

3.1.1 Visual Location Requests

When requesting the visual location of an object there are many slots that can be specified in the
request. In the last unit we only used the request parameter :attended. We will expand on the use
of :attended in this unit. In addition, we will also provide more information about requests on all

1

ACT-R Tutorial 22-Dec-14 Unit Three

of the slots of the visual-location chunk-type and show another request parameter which can be
specified - :nearest.

3.1.2 The Attended Test in More Detail

The :attended request parameter was introduced in unit 2. It tests whether or not the model has
attended the object at that location, and the possible values are new, nil, and t. Very often we use
the fact that attention tags elements in the visual display as attended or not to enable us to draw
attention to the previously unattended elements. Consider the following production:

(p find-random-letter
 =goal>
 isa read-letters
 state find
==>
 +visual-location>
 isa visual-location
 :attended nil
 =goal>
 state attending)

In its action, this production requests the location of an object that has not yet been attended
(:attended nil). Otherwise, it places no preference on the location to be selected. When there is
more than one item in the visicon that matches the request, the one most recently added to the
visual icon (the newest one) will be chosen. If multiple items also match on their recency, then
one will be picked randomly among those. If there are no objects which meet the constraints, then
the error state will be set for the visual-location buffer. After a feature is attended (with a visual
request to move-attention), it will be tagged as attended t and this production’s request for a
visual-location will not return the location of such an object.

3.1.2.1 Finsts

There is a limit to the number of objects which can be tagged as attended t, and there is also a
time limit on how long an item will remain marked as attended t. These attentional markers are
called finsts (INSTantiation FINgers) and are based on the work of Zenon Pylyshyn. The number
of finsts and the length of time that they persist can be set with the parameters :visual-num-finsts
and :visual-finst-span respectively.

The default number of finsts is four, and the default decay time is three seconds. Thus, with these
default settings, at any time there can be no more than four objects marked as attended t, and after
three seconds the attended state of an item will revert from t to nil. Also, when attention is
shifted to an item that would require more finsts than there are available the oldest one is reused
for the new item i.e. if there are four items marked with finsts as attended t and you move
attention to a fifth item the first item that had been marked as attended t will now be marked as
attended nil and the fifth item will be marked as attended t. Because the default value is small,
productions like the one above are not very useful for modeling tasks with a large number of

2

http://ruccs.rutgers.edu/faculty/pylyshyn.html

ACT-R Tutorial 22-Dec-14 Unit Three

items on the screen because the model will end up revisiting items very quickly. One solution is
to always set :visual-num-finsts to a value that works for your task, but one of the goals of ACT-R
modeling is to produce parameter free models, so a different approach is generally desired. After
discussing some of the other specifications one can use in a request we will come back to how one
could do such things.

3.1.3 Visual-location slots

Because the vision module was designed around interacting with a 2-D screen the primary slots
for visual-locations are screen-x and screen-y. They represent the location based on its x and y
position on the screen. We will only be working with models that are interacting with a 2-D
screen in the tutorial and thus all the visual items have locations based on their positions within
the window the model is interacting with. The upper left corner is screen-x 0 and screen-y 0 with
x increasing from left to right and y increasing from top to bottom.

There is also a distance slot in the visual-location chunk-type. This represents the distance from
the model to the location. Because we are assuming a 2-D display, all the visual-locations will
have a fixed value of 1080 which represents a distance of 15 inches from the model to the screen
and a screen resolution of 72 pixels per inch.

The height and width slots hold the dimensions of the item measured in pixels. The size slot holds
the approximate area covered by the item measured in degrees of visual angle squared. These
values provide the general shape and size of the item on the display.

The color slot holds a representation of the color of the item. Typically, these will be symbolic
descriptors like black or red which are chunks. However, a modeler could use abstract values or
numbers to represent the color if that information were more useful to the task being modeled.

The kind and value slots of the visual-location provide a general description of the item and may
not contain all of the specific information needed to fully describe the item. To get specific
information the model will have to attend to the item. The kind slot usually specifies the chunk-
type of the object that will be found when the visual-location is attended. The value slot holds
some description which is assumed to be available without attending. The value shown in the
visicon for a feature is the specific information which will be available after attending the item.
That may not be the same as the value found in the visual-location chunk for the feature. For
example, the visual-location chunks representing the text letters above will have a value slot of
text instead of the specific letter.

It is possible for one to specify abstract devices for a model to interact with instead of a simple
computer screen. When doing so, one may create additional chunk-types to represent the visual-
location information which may have additional slots that hold other information. Those
additional slots can be tested in the same ways as any of the default slots can. Creating new
devices however is beyond the scope of the tutorial.

3

ACT-R Tutorial 22-Dec-14 Unit Three

3.1.4 Visual-location request specification

One can specify constraints for a visual-location request based on the values of the slots in the
visual-location chunk-type. Any of the slots may be specified using any of the modifiers (-, <, >,
<=, or >=) in much the same way one specifies a retrieval request. Each of the slots may be
specified any number of times. In addition, there are some special tests which one can use that
will be described below. All of the constraints specified will be used to find a visual-location in
the visicon to be placed into the visual-location buffer. If there is no visual-location in the
visicon which satisfies all of the constraints then the visual-location buffer will indicate an error
state.

3.1.4.1 Exact values

If you know the exact values for the slots you are interested in then you can specify those values
directly:

+visual-location>
 isa visual-location
 screen-x 50
 screen-y 124
 color black

You can also use the negation test, -, with the values to indicate that you want a location which
does not have that value:

+visual-location>
 isa visual-location
 color black
 - kind text

Often however, one does not know the specific information about the location of visual items in
advance and things need to be specified more generally in the model.

