
Unit4 Model Code Description

There are only a couple of new commands used in the models for this unit and one of
them (set-all-base-levels) was discussed in the unit text. So there is not really much of
anything new to discuss about the functions used to run the models. Instead, what will be
described in this document is a different way of writing experiments for models than you
have seen in the previous units.

So far you have seen what can be described as a “trial at a time” or iterative approach to
the experiments. The experiments run by executing some setup code, running the model
to completion on that trial, recording a result and then repeating that process for the next
trial. That style is a commonly used approach, but it has some drawbacks which you may
have encountered. For instance, when debugging the model using the stepper it is not
possible to stop the experiment. To stop the experiment you have to break out of the
execution of the experiment function – the stop button of the stepper only terminates the
model’s run of the current trial. For models with few trials or that get reset on each trial
that may not be too big of a problem, but for large experiments or models that need to
learn from trial to trial that can make things difficult to work with, particularly if there is a
problem with the model on a later trial that forces one to abandon a very long run.

An alternative way to write the experiments is with an event-driven approach. The
scheduling mechanisms that run the model are a general discrete-event simulation system.
Calling run causes the events generated by the model, both internal like production firing
and memory retrieval and external like key presses and mouse clicks, to be executed in
either a simulated time or real time sequence. Those scheduling mechanisms can also be
used to execute other events at particular simulated times, as we saw in the sperling task.
One can use the events generated by the model (key presses, mouse clicks, etc) as well as
explicitly scheduled events to have an experiment that runs “with” the model instead of
“around” it. Such an experiment only needs to call the run function one time to run the
whole experiment instead of once (or more) per trial.

Having the model running in an event-driven experiment allows for more interactive
control of the task as a whole. The stepper’s stop button will now stop the whole
experiment. That allows one to see exactly what is happening without having to abort the
experiment function. To continue after stopping all one needs to do is then call run again
to have the model and the experiment continue from where they left off. It can also make
the model writing easier because one doesn’t have to make sure that the model “stops”
when it should, just that it can respond to the events that occur. The model then
completes the task as a continuous process instead of as a sequence of separate
interactions.

The demonstration model, the paired associate task, is written using the iterative
approach. The assignment model, the Zbrodoff task, is written with as event-based
experiment.

First, we will look at the paired model:

(defvar *response* nil)
(defvar *response-time* nil)
(defvar *model-doing-task* nil)

(defvar *pairs* '(("bank" "0") ("card" "1") ("dart" "2") ("face" "3") ("game" "4")
 ("hand" "5") ("jack" "6") ("king" "7") ("lamb" "8") ("mask" "9")
 ("neck" "0") ("pipe" "1") ("quip" "2") ("rope" "3") ("sock" "4")
 ("tent" "5") ("vent" "6") ("wall" "7") ("xray" "8") ("zinc" "9")))

(defvar *paired-latencies* '(0.0 2.158 1.967 1.762 1.680 1.552 1.467 1.402))
(defvar *paired-probability* '(0.000 .526 .667 .798 .887 .924 .958 .954))

(defun paired-task (size trials &optional who)

 (if (eq who 'human)
 (setf *model-doing-task* nil)
 (setf *model-doing-task* t))

 (if (not (eq who 'human))
 (do-experiment-model size trials)
 (do-experiment-person size trials)))

(defun do-experiment-model (size trials)
 (let ((result nil)
 (window (open-exp-window "Paired-Associate Experiment" :visible nil)))

 (reset)

 (install-device window)

 (dotimes (i trials)
 (let ((score 0.0)
 (time 0.0)
 (start-time))
 (dolist (x (permute-list (subseq *pairs* (- 20 size))))

 (clear-exp-window)
 (add-text-to-exp-window :text (car x) :x 150 :y 150)

 (setf *response* nil)
 (setf *response-time* nil)
 (setf start-time (get-time))

 (proc-display)
 (run-full-time 5)

 (when (equal (second x) *response*)
 (incf score 1.0)
 (incf time (- *response-time* start-time)))