3.1.4.2 General values

When the slot being tested holds a number it is also possible to use the slot modifiers <, <=, >,
and >= along with specifying the value. Thus to request a location that is to the right of screen-x
50 and at or above screen-y 124 one could use the request:

+visual-location>
 isa visual-location
 > screen-x 50
 <= screen-y 124

In fact, one could use two modifiers for each of the slots to restrict a request to a specific range of
values. For instance to request an object which was located somewhere within a box bounded by
the corners 10,10 and 100,150 one could specify:

4

ACT-R Tutorial 22-Dec-14 Unit Three

+visual-location>
 isa visual-location
 > screen-x 10
 < screen-x 100
 > screen-y 10
 < screen-y 150

3.1.4.3 Production variables

It is also possible to use variables from the production in the requests instead of specific values.
Consider this production which uses a value from a slot in the goal to test the color:

(p find-by-color
 =goal>
 isa find-color
 target =color
==>
 +visual-location>
 isa visual-location
 color =color
)

Variables from the production can be used just like specific values along with the modifiers.
Assuming that the LHS of the production binds =x, =y, and =kind this would be a valid request:

 +visual-location>
 isa visual-location
 kind =kind
 < screen-x =x
 - screen-x 0
 >= screen-y =y
 < screen-y 400

3.1.4.4 Relative values

If you are not concerned with any specific values, but care more about relative settings then there
are also ways to specify that.

You can use the values lowest and highest in the specification of any slot which has a numeric
value. Of the chunks which match the other constraints the one with the numerically lowest or
highest value for that slot will then be the one found.

In terms of screen-x and screen-y, remember that x coordinates increase from left to right, so
lowest corresponds to leftmost and highest rightmost, while y coordinates increase from top to
bottom, so lowest means topmost and highest means bottommost.

5

ACT-R Tutorial 22-Dec-14 Unit Three

If this is used in combination with :attended it can allow the model to find things on the screen in
an ordered manner. For instance, to read the screen from left to right you could use:

+visual-location>
 isa visual-location
 :attended nil
 screen-x lowest

assuming that you also move attention to the items so that they become attended and that the
model has sufficient finsts to tag everything.

There is one note about using lowest and highest when more than one slot is specified in that way
for example:

+visual-location>
 isa visual-location
 width highest
 screen-x lowest
 color red

First, all of the non-relative values are used to determine the set of items to be tested for relative
values. Then the relative tests are performed one at a time in the order provided to reduce the
matching set. Thus, the specification above would first consider all items which were red because
that is a constant value. Then it would reduce that to the set of items with the highest width
(widest) and then of those it would pick the one with the lowest screen-x coordinate (leftmost).
That may not produce the same result as this request for the same set of visicon chunks:

+visual-location>
 isa visual-location
 screen-x lowest
 width highest
 color red

This request will again start with all red items. Then it will find those with the lowest x
coordinate and among those will choose the widest.

3.1.4.5 The current value

It is also possible to use the special value current in a request. That means the value of the slot
must be the same as the value for the location of the currently attended object (the one attention
was last shifted to with a move-attention request). This request would find a location which had
the same screen-x value as the current one:

+visual-location>
 isa visual-location
 screen-x current

6

ACT-R Tutorial 22-Dec-14 Unit Three

You can also use the value current with the modifiers. The following test will find a location
which is up and to the right of the currently attended object in a different color:

+visual-location>
 isa visual-location
 > screen-x current
 < screen-y current
 - color current

If the model does not have a currently attended object (it has not yet attended to anything) then
the tests for current are ignored.

3.1.4.6 Request variables

A special component of the visual-location requests is the ability to use variables to compare the
particular values in a visual-location to each other in the same way that the LHS tests of a
production use variables to match chunks. If a value for a slot in a visual-location request starts
with the character & then it is considered to be a variable in the request in the same way that
values starting with = are considered to be variables on the LHS of a production.

This request:

+visual-location>
 isa visual-location
 height &height
 width &height

would attempt to find a location which has the same value in the height and width slots. The
request variables can be combined with the modifiers and any of the other values allowed to be
used in the requests. Here is an example which may not be the most practical, but shows most of
the components in use together:

+visual-location>
 isa visual-location
 screen-x current
 screen-x &x
 > screen-y 100
 screen-y lowest
 - screen-y &x

That request would try to find a location which had a screen-x value which was the same as the
currently attended location and a screen-y value which was the lowest one greater than 100 but
not the same as the screen-x value.

7

ACT-R Tutorial 22-Dec-14 Unit Three

This mechanism is probably not very useful with the default slots of a visual-location, but could
become very useful when one creates other devices and visual-location representations for their
models.

3.1.5 The :nearest request parameter

Like :attended, there is another request parameter available in visual-location requests. The
:nearest request parameter can be used to find the items closest to the currently attended location,
or some other location. To find the location of the object nearest to the currently attended
location we can again use the value current:

+visual-location>
 isa visual-location
 :nearest current

It is also possible to specify any location chunk for the nearest test, and the location of the object
nearest to that location will be returned:

+visual-location>
 isa visual-location
 :nearest =some-location

If there are constraints other than nearest specified then they are all tested first. The nearest of the
locations that matches all of the other constraints is the one that will be placed into the buffer.
Specifically, the nearest is determined by the straight line distance using the screen-x, screen-y,
and distance coordinates of the locations.

3.1.6 Ordered Search

Above it was noted that a production using this visual-location request (in conjunction with
appropriate attention shifts) could be used to read words on the screen from left to right:

(p read-next-word
 =goal>
 isa read-word
 state find
==>
 +visual-location>
 isa visual-location
 :attended nil
 screen-x lowest
 =goal>
 state attend
)

8

ACT-R Tutorial 22-Dec-14 Unit Three

However, if there are fewer finsts available than words to be read that production will result in a
loop that reads only one more word than there are finsts. For instance, if there are six words on
the line and the model only has four finsts (the default) then when it attends the fifth word the
finst on the first word will be removed to use because it is the oldest. Then the sixth request will
result in finding the location of the first word again because it is no longer marked as attended. If
it is attended it will get the finst from the second word, and so on.

By using the special tests for current and lowest one could have the model perform the search
from left to right without using the :attended test:

(p read-next-word
 =goal>
 isa read-word
 state find
==>
 +visual-location>
 isa visual-location
 > screen-x current
 screen-x lowest
 =goal>
 state attend
)

That will always be able to find the next word to the right of the currently attended one.
Similarly, one could add tests for the screen-y coordinate to produce a top-to-bottom and left-to-
right search pattern or combine that with the :nearest request parameter to perform other ordered
search strategies.

3.2 The Sperling Task

If you open the sperling model, you will see an example of the effects of visual attention. This
model contains functions for administering the Sperling experiment where subjects are briefly
presented with a set of letters and must try to report them. Subjects see displays of 12 letters such
as:

 V N T Z

 C R Y K

 W J G F

This model reproduces the partial report version of the experiment. In this condition, subjects are
cued sometime after the display comes on as to which of the three rows they must report. The
delay of the cue is either 0, .15, .3, or 1 second after the display appears. Then, after 1 second of

9

ACT-R Tutorial 22-Dec-14 Unit Three

total display time, the screen is cleared and the subject is to report the letters from the cued row.
In the version we have implemented the responses are to be typed in and the space bar pressed to
indicate completion of the reporting. For the cueing, the original experiment used a tone with a
different frequency for each row and the model will hear simulated tones while it is doing the
task. This task does not have a version which you can run through as a person because of
complications with presenting real tones.

In the original experiment the display is only presented for 50 ms and it is generally believed that
there is an iconic visual memory that holds the stimuli for some time after onset which the
participants are then processing. ACT-R’s vision module does not have such an iconic visual
memory. Thus, for this task we have simulated this for ACT-R by having the display actually
stay on for longer than 50ms. It will be visible for a random period of time between 0.9 to 1.1
seconds to simulate that effect. There were also some other differences to the actual visual
conditions of the original task relative to what we are using for the model, but this simplified
representation is sufficient for the purpose of demonstrating attention with this model.

One thing to note about this model is that it does not use the imaginal module, as described in the
previous unit, to hold the problem representation separate from the control state. Instead, all of
the task relevant information will be kept in the goal buffer chunk. This is done primarily to keep
the productions simpler so as to keep the focus in this unit on the details of the attention
mechanisms.

The following is the trace of ACT-R’s performance of one trial of the task. In this trace the sound
is presented .15 seconds after onset of the display and the target row was the middle one. This
trace was generated with the :trace-detail set to low to avoid lots of the details for now:

> (do-sperling-trial .15)
0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0 REQUESTED NIL
0.050 PROCEDURAL PRODUCTION-FIRED ATTEND-MEDIUM
0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0
0.185 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND
0.185 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION3-0
0.200 AUDIO SET-BUFFER-CHUNK AURAL-LOCATION AUDIO-EVENT0 REQUESTED NIL
0.235 PROCEDURAL PRODUCTION-FIRED ATTEND-HIGH
0.285 PROCEDURAL PRODUCTION-FIRED DETECTED-SOUND
0.320 VISION SET-BUFFER-CHUNK VISUAL TEXT1
0.370 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND
0.370 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0
0.420 PROCEDURAL PRODUCTION-FIRED ATTEND-LOW
0.505 VISION SET-BUFFER-CHUNK VISUAL TEXT2
0.555 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND
0.555 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0
0.570 AUDIO SET-BUFFER-CHUNK AURAL TONE0
0.605 PROCEDURAL PRODUCTION-FIRED ATTEND-HIGH
0.655 PROCEDURAL PRODUCTION-FIRED SOUND-RESPOND-MEDIUM
0.690 VISION SET-BUFFER-CHUNK VISUAL TEXT3
0.740 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND
0.740 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION4-0
0.790 PROCEDURAL PRODUCTION-FIRED ATTEND-MEDIUM
0.875 VISION SET-BUFFER-CHUNK VISUAL TEXT4
0.925 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND
0.925 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0
0.975 PROCEDURAL PRODUCTION-FIRED ATTEND-MEDIUM
1.110 PROCEDURAL PRODUCTION-FIRED START-REPORT

10

ACT-R Tutorial 22-Dec-14 Unit Three

1.110 GOAL SET-BUFFER-CHUNK GOAL REPORT-ROW0
1.110 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TEXT0-0
1.160 PROCEDURAL PRODUCTION-FIRED DO-REPORT
1.160 MOTOR PRESS-KEY c
1.160 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TEXT4-0
1.760 PROCEDURAL PRODUCTION-FIRED DO-REPORT
1.760 MOTOR PRESS-KEY r
1.760 DECLARATIVE RETRIEVAL-FAILURE
2.260 PROCEDURAL PRODUCTION-FIRED STOP-REPORT
2.260 MOTOR PRESS-KEY SPACE
2.560 ------ Stopped because no events left to process

answers: ("K" "Y" "R" "C")
responses: ("R" "C")
2

While the sound is presented at .150 seconds into the run it does not affect the model until sound-
respond-medium fires at .655 seconds into the run to encode the tone. One of the things we will
discuss is what determines the delay of that response. Prior to that time the model is finding
letters anywhere on the screen. After the sound is encoded the search is restricted to the target
row. After the display disappears, the production start-report fires which initiates the keying of
the letters that have been encoded from the target row.