 (clear-exp-window)
 (add-text-to-exp-window :text (second x) :x 150 :y 150)

 (proc-display)
 (run-full-time 5))

 (push (list (/ score size) (and (> score 0) (/ time (* score 1000.0))))
result)))

 (reverse result)))

(defun do-experiment-person (size trials)

 (let ((result nil)
 (window (open-exp-window "Paired-Associate Experiment" :visible t)))

 (dotimes (i trials)
 (let ((score 0.0)
 (time 0.0)
 (start-time))
 (dolist (x (permute-list (subseq *pairs* (- 20 size))))

 (clear-exp-window)
 (add-text-to-exp-window :text (car x) :x 150 :y 150 :width 50)
 (setf *response* nil)
 (setf *response-time* nil)

 (setf start-time (get-time nil))
 (while (< (- (get-time nil) start-time) 5000)
 (allow-event-manager window))

 (when (equal (second x) *response*)
 (incf score 1.0)
 (incf time (/ (- *response-time* start-time) 1000.0)))

 (clear-exp-window)
 (add-text-to-exp-window :text (second x) :x 150 :y 150)
 (sleep 5.0))

 (push (list (/ score size) (and (> score 0) (/ time score))) result)))

 ;; return the list of scores
 (reverse result)))

(defun paired-experiment (n)
 (do ((count 1 (1+ count))
 (results (paired-task 20 8)
 (mapcar #'(lambda (lis1 lis2)
 (list (+ (first lis1) (first lis2))
 (+ (or (second lis1) 0) (or (second lis2) 0))))
 results (paired-task 20 8))))
 ((equal count n)
 (output-data results n))))

(defun output-data (data n)
 (let ((probability (mapcar #'(lambda (x) (/ (first x) n)) data))
 (latency (mapcar #'(lambda (x) (/ (or (second x) 0) n)) data)))
 (print-results latency *paired-latencies* "Latency")
 (print-results probability *paired-probability* "Accuracy")))

(defun print-results (predicted data label)
 (format t "~%~%~A:~%" label)
 (correlation predicted data)
 (mean-deviation predicted data)
 (format t "Trial 1 2 3 4 5 6 7 8~%")
 (format t " ~{~8,3f~}~%" predicted))

(defmethod rpm-window-key-event-handler ((win rpm-window) key)
 (setf *response* (string-upcase (string key)))
 (setf *response-time* (get-time *model-doing-task*)))

First we define some global variables to hold the key pressed, the time of the response,
and an indication of who is doing the task (model or person) so that we can record the

time appropriately.

(defvar *response* nil)
(defvar *response-time* nil)
(defvar *model-doing-task* nil)

Then we define a list of the stimuli to be presented in the task.

(defvar *pairs* '(("bank" "0") ("card" "1") ("dart" "2") ("face" "3")
 ("game" "4") ("hand" "5") ("jack" "6") ("king" "7")
 ("lamb" "8") ("mask" "9") ("neck" "0") ("pipe" "1")
 ("quip" "2") ("rope" "3") ("sock" "4") ("tent" "5")
 ("vent" "6") ("wall" "7") ("xray" "8") ("zinc" "9")))

The experimental data to compare to are defined in global variables.

(defvar *paired-latencies* '(0.0 2.158 1.967 1.762 1.68 1.552 1.467 1.402))
(defvar *paired-probability* '(0.000 .526 .667 .798 .887 .924 .958 .954))

The paired-task function takes two required parameters which are the number of pairs to
present in a trial and the number of trials to run. It also takes an optional parameter which
can be specified as the symbol human to run a person through the task instead of the
model.

(defun paired-task (size trials &optional who)

We first set the *model-doing-task* variable appropriately.

 (if (eq who 'human)
 (setf *model-doing-task* nil)
 (setf *model-doing-task* t))

Unlike previous experiment code, in this case we have defined separate functions to run a
model and to run a person. This function calls the appropriate one to run the task based
on whether it’s the model or a person running as a participant.

 (if (not (eq who 'human))
 (do-experiment-model size trials)
 (do-experiment-person size trials)))

The do-experiment-model function takes two parameters which are the number of pairs to
present in a trial and the number of trials to run. It runs the experiment for the size and
number of trials requested and returns a list of lists. There is one sublist for each of the
trials and they are in the order of presentation. Each of the sublists contains the
percentage of answers correct and the average response time for the correct answers in
the corresponding trial.

(defun do-experiment-model (size trials)

Start by defining a variable to hold the results and opening a window for the task (note
that the window is virtual because :visible is specified as nil).

(let ((result nil)
 (window (open-exp-window "Paired-Associate Experiment" :visible nil)))

Reset the model and tell it which window to interact with.

 (reset)

 (install-device window)

Repeat for the required number of trials.

 (dotimes (i trials)

Declare some local variables to hold the score and timing information.

 (let ((score 0.0)
 (time 0.0)
 (start-time))

Iterate over a randomized list of the required number of stimuli from the global set.

 (dolist (x (permute-list (subseq *pairs* (- 20 size))))

Clear the window and present the word from the pair.

 (clear-exp-window)
 (add-text-to-exp-window :text (car x) :x 150 :y 150)

Clear the response variables and record the trial start time.

 (setf *response* nil)
 (setf *response-time* nil)
 (setf start-time (get-time))

Have the model process the display and run for exactly 5 seconds.

 (proc-display)
 (run-full-time 5.0)

If the answer provided was correct increment the score and the cumulative response time.

 (when (equal (second x) *response*)
 (incf score 1.0)
 (incf time (- *response-time* start-time)))

Clear the window and display the correct answer.

 (clear-exp-window)
 (add-text-to-exp-window :text (second x) :x 150 :y 150)

Have the model process the display and run for another 5 seconds.

 (proc-display)
 (run-full-time 5.0))

Compute the response results for the trial and save it on the list of results.

 (push (list (/ score size) (and (> score 0) (/ time (* score
1000.0))))
 result)))

Return the list of results in the proper order.

 (reverse result)))

The do-experiment-person function operates just like the do-experiment-model function
except that it waits for a response from a person instead of running the model and the time
that it waits is 5 seconds of real time, which for the number presentation is done using the
Lisp command sleep (which will be described in detail below).

(defun do-experiment-person (size trials)
 (let ((result nil)
 (window (open-exp-window "Paired-Associate Experiment" :visible t)))

 (dotimes (i trials)
 (let ((score 0.0)
 (time 0.0)
 (start-time))
 (dolist (x (permute-list (subseq *pairs* (- 20 size))))

 (clear-exp-window)
 (add-text-to-exp-window :text (car x) :x 150 :y 150 :width 50)
 (setf *response* nil)
 (setf *response-time* nil)

 (setf start-time (get-time nil))
 (while (< (- (get-time nil) start-time) 5000)
 (allow-event-manager window))

 (when (equal (second x) *response*)
 (incf score 1.0)
 (incf time (/ (- *response-time* start-time) 1000.0)))

 (clear-exp-window)
 (add-text-to-exp-window :text (second x) :x 150 :y 150)
 (sleep 5.0))

 (push (list (/ score size) (and (> score 0) (/ time score))) result)))

 ;; return the list of scores
 (reverse result)))

The paired-experiment function takes one parameter which is the number of times to
repeat the full experiment. The experiment with 20 pairs and 8 trials is run that many
times and the results are averaged and compared to the experimental results.

(defun paired-experiment (n)
 (do ((count 1 (1+ count))
 (results (paired-task 20 8)
 (mapcar #'(lambda (lis1 lis2)
 (list (+ (first lis1) (first lis2))
 (+ (or (second lis1) 0)
 (or (second lis2) 0))))
 results (paired-task 20 8))))
 ((equal count n)
 (output-data results n))))

The output-data function takes two parameters. The first is a list of cumulative data from

running multiple iterations of the experiment and the second parameter indicates how
many repetitions were added into that cumulative data. It averages that data and then
calls print-results to display the comparison and table for both the latency and accuracy
data.