3.3 Visual Attention

As in the models from the last unit there are three steps that the model must perform to encode
visual objects. It must find the location of an object, shift attention to that location, and then
harvest the chunk which encodes that object when attention shifts to the location. In the last unit
this was done with three separate productions, but in this unit because the model is trying to do
this as quickly as possible the encoding and request to find the next are combined into a single
production, and for the first item there is no production that does an initial find.

3.3.1 Buffer Stuffing

Notice that the first production to fire in this model is this one:

(p attend-medium
 =goal>
 isa read-letters
 state attending
 =visual-location>
 isa visual-location
 > screen-y 154
 < screen-y 166
 ?visual>
 state free
==>
 =goal>

11

ACT-R Tutorial 22-Dec-14 Unit Three

 location medium
 state encode
 +visual>
 isa move-attention
 screen-pos =visual-location)

which tests that there is a chunk in the visual-location buffer. It then encodes in the location slot
of the goal which tone the letter corresponds to, based on the position on the screen, and requests
a shift of visual attention to the object at that location. It matches and fires even though there has
not been a request to put a chunk into the visual-location buffer. However, there is a line in the
trace prior to that which indicates that a visual-location was found:

0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0 REQUESTED NIL

This process is referred to as buffer stuffing and it occurs for both visual and aural percepts. It is
intended as a simple approximation of a bottom-up mechanism of attention. When the visual-
location buffer is empty and the model processes the display it can automatically place the
location of one of the visual objects into the visual-location buffer. The “requested nil” at the
end of the line in the trace indicates that this setting of the chunk in the buffer was not the result a
production’s request.

You can specify the conditions used to determine which location, if any, gets selected for the
visual-location buffer stuffing using the same conditions you would use to specify a visual-
location request in a production. Thus, when the screen is processed, if there is a visual-location
that matches that specification and the visual-location buffer is empty, then that location will be
stuffed into the visual-location buffer.

The default specification for a visual-location to be stuffed into the buffer is :attended new and
screen-x lowest. If you go back and run the previous units’ models you can see that before the
first production fires to request a visual-location there is in fact already one in the buffer, and it is
the leftmost new item on the screen.

Using buffer stuffing allows the model to detect changes to the screen. The alternative method
would be to continually request a location that was marked as :attended new, notice that there was
a failure to find one, and request again until one was found.

One thing to keep in mind is that buffer stuffing only occurs if the buffer is empty. So if you
want to take advantage of it you must make sure that the visual-location buffer is cleared before
the update on which you want a location to be stuffed. That is typically not a problem because
the strict harvesting mechanism that was described in the last unit causes the buffers to be emptied
automatically when they are used in a production.

3.3.2 Testing and Requesting Locations with Slot Modifiers

Something else to notice about this production is that the buffer test of the visual-location buffer
shows modifiers being used when testing slots for values. These tests allow you to do a

12

ACT-R Tutorial 22-Dec-14 Unit Three

comparison when the slot value is a number, and the match is successful if the comparison is true.
The first one (>) is a greater-than test. If the chunk in the visual-location buffer has a value in the
screen-y slot that is greater than 154, it is a successful match. The second test (<) is a less-than
test, and works in a similar fashion. If the screen-y slot value is less than 166 it is a successful
match. Testing on a range of values like this is important for the visual locations because the
exact location of a piece of text in the icon is determined by its “center” which is dependant on
the font type and size. Thus, instead of figuring out exactly where the text is at in the icon (which
can vary from letter to letter or even for a particular letter on machines with different fonts) the
model is written to accept the text in a range of positions.

After attention shifts, the production encode-row-and-find harvests the visual representation of
the object, marks it with its row designation for future reference, and requests the next location:

(p encode-row-and-find
 =goal>
 isa read-letters
 location =pos
 upper-y =uy
 lower-y =ly
 =visual>
 isa text
==>
 =visual>
 status =pos

 -visual>

 =goal>
 location nil
 state attending
 +visual-location>
 isa visual-location
 :attended nil
 > screen-y =uy
 < screen-y =ly)

Note that this production places the row of the letter (=pos having values high, medium, and low)
into the status slot of the visual object currently in the visual buffer. Later, when reporting, the
system will restrict itself to recalling items from the designated row.

In addition to modifying the chunk, it also explicitly clears the visual buffer. This is done so that
the modified chunk goes into declarative memory. Remember that declarative memory holds the
chunks that have been cleared from the buffers. Typically, strict harvesting will clear the buffers
automatically, but because the chunk in the visual buffer is modified on the RHS of this
production it will not be automatically cleared. Thus, to ensure that this chunk enters declarative
memory at this time we explicitly clear the buffer.

13

ACT-R Tutorial 22-Dec-14 Unit Three

The production then updates the state slot of the goal and requests a new visual location. The
request for a visual location uses the < and > modifiers for the screen-y slot to restrict the visual
search to a particular region of the screen. The range is defined by the values from the upper-y
and lower-y slots of the chunk in the goal buffer. The initial values for the upper-y and lower-y
slots are shown in the initial goal:

(goal isa read-letters state find upper-y 0 lower-y 300)

and include the whole window, thus the location of any letter that is unattended will be potentially
chosen. When the tone is encoded those slots will be updated so that only the target row’s letters
will be found.

3.3.3 Finsts in Use

There is one important feature to emphasize about this model, which may be useful in the
assignment to follow. The model does not repeat letters because of the :attended nil test in the
requests to the visual location buffer.