(defun output-data (data n)
 (let ((probability (mapcar #'(lambda (x) (/ (first x) n)) data))
 (latency (mapcar #'(lambda (x) (/ (or (second x) 0) n)) data)))
 (print-results latency *paired-latencies* "Latency")
 (print-results probability *paired-probability* "Accuracy")))

The print-results function takes three parameters. The first is the list of data from running
the experiment. The second is the experimental results for that data, and the third is the
label to print when displaying that data. The new data is compared to the experimental
results and printed along with a table of the new data.

(defun print-results (predicted data label)
 (format t "~%~%~A:~%" label)
 (correlation predicted data)
 (mean-deviation predicted data)
 (format t "Trial 1 2 3 4 5 6 7
8~%")
 (format t " ~{~8,3f~}~%" predicted))

The key handler for the window just records the key press and the time of that press in the
global variables relying on the setting of *model-doing-task* to get the appropriate time.

(defmethod rpm-window-key-event-handler ((win rpm-window) key)
 (setf *response* (string-upcase (string key)))
 (setf *response-time* (get-time *model-doing-task*)))

The new functions used are run-full-time and sleep.

Run-full-time – this function takes one required parameter which is the time to run a
model in seconds and a keyword parameter called :real-time. The model will run until the
requested amount of time passes whether or not there is something for the model to do i.e.
it guarantees that the model will be advanced by the requested amount of time. If the
keyword parameter :real-time is specified as t, then the model is advanced in step with real
time instead of being allowed to run as fast as possible in its own simulated time.

Sleep – sleep is actually a function defined in ANSI Common Lisp, but because it is being
used for experiment generation it seemes appropriate to discuss it. The Lisp specification
for sleep says it takes one parameter, seconds, which is a non-negative real, and it causes
execution to cease and become dormant for approximately the seconds of real time
indicated by seconds, whereupon execution is resumed. An important thing to note is that
this is only useful when having a person do a task. The sleep function will have no
effect upon the timing of actions from the model’s perspective, but it will increase the
time it takes to run the model from the user’s perspective.

The other model for this unit is the Zbrodoff task and is written using the event-based
approach. Because this is a more complex experiment than most you have been used so far

in the tutorial, there are some slightly more advanced Lisp facilities used to help keep
things clearer and easier to use. Here is the code from the zbrodoff model:

(defvar *trials*)
(defvar *results*)
(defvar *start-time*)
(defvar *block*)

(defvar *zbrodoff-control-data* '(1.84 2.46 2.82 1.21 1.45 1.42 1.14 1.21
1.17))

(defparameter *run-model* t)

(defstruct trial block addend1 addend2 sum answer visible)
(defstruct response block addend correct time)

(defun present-trial (trial &optional (new-window t))
 (let ((window (if new-window
 (open-exp-window "Alpha-arithmetic Experiment"
 :visible (trial-visible trial))
 nil)))

 (unless new-window
 (clear-exp-window))

 (add-text-to-exp-window :text (trial-addend1 trial) :x 100 :y 150 :width
25)
 (add-text-to-exp-window :text "+" :x 125 :y 150 :width 25)
 (add-text-to-exp-window :text (trial-addend2 trial) :x 150 :y 150 :width
25)
 (add-text-to-exp-window :text "=" :x 175 :y 150 :width 25)
 (add-text-to-exp-window :text (trial-sum trial) :x 200 :y 150 :width 25)

 (when new-window
 (install-device window))

 (proc-display :clear t)

 (setf *start-time* (get-time *run-model*))

 window))

(defmethod rpm-window-key-event-handler ((win rpm-window) key)
 (let ((trial (pop *trials*)))
 (push (make-response :block (trial-block trial)
 :addend (trial-addend2 trial)
 :time (/ (- (get-time *run-model*) *start-time*)
 1000.0)
 :correct (string-equal (trial-answer trial)
 (string key)))
 results)
 (when *trials*
 (present-trial (first *trials*) nil))))

(defun collect-responses (trial-count)
 (setf *results* nil)
 (let ((window (present-trial (first *trials*))))
 (if *run-model*
 (run (* 10 trial-count))

 (while (< (length *results*) trial-count)
 (allow-event-manager window)))))

(defun zbrodoff-trial (addend1 addend2 sum answer
 &optional (visible (not *run-model*)))

 (setf *block* 1)
 (setf *trials* (list (construct-trial (list addend1 addend2 sum answer)
 visible)))
 (collect-responses 1)
 (analyze-results))

(defun zbrodoff-set (&optional (visible (not *run-model*)))

 (setf *block* 1)
 (setf *trials* (create-set visible))
 (collect-responses 24)
 (analyze-results))

(defun zbrodoff-block (&optional (visible (not *run-model*)))
 (setf *block* 1)
 (setf *trials* nil)
 (dotimes (i 8)
 (setf *trials* (append *trials* (create-set visible))))
 (collect-responses 192)
 (analyze-results))

(defun zbrodoff-experiment (&optional (visible (not *run-model*))
 (show-results t))
 (reset)
 (setf *trials* nil)
 (dotimes (j 3)
 (setf *block* (+ j 1))
 (dotimes (i 8)
 (setf *trials* (append *trials* (create-set visible)))))
 (collect-responses 576)
 (analyze-results show-results))

(defun zbrodoff (n)
 (let ((results nil))
 (dotimes (i n)
 (push (zbrodoff-experiment nil nil) results))

 (let ((rts (mapcar #'(lambda (x) (/ x (length results)))
 (apply #'mapcar #'+ (mapcar #'first results))))
 (counts (mapcar #'(lambda (x) (truncate x (length results)))
 (apply #'mapcar #'+ (mapcar #'second results)))))

 (correlation rts *zbrodoff-control-data*)
 (mean-deviation rts *zbrodoff-control-data*)

 (print-analysis rts counts '(1 2 3) '("2" "3" "4") '(64 64 64)))))

(defun analyze-results (&optional (display t))
 (let ((blocks (sort (remove-duplicates (mapcar #'response-block *results*)) #'<))
 (addends (sort (remove-duplicates (mapcar #'response-addend *results*)
 :test #'string-equal) #'string<))
 (counts nil)

 (rts nil)
 (total-counts nil))

 (setf total-counts (mapcar #'(lambda (x)
 (/ (count x *results*
 :key #'response-addend
 :test #'string=)
 (length blocks)))
 addends))

 (dolist (x blocks)
 (dolist (y addends)
 (let ((data (mapcar #'response-time
 (remove-if-not #'(lambda (z)
 (and (response-correct z)
 (string= y (response-addend z))
 (= x (response-block z))))
 results))))
 (push (length data) counts)
 (push (/ (apply #'+ data) (max 1 (length data))) rts))))

 (when display
 (print-analysis (reverse rts) (reverse counts) blocks addends total-counts))

 (list (reverse rts) (reverse counts))))

(defun print-analysis (rts counts blocks addends total-counts)
 (format t "~% ")
 (dotimes (addend (length addends))
 (format t " ~6@a (~2d)" (nth addend addends) (nth addend total-counts)))
 (dotimes (block (length blocks))
 (format t "~%Block ~2d" (nth block blocks))
 (dotimes (addend (length addends))
 (format t " ~6,3f (~2d)" (nth (+ addend (* block (length addends))) rts)
 (nth (+ addend (* block (length addends))) counts))))
 (terpri))

(defun create-set (visible)
 (permute-list (mapcar (lambda (x) (construct-trial x visible))
 '(("a" "2" "c" "k")("d" "2" "f" "k")
 ("b" "3" "e" "k")("e" "3" "h" "k")
 ("c" "4" "g" "k")("f" "4" "j" "k")
 ("a" "2" "d" "d")("d" "2" "g" "d")
 ("b" "3" "f" "d")("e" "3" "i" "d")
 ("c" "4" "h" "d")("f" "4" "k" "d")
 ("a" "2" "c" "k")("d" "2" "f" "k")
 ("b" "3" "e" "k")("e" "3" "h" "k")
 ("c" "4" "g" "k")("f" "4" "j" "k")
 ("a" "2" "d" "d")("d" "2" "g" "d")
 ("b" "3" "f" "d")("e" "3" "i" "d")
 ("c" "4" "h" "d")("f" "4" "k" "d")))))