Look back at the visual icon for the sperling task displayed above. You will note that all the
characters are initially tagged as attended new. That means that they have not yet been attended
and that they have been added to the icon recently. The time that items remain marked as new is
parameterized and defaults to .5 seconds (it can be changed with the :visual-onset-span
parameter). After that time if they still have not been attended they will be tagged as attended nil.
This allows attention to be sensitive to the onset of an item. As we saw in the previous unit,
visual attention has to be shifted to the object before a representation of it is built in the visual
buffer and it can be accessed by a production. This corresponds to the research in visual attention
showing that preattentively we have access to features of an object but we do not have access to
its identity. This preattentive access to the objects is available through the visual-location buffer.
When we move the model’s attention to an object its attentional status is changed. So if the
model moves its attention to the w and then the n we would get the following (assuming that it
took less than .5 seconds to do so otherwise all the other items would be marked as attended nil):

> (print-visicon)

Loc Att Kind Value Color ID
--------- --- ------------- ---------------- -------------- -------------
(80 107) NEW TEXT "v" BLACK VISUAL-LOCATION0
(80 157) NEW TEXT "c" BLACK VISUAL-LOCATION1
(80 207) T TEXT "w" BLACK VISUAL-LOCATION2
(130 107) T TEXT "n" BLACK VISUAL-LOCATION3
(130 157) NEW TEXT "r" BLACK VISUAL-LOCATION4
(130 207) NEW TEXT "j" BLACK VISUAL-LOCATION5
(180 107) NEW TEXT "t" BLACK VISUAL-LOCATION6
(180 157) NEW TEXT "y" BLACK VISUAL-LOCATION7
(180 207) NEW TEXT "g" BLACK VISUAL-LOCATION8
(230 107) NEW TEXT "z" BLACK VISUAL-LOCATION9
(230 157) NEW TEXT "k" BLACK VISUAL-LOCATION10
(230 207) NEW TEXT "f" BLACK VISUAL-LOCATION11

where the T's for these elements indicate that they have now been attended.

14

ACT-R Tutorial 22-Dec-14 Unit Three

To keep this unit simple the number of finsts and the finst duration will be set to values large
enough that it does not have to be considered. This unit is concerned with how the minimum time
to search the display determines the behavior of the system, and the searching will be based only
on the marking of the attended feature.

3.4 Auditory Attention

There are a number of productions responsible for processing the auditory message and they serve
as our first introduction to the auditory buffers. As in the visual case, there is an aural-location
to hold the location of an aural message and an aural buffer to hold the sound that is attended.
However, unlike the visual system we typical need only two steps to encode a sound and not
three. This is because usually the auditory field of the model is not crowded with sounds and we
can often rely on buffer stuffing to place the sound’s location into the aural-location buffer. If a
new sound is presented, and the aural-location buffer is empty, then the audio-event for that
sound (the auditory equivalent of a visual-location) is placed into the buffer automatically.
However, there is a delay between the initial onset of the sound and when the audio-event
becomes available. The length of the delay depends on the type of sound being presented (tone,
digit, or other) and represents the time necessary to encode its content. This is unlike the visual-
locations which are immediately available.

In this task the model will hear one of the three possible tones on each trial. The default time it
takes the model’s auditory module to encode a tone sound is .050 seconds. The detected-sound
production responds to the appearance of an audio-event in the aural-location buffer:

(p detected-sound
 =aural-location>
 isa audio-event

 ?aural>
 state free

 ==>
 +aural>
 isa sound
 event =aural-location)

Notice that this production does not test the goal. If there is an audio-event in the aural-location
buffer and the aural state is free this production can fire. It is not specific to this, or any task. On
its RHS it requests that attention shift to the sound.

Our model for this task has three different productions to encode the sounds, one for each of high,
medium, and low tones. The following is the production for the low tone:

(p sound-respond-low
 =goal>

15

ACT-R Tutorial 22-Dec-14 Unit Three

 isa read-letters
 tone nil
 =aural>
 isa sound
 content 500
==>
 =goal>
 tone low
 upper-y 205
 lower-y 215)

The content slot of a tone sound encodes the frequency of the tone. For this experiment a 500
Hertz sound is considered low, a 1000 Hertz sound medium, and a 2000 Hertz sound high. On
the RHS this production records the type of tone presented in the goal and updates the restrictions
on the y coordinates for the search to constrain it to the appropriate row.

It takes some time for the impact of the tone to make itself felt on the information processing.
Consider this portion of a trace in the case where the tone was sounded .150 seconds after the
onset of the display:

0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0
0.185 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND
0.185 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION3-0
0.200 AUDIO SET-BUFFER-CHUNK AURAL-LOCATION AUDIO-EVENT0 REQUESTED NIL
0.235 PROCEDURAL PRODUCTION-FIRED ATTEND-HIGH
0.285 PROCEDURAL PRODUCTION-FIRED DETECTED-SOUND

Although the sound was initiated at .150 seconds, it takes .050 seconds to detect the nature of the
sound. Thus, its event appears in the aural-location buffer at .200 seconds. At .235 seconds
detected-sound can be selected in response to the event that happened. It could not be selected
sooner because the attend-high production was selected at .185 seconds (before the tone was
available) and takes 50 milliseconds to complete. When the detected-sound production
completes at .285 seconds aural attention is shifted to the sound.

0.285 PROCEDURAL PRODUCTION-FIRED DETECTED-SOUND
...
0.570 AUDIO SET-BUFFER-CHUNK AURAL TONE0
0.605 PROCEDURAL PRODUCTION-FIRED ATTEND-HIGH
0.650 AUDIO AUDIO-EVENT-ENDED AUDIO-EVENT0
0.655 PROCEDURAL PRODUCTION-FIRED SOUND-RESPOND-MEDIUM
0.690 VISION SET-BUFFER-CHUNK VISUAL TEXT3
0.740 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND
0.740 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION4-0
0.790 PROCEDURAL PRODUCTION-FIRED ATTEND-MEDIUM

Attending to and fully encoding the sound takes .285 seconds. So at .570 seconds the encoded
sound chunk becomes available in the aural buffer while the production attend-high is firing.
The production sound-respond-medium is then selected and fires at .605 seconds (after the
attend-high production completes). At time .650 seconds the sound itself has stopped as
indicated by the audio-event-ended event. The next production to fire is encode-row-and-find.
It encodes the last letter that was read and issues a request to look at a letter that is in the correct
row this time, instead of an arbitrary letter. Thus, even though the sound is given at .150 seconds

16

ACT-R Tutorial 22-Dec-14 Unit Three

it is not until .690 seconds, when encode-row-and-find is selected, that it has any impact on the
processing of the visual array.