(defun construct-trial (trial visible)
 (make-trial :block *block*
 :addend1 (first trial)
 :addend2 (second trial)
 :sum (third trial)
 :answer (fourth trial)
 :visible visible))

It starts by defining some global variables to hold the trials to present, the results
collected, the start time of a trial, and a block count. This already shows some difference
from the iterative approach because instead of storing the responses in variables which are
collected by the “do-trial” type function the results are stored in a global variable for later
use. Similarly, the trials are also stored in a global variable instead of being iterated over
within a function.

(defvar *trials*)
(defvar *results*)
(defvar *start-time*)
(defvar *block*)

Then define the global variable that holds the experimental results.

(defvar *zbrodoff-control-data* '(1.84 2.46 2.82 1.21 1.45 1.42 1.14 1.21 1.17))

Because the functions to run this task use an optional parameter to indicate whether or not
to show the task window, to keep things easier to use there is a global variable defined
which can be set to indicate whether it is a person or model doing the task. If it is set to
nil then it runs a person and if it is set to t then it runs the model.

(defparameter *run-model* t)

Instead of using lists to represent the information in a trial and to describe a response we
create some custom structures to hold that data in a more descriptive format. A trial
consists of a block number, the two addends to present, a sum to present, the correct
answer, and whether or not to display the trial in a real window. A response contains the
block in which it was given, the numeric addend of the trial (2, 3, or 4), whether the
response was correct and the response time.

(defstruct trial block addend1 addend2 sum answer visible)
(defstruct response block addend correct time)

The present-trial function takes one parameter which is a trial structure and an optional
parameter which indicates whether or not to open a new window for this trial since it will
run faster if it doesn’t have to create a new window for each trial. It does the same thing
whether it is a person or a model performing the task.

(defun present-trial (trial &optional (new-window t))

If a new window is needed then it opens one setting the visible status of the window based
on the setting in the trial structure otherwise it just sets window to nil.

 (let ((window (if new-window
 (open-exp-window "Alpha-arithmetic Experiment"
 :visible (trial-visible trial))
 nil)))

If a new window is not being used then it clears the existing window before displaying the
current trial information.

 (unless new-window
 (clear-exp-window))

 (add-text-to-exp-window :text (trial-addend1 trial) :x 100 :y 150 :width
25)
 (add-text-to-exp-window :text "+" :x 125 :y 150 :width 25)
 (add-text-to-exp-window :text (trial-addend2 trial) :x 150 :y 150 :width
25)
 (add-text-to-exp-window :text "=" :x 175 :y 150 :width 25)
 (add-text-to-exp-window :text (trial-sum trial) :x 200 :y 150 :width 25)

Then if there is a new window it sets that as the device for the model to look at and then
has the model processes it (if a person is doing the task these have no effect).

 (when new-window
 (install-device window))

 (proc-display :clear t)

The time the trial starts is recorded in a global variable and the window value is returned.

 (setf *start-time* (get-time *run-model*))

 window))

The key handler for the task usually does more than just set some variables in an event-
based experiment because it is the events, like keypresses, which will advance the task.

(defmethod rpm-window-key-event-handler ((win rpm-window) key)

In this task, it starts by removing the current trial from the global list of trials.

 (let ((trial (pop *trials*)))

Then, a structure that encodes the current response is added to the global list of responses.

 (push (make-response :block (trial-block trial)
 :addend (trial-addend2 trial)
 :time (/ (- (get-time *run-model*) *start-time*)
 1000.0)
 :correct (string-equal (trial-answer trial)
 (string key)))
 results)

If there are more trials to present, then the next one is presented indicating that a new
window should not be used. This is the critical difference between the iterative and event-
based experiments. In the event-based experiment the participant’s response leads directly
to the presentation of the next trial. There is no need to stop to record a response and
then “run” things again.