3.5 Typing and Control

The production that initiates typing the answers is:

(P start-report
 =goal>
 isa read-letters
 tone =tone

 ?visual>
 state free
 ==>
 +goal>
 isa report-row
 row =tone
 +retrieval>
 isa text
 status =tone)

This causes a new chunk to be placed into the goal buffer rather than a modification to the chunk
that is currently there (as indicated by the +goal rather than an =goal). The goal module’s
requests create new chunks the same way the imaginal module’s requests do except that there is
no time cost for creating a new goal chunk. The goal is no longer to read letters but rather to
report the target row. Note also that this production issues a retrieval request for a letter in the
target row.

This production can match at many points in the model’s run, but we do not want it to apply as
long as there are letters to be perceived. We only want this rule to apply when there is nothing
else to do. Each production has a quantity associated with it called its utility. The productions’
utilities determine which production gets selected during conflict resolution if there is more than
one that matches. We will discuss utility in more detail in later units. For now, the important
thing to know is that the production with the highest utility among those that match is the one
selected. Thus, we can make this production less preferred by setting its utility value low. The
function for setting production parameters is spp (set production parameters). It is similar to sgp
which is used for the general parameters as discussed previously. The utility of a production is
set with the :u parameter, so the following call found in the model sets the utility of the start-
report production to -2:

(spp start-report :u -2)

The default utility is 0. So, this production will not be selected as long as there are other
productions with a higher utility that match, and in particular that will be as long as there is still
something in the target row on the screen to be processed by the productions that encode the
screen.

17

ACT-R Tutorial 22-Dec-14 Unit Three

Also note that the productions that process the sound are given higher utility values than the
default in the model:

(spp detected-sound :u 10)
(spp sound-respond-low :u 10)
(spp sound-respond-medium :u 10)
(spp sound-respond-high :u 10)

This is so that the sound will be processed as soon as possible – these productions will be
preferred over any others that match at the same time.

Once the report starts, the following production is responsible for reporting all the letters in the
target row:

(P do-report
 =goal>
 isa report-row
 row =tone
 =retrieval>
 isa text
 status =tone
 value =val

 ?manual>
 state free

 ==>

 +manual>
 isa press-key
 key =val
 +retrieval>
 isa text
 status =tone
 :recently-retrieved nil
)

This production fires when a text item has been retrieved and the motor module is free. As
actions, it presses the key corresponding to the letter retrieved and requests a retrieval of another
letter. Notice that it does not modify the chunk in the goal buffer (which is the only buffer that
does not get cleared by strict harvesting) and thus can fire again once the other conditions are met.
Here is a portion of the trace showing the results of this production firing and its selection to fire
again:

1.160 PROCEDURAL PRODUCTION-FIRED DO-REPORT
1.160 MOTOR PRESS-KEY c
1.160 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TEXT4-0
1.760 PROCEDURAL PRODUCTION-FIRED DO-REPORT

18

ACT-R Tutorial 22-Dec-14 Unit Three

Something new that you may notice in that production is the request parameter in the retrieval
request (:recently-retrieved). We will discuss that in the next section.

When there are no more letters to be reported (a retrieval failure occurs because the model can not
retrieve any more letters from the target row), the following production applies to terminate
processing:

(p stop-report
 =goal>
 isa report-row
 row =row

 ?retrieval>
 state error

 ?manual>
 state free
==>
 +manual>
 isa press-key
 key space
 -goal>
)

It presses the space key to indicate that it is done and then clears the chunk from the goal buffer to
stop the model.

3.6 Declarative Finsts

While doing this task the model only needs to report the letters it has seen once each. One way to
do that easily is to indicate which chunks have been retrieved previously so that they are not
retrieved again. However, one cannot modify the chunks in declarative memory. Modifying the
chunk in the retrieval buffer will result in a new chunk being added to declarative memory with
that modified information, but the original unmodified chunk will also still be there. Thus some
other mechanism must be used.

The way this model handles that is by taking advantage of the declarative finsts built into the
declarative memory module. Like the vision system, the declarative system marks items that have
been retrieved with tags that can be tested against in the retrieval request. These finsts are not
part of the chunk, but can be tested for with the :recently-retrieved request parameter in a retrieval
request as shown in the do-report production:

 +retrieval>
 isa text
 status =tone
 :recently-retrieved nil

19

ACT-R Tutorial 22-Dec-14 Unit Three

If it is specified as nil, then only a chunk that has not been recently retrieved (marked with a finst)
will be retrieved. In this way the model can exhaustively search declarative memory for items
without repeating. That is not always necessary and there are other ways to model such tasks, but
it is a convenient mechanism that can be used when needed.

Like the visual system, the number and duration of the declarative finsts is also configurable
through parameters. The default is four declarative finsts which last 3 seconds each. Those are
set using the :declarative­num­finsts and :declarative­finst­span parameters respectively. In this
model the default of four finsts is sufficient, but the duration of 3 seconds is potentially too short
because of the time it takes to make the responses. Thus in this model the span is set to 10
seconds to avoid any potential problems:

(sgp :v t :declarative-finst-span 10)

3.7 Data Fitting

One can see the average performance of the model run over a large number of trials by using the
function run-sperling and giving it the number of trials one wants to see run. However, there are
a few changes to the model that one should make first. The first thing to change is to remove the
sgp call that sets the :seed parameter which causes the model to always perform the same trial in
the same way, otherwise the performance is going to be identical on every trial. The easiest way
to remove that call is to place a semi-colon at the beginning of the line like this:

;(sgp :seed (100 0))

A semi-colon in a Lisp file designates a comment and everything on the line after the semi-colon
is ignored.