 (when *trials*

 (present-trial (first *trials*) nil))))

The collect-responses function takes one parameter which is the number of trials that are
to be run.

(defun collect-responses (trial-count)

The global set of results is cleared.

 (setf *results* nil)

The first trial is presented and it records the window that was created.

 (let ((window (present-trial (first *trials*))))

If the model is performing the task then it is run for up to 10 seconds times the number of
trials that need to be collected (it is assumed that the model will respond within 10
seconds or less per trial on average).

 (if *run-model*
 (run (* 10 trial-count))

If a person is performing the task then the system waits for the appropriate number of
responses to be recorded.

 (while (< (length *results*) trial-count)
 (allow-event-manager window)))))

The zbrodoff-trial function takes four required parameters and one optional parameter.
The four required parameters are the strings that represent the equation to present, for
example “A” “2” and “C”, and the string indicating the correct response – either “K” for
correct or “D” for incorrect. The optional parameter controls whether the trial is shown
in a visible window or not and defaults to the negation of whether or not the model is
doing the task. Thus, if the model is doing the task visible is nil in which case the window
will be kept virtual and if a person is doing the task the window will be shown. Providing
a value of t for the (optional) fifth parameter will cause the window to be displayed while
the model is doing the task.

(defun zbrodoff-trial (addend1 addend2 sum answer
 &optional (visible (not *run-model*)))

Set the global values to indicate which block is being presented.

 (setf *block* 1)

This is only one trial, so set the list of trials to a list of only one trial.

 (setf *trials* (list (construct-trial (list addend1 addend2 sum answer)
 visible)))

Call collect-responses to perform the task and then analyze the results.

 (collect-responses 1)

 (analyze-results))

The zbrodoff-set function takes one optional parameter as described above for zbrodoff-
trial. It runs once through a random permutation of the set of equations. A set is two
instances of each of the equations with the addends (2, 3, and 4) in each of the true and
false conditions which is a total of 24 problems.

(defun zbrodoff-set (&optional (visible (not *run-model*)))

 (setf *block* 1)
 (setf *trials* (create-set visible))
 (collect-responses 24)
 (analyze-results))

The zbrodoff-block function takes one optional parameter as described above for do-trial.
It runs one block of the experiment, which is eight repetitions of the set of equations, or a
total of 192 problems.

(defun zbrodoff-block (&optional (visible (not *run-model*)))
 (setf *block* 1)
 (setf *trials* nil)
 (dotimes (i 8)
 (setf *trials* (append *trials* (create-set visible))))
 (collect-responses 192)
 (analyze-results))

The zbrodoff-experiment function runs the whole experiment once, which is three full
blocks, or a total of 576 trials. It takes two optional parameters. The first is to control
whether the window is shown or not as with the previous functions. The other controls
whether the analysis is printed. The default is to have the analysis printed. Note that this
function also calls reset to return the model to its initial condition. It is the only function
in the experiment to do so. The other functions allow the model to maintain the
information it has gained (which is the new chunks and the history of their use).

(defun zbrodoff-experiment (&optional (visible (not *run-model*))
 (show-results t))
 (reset)
 (setf *trials* nil)
 (dotimes (j 3)
 (setf *block* (+ j 1))
 (dotimes (i 8)
 (setf *trials* (append *trials* (create-set visible)))))
 (collect-responses 576)
 (analyze-results show-results))

The zbrodoff function takes one parameter, which is the number of times to run the whole
experiment. It runs that many times through the experiment collecting the data which is
then averaged and compared to the original experiment’s results.

(defun zbrodoff (n)
 (let ((results nil))

Run the experiment n times with a virtual window and without displaying the individual
analysis of each run.

 (dotimes (i n)
 (push (zbrodoff-experiment nil nil) results))

Compute the average of the response times and number of correct answers.