After making that change the model will be presented with different trials and perform differently
from trial to trial (after the model is saved and reloaded).

There are other changes that can be made to the model and experiment code to make it run the
simulation faster (take less real time to complete) without changing the simulated timing results.

The first is to turn off the trace by setting the :v parameter to nil:

(sgp :v nil :declarative-finst-span 10)

You will also want to turn off the printing of the answers and responses which is controlled by a
global variable called *show-responses* in this task and it too should be set to nil:

(setf *show-responses* nil)

It can be sped up even more by making the model use a virtual window instead of a real one. A
virtual window is an abstraction of a real window (a real window is a displayed window which
both a person and a model can interact with) that the model can “see” and interact with as if it
were a real window without the overhead of actually displaying and updating it on the screen.

20

ACT-R Tutorial 22-Dec-14 Unit Three

The other advantage of a virtual window for the model is that when interacting with a virtual
window it does not have to be constrained to operate in real time and can run as fast as possible.
Those changes will require making changes to the Lisp code that controls the experiment, and
thus the details of how to do that are in the unit 3 experiment code document.

When one calls run-sperling with all of these changes, one sees something similar to:

> (run-sperling 100)
CORRELATION: 0.997
MEAN DEVIATION: 0.115

Condition Current Participant Original Experiment
 0.00 sec. 3.20 3.03
 0.15 sec. 2.43 2.40
 0.30 sec. 2.17 2.03
 1.00 sec. 1.56 1.50

This prints out the correlation and mean deviation between the experimental data and the average
of the 100 ACT-R simulated runs. Also printed out are the original data from the Sperling
experiment.

From this point on in the tutorial we will compare the performance of the models on the tasks to
the data collected from people doing the tasks to provide a measure of how well the models
compare to human performance. For the assignment models, you should be able to produce
models that compare to human performance at least as well as the model results shown in the
units.

3.8 The Subitizing Task

Your assignment for this unit is to write a model for a subitizing task. This is an experiment
where you are presented with a set of marks on the screen (in this case Xs) and you have to count
how many there are. If you load the subitize model you can run yourself in this experiment by
calling the subitize function and providing the symbol human:

(subitize 'human)

You will be presented with 10 trials in which you will see from 1 to 10 objects on the screen. The
trials will be in a random order. You should press the number key that corresponds to the number
of items on the screen unless there are 10 objects in which case you should type 0. The following
is the outcome from one of my runs through the task:

> (subitize 'human)

CORRELATION: 0.956
MEAN DEVIATION: 0.367
Items Current Participant Original Experiment
 1 0.80(T) 0.60
 2 0.93(T) 0.65
 3 0.91(T) 0.70
 4 1.16(T) 0.86

21

ACT-R Tutorial 22-Dec-14 Unit Three

 5 1.46(T) 1.12
 6 1.84(T) 1.50
 7 1.75(T) 1.79
 8 2.85(T) 2.13
 9 2.73(T) 2.15
 10 2.58(T) 2.58

This provides a comparison between my data and the data from an experiment by Jensen, Reese,
& Reese (1950). The value in parenthesis after the time will be either T or NIL indicating
whether or not the answer the participant gave was correct (T is correct, and NIL is incorrect).

3.8.1 The Vocal System

We have already seen that the default ACT-R mechanism for pressing keys can take a
considerable amount of time and can vary based on which key is pressed is pressed. That could
have an effect on the results of this model. One solution would be to more explicitly control the
hand movements to provide faster and consistent responses, but that is beyond the scope of this
unit. For this task the model will instead provide a vocal response i.e. it will speak the number of
items on the screen instead of pressing a key, which is how the participants in the data being
modeled also responded. This is done by making a request to the speech module (through the
vocal buffer) and is very similar to the requests to the motor module through the manual buffer
which we have already seen.

Here is the production in the Sperling model that presses a key:

(P do-report
 =goal>
 isa report-row
 row =tone
 =retrieval>
 isa text
 status =tone
 value =val

 ?manual>
 state free
 ==>

 +manual>
 isa press-key
 key =val
 +retrieval>
 isa text
 status =tone
 :recently-retrieved nil
)

22

ACT-R Tutorial 22-Dec-14 Unit Three

With the following changes it would speak the response instead (note however that the sperling
experiment is not written to accept a vocal response so it will not properly score those responses if
you attempt to run the model with these modifications):

(P do-report
 =goal>
 isa report-row
 row =tone
 =retrieval>
 isa text
 status =tone
 value =val

 ?vocal>
 state free
 ==>

 +vocal>
 isa speak
 string =val

 +retrieval>
 isa text
 status =tone
 :recently-retrieved nil
)

The primary change is that instead of the manual buffer we use the vocal buffer. On the LHS we
query the vocal buffer to make sure that the speech module is not currently in use:

 ?vocal>
 state free

Then on the RHS we make a request of the vocal buffer to speak the response:

 +vocal>
 isa speak
 string =val

The default timing for speech acts is .200 seconds per assumed syllable based on the length of the
string to speak. That value works well for this assignment so we will not go into the details of
adjusting it.