 (let ((rts (mapcar #'(lambda (x) (/ x (length results)))
 (apply #'mapcar #'+ (mapcar #'first results))))
 (counts (mapcar #'(lambda (x) (truncate x (length results)))
 (apply #'mapcar #'+ (mapcar #'second results)))))

Display the data fit between the current run and the experimental data and print the table
of the results.

 (correlation rts *zbrodoff-control-data*)
 (mean-deviation rts *zbrodoff-control-data*)

 (print-analysis rts counts '(1 2 3) '("2" "3" "4") '(64 64 64)))))

The analyze-results function takes one optional parameter which controls whether or not
the data table is displayed. It computes the average response time and number of correct
responses in the *results* global variable as a function of the number of blocks presented
and the numerical addend.

(defun analyze-results (&optional (display t))
 (let ((blocks (sort (remove-duplicates (mapcar #'response-block *results*)) #'<))
 (addends (sort (remove-duplicates (mapcar #'response-addend *results*)
 :test #'string-equal) #'string<))
 (counts nil)
 (rts nil)
 (total-counts nil))

 (setf total-counts (mapcar #'(lambda (x)
 (/ (count x *results*
 :key #'response-addend
 :test #'string=)
 (length blocks)))
 addends))

 (dolist (x blocks)
 (dolist (y addends)
 (let ((data (mapcar #'response-time
 (remove-if-not #'(lambda (z)
 (and (response-correct z)
 (string= y (response-addend z))
 (= x (response-block z))))
 results))))
 (push (length data) counts)
 (push (/ (apply #'+ data) (max 1 (length data))) rts))))

 (when display
 (print-analysis (reverse rts) (reverse counts) blocks addends total-counts))

 (list (reverse rts) (reverse counts))))

The print-analysis function takes five parameters that describe a set of data for the task.
The data is a list of response times and a list of corresponding correct answers. Then
there are two lists that indicate the blocks and addend conditions represented in the data
and finally a list of the total number of correct trials in each addend condition. Those data
are then displayed in a table.

(defun print-analysis (rts counts blocks addends total-counts)
 (format t "~% ")
 (dotimes (addend (length addends))
 (format t " ~6@a (~2d)" (nth addend addends) (nth addend total-counts)))
 (dotimes (block (length blocks))
 (format t "~%Block ~2d" (nth block blocks))
 (dotimes (addend (length addends))
 (format t " ~6,3f (~2d)" (nth (+ addend (* block (length addends))) rts)
 (nth (+ addend (* block (length addends))) counts))))
 (terpri))

The create-set function takes one parameter which indicates whether or not the trials
should be shown in a visible window. It returns a randomly ordered list of 24 trial
structures that make up one set of the control condition of the experiment.

(defun create-set (visible)
 (permute-list (mapcar (lambda (x) (construct-trial x visible))
 '(("a" "2" "c" "k")("d" "2" "f" "k")
 ("b" "3" "e" "k")("e" "3" "h" "k")
 ("c" "4" "g" "k")("f" "4" "j" "k")
 ("a" "2" "d" "d")("d" "2" "g" "d")
 ("b" "3" "f" "d")("e" "3" "i" "d")
 ("c" "4" "h" "d")("f" "4" "k" "d")
 ("a" "2" "c" "k")("d" "2" "f" "k")
 ("b" "3" "e" "k")("e" "3" "h" "k")
 ("c" "4" "g" "k")("f" "4" "j" "k")
 ("a" "2" "d" "d")("d" "2" "g" "d")
 ("b" "3" "f" "d")("e" "3" "i" "d")
 ("c" "4" "h" "d")("f" "4" "k" "d")))))

The construct-trial function takes two parameters which are a list of 4 strings that
represent a trial in the task and whether to display the trial in a visible window or not. The
first three strings are the elements of the equation to display and the fourth is the key that
should be pressed for a correct response. It returns a trial structure with the appropriate
slot values set.

(defun construct-trial (trial visible)
 (make-trial :block *block*
 :addend1 (first trial)
 :addend2 (second trial)
 :sum (third trial)
 :answer (fourth trial)
 :visible visible))