3.8.2 Exhaustively Searching the Visual Icon

23

ACT-R Tutorial 22-Dec-14 Unit Three

When the model is doing this task it will need to exhaustively search the display. It can use the
ability of the visual system to tag those elements that have been attended and not go back to them
-- just as in the Sperling task. To make the assignment easier, the number of finsts has been set to
10 in the starting model. Thus, your model only needs to use the :attended specification in the
visual-location requests. The model also has to be able to detect when there are no more
unattended visual locations. This will be signaled by an error when a request is made of the
visual-location buffer that cannot be satisfied. This is the same as when the retrieval buffer
reports an error when no chunk that matches the request can be retrieved. The way for a
production to test for that would be to have the following test on the left-hand side:

(p respond
…

 ?visual-location>
 state error

…
==>
…)

When no location can be found to satisfy a request of the visual-location buffer it will report a
state of error.

3.8.3 The Assignment

Your task is to write a model for the subitizing task that always responds correctly by speaking
the number of items on the display, and does an approximate job of reproducing the human data.
The following are the results from my ACT-R model:

CORRELATION: 0.980
MEAN DEVIATION: 0.230
Items Current Participant Original Experiment
 1 0.54 (T) 0.60
 2 0.77 (T) 0.65
 3 1.01 (T) 0.70
 4 1.24 (T) 0.86
 5 1.48 (T) 1.12
 6 1.71 (T) 1.50
 7 1.95 (T) 1.79
 8 2.18 (T) 2.13
 9 2.42 (T) 2.15
 10 2.65 (T) 2.58

You can see this does a fair job of reproducing the range of the data. However, the human data
shows little effect of set size (approx. 0.05-0.10 seconds) in the range 1-4 and a larger effect
(approx. 0.3 seconds) above 4 in contrast to this model which increases about .23 seconds for
each item. The small effect for little displays probably reflects the ability to perceive small
numbers of objects as familiar patterns and the larger effect for large displays probably reflects
the time to retrieve count facts. Both of those effects could be modeled, but would require ACT-
R mechanisms which have not been described to this point in the tutorial. Therefore the linear

24

ACT-R Tutorial 22-Dec-14 Unit Three

response pattern produced by this model is a sufficient approximation for our current purposes,
and provides a fit to the data that you should aspire to match.

In the starting model you are provided with chunks that encode numbers and their ordering from 0
to 10:

(add-dm (one isa chunk)(two isa chunk)
 (three isa chunk)(four isa chunk)
 (five isa chunk)(six isa chunk)
 (seven isa chunk)(eight isa chunk)
 (nine isa chunk)(ten isa chunk)
 (zero isa chunk) (eleven isa chunk)
 (start isa chunk)
 (n0 isa number-fact identity zero next one value "0")
 (n1 isa number-fact identity one next two value "1")
 (n2 isa number-fact identity two next three value "2")
 (n3 isa number-fact identity three next four value "3")
 (n4 isa number-fact identity four next five value "4")
 (n5 isa number-fact identity five next six value "5")
 (n6 isa number-fact identity six next seven value "6")
 (n7 isa number-fact identity seven next eight value "7")
 (n8 isa number-fact identity eight next nine value "8")
 (n9 isa number-fact identity nine next ten value "9")
 (n10 isa number-fact identity ten next eleven value "0")
 (goal isa count state start))

They number facts also contain a slot called value that holds the string of the number to be
spoken.

The chunk-type provided for the goal chunk is:

(chunk-type count count state)

It has a slot to maintain the current count and a slot to hold the current model state. An initial
goal chunk which has a state slot value of start is also set initially. As with the demonstration
model for this unit, you may use only the goal buffer for holding the task information instead of
splitting the representation between the goal and imaginal buffers. As always however, the
provided chunk-types and chunks are only a recommended starting point and one is free to use
other representations and control mechanisms.

To run the experiment that the model is to perform there are two functions that can be used. The
subitize function can be called without any parameters to perform one pass through all of the
trials in a random order. Because there is no randomness in the timing of the experiment and we
have not enabled any variability in the model’s actions, it is not necessary to run the model
multiple times and average the results to assess the model’s performance. The other function is
called subitize-trial and can be used to run a single trial. It takes one parameter, which is the
number of items to display, and it will run the model through that single trial and return a list of
the time of the response and whether or not the answer given was correct.

> (subitize-trial 4)
(1.24 T)

25

ACT-R Tutorial 22-Dec-14 Unit Three

As with the other models you have worked with so far, this model will be reset before each trial.
Thus, you do not need to have the model detect the screen change to know when to transition to
the next trial because it will always start the trial with the initial goal chunk. Also, like the
sperling task, this experiment starts with the ACT-R trace enabled and runs by default with a real
window and in real time. If you would like to make the task complete faster you can disable the
trace as described above and change it to use a virtual window and not run in real time as
described in the experiment description document.

References

Sperling, G.A. (1960). The information available in brief visual presentation [Special issue].
Psychological Monographs, 74 (498).

Jensen, E. M., Reese, E. P., & Reese, T. W. (1950). The subitizing and counting of visually
presented fields of dots. Journal of Psychology, 30, 363-392.

26

	Unit 3: Attention
	3.1 Visual Locations
	3.1.1 Visual Location Requests
	3.1.2 The Attended Test in More Detail
	3.1.2.1 Finsts

	3.1.3 Visual-location slots
	3.1.4 Visual-location request specification
	3.1.4.1 Exact values
	3.1.4.2 General values
	3.1.4.3 Production variables
	3.1.4.4 Relative values
	3.1.4.5 The current value
	3.1.4.6 Request variables

	3.1.5 The :nearest request parameter
	3.1.6 Ordered Search

	3.2 The Sperling Task
	3.3 Visual Attention
	3.3.1 Buffer Stuffing
	3.3.2 Testing and Requesting Locations with Slot Modifiers
	3.3.3 Finsts in Use

	3.4 Auditory Attention
	3.5 Typing and Control
	3.6 Declarative Finsts
	3.7 Data Fitting
	3.8 The Subitizing Task
	3.8.1 The Vocal System
	3.8.2 Exhaustively Searching the Visual Icon
	3.8.3 The Assignment
	References

