ACT-R 7 Reference Manual

Dan Bothell

Includes material adapted from the ACT-R 4.0 manual by Christian Lebiere, documentation on the
perceptual motor components by Mike Byrne and the Introduction is a shortened version of the ACT-
R description written by Raluca Budiu for the ACT-R web site.

ACT-R7 11-Jul-17 ACT-R Reference Manual

Notice

ACT-R 7 is not completely backwards compatible with ACT-R 6.0. There is a large conceptual
difference between ACT-R 7 and 6.0 (chunks are no longer categorized into fixed types), but
programmatically the two systems are still very similar. Many models written for ACT-R 6.0 will
still run as-is in ACT-R 7, but not every model will. This document does not include a
comprehensive discussion of the differences, but there will be some notes in sections where the
differences are significant. For a discussion of the differences there is a set of slides available with

the software and on the ACT-R website.

ACT-R7 11-Jul-17 ACT-R Reference Manual

Table of Contents

INOTICE...ciieieeeeee ettt et et et et e e e e e e e e e e e e e et e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeserrraaaaeaes 2
1) (S0 O] 1 17<) 11 -SRI 3
PIOIACE. ...ttt eeee e e e e e e et e e et ta e e e e et e e e e e taaaeeeettaaeeeearaaeeentraraeeerrrreeeas 16
| o TaxoTa L8 lofu o) s NEURE TR 17
DOCUINENE OVEIVIEW......evvvvrerirerererererererereeerererererersrersrssssssr........s...................................mo. oo~ 19
General SOftware DEeSCIIPIONccviecvieiieeieiceeete et eeteeereeete et esre e e e seseesseessseeseesssaeseassseesssseesnssees 20
CSE SEIISITIVILY ..eveeeeeuurieeeeiireeeeeiitteeesittteeeestrteeeesurteeeessusaeesessssaeesssasaeeessssaeesssssssaaaaeaeeeesesssnnssnnnnnsssns 20
FUNCHIONS VS. IMLACTOS.uuueeeiieeeeeiiitiiieeeeeeeeeetttiieeeeeeeereeessnaeeeeeeessssssnnnaaseesssssssssnneesssnnsesssnneesssnneseseen 21
COMPAtIDIIILY ISSUES....ccuveeiieriiieitiiieeie ettt ettt s it e e bt e st e s teessbe e seessbessseessseesseesssessssseesnssees 21
Notations in the DOCUMENTAtION.cciiiiiiiiiireeee ettt ee e eeesrreereeeeeeeessaareereeeeseeereereresassrrrsansaannnas 23
COMMANG SYNEAX...0cutieitieriieriiierteeieesteeiteesteesteestesseesstesseesssesssessssesssessssesssessssessseesssesssessssssessnsses 23

O =1 101) (=TSRSS SSPR 23
ACT-R Software DiStIiDULION.ccoiiuiiiiiiiiiieeeiieeeceetee et eeeee e e eeetae e eeeareeeeessseeeeeeessreeeeesensnsnnnnes 25
| DY w1 o) UTn o) s N @) 1 L) 111 26
SUDITECIOTIES.vveeeeeireee ettt ettt eetre e e eerttr e e e eetaeeeeeestaeeeeerssaeeeeessseeeeessseeesessseeeeesaseeeensnrnens 26
[a(0) 13113 F: |16 3ROSR 26
COTE-TIIOAULLS.evveeiiiiiriieeeeiteee ettt eete e e e e e tte e e eeeaaeeeeeeaaaeeeeesseseesensssseeeesasseeeesseseeeennnnnnnes 26
QOVICES...ciiiiieettteeeee ettt e e et eeee e e e e e e e eesesasbaareeeeesesssssbabaseeeeessasasbaseeesesssssssssssssneesesssnnssrrnes 26
OCS. ..ttt e eete e eeeae e e e e etae e e e ee e e e eeesba e e e e e tabaeeeebaaeeeenraraaeeantarreeeeabaaaaaeeeeeeeeaaannnnes 26

[0A721 1) 11001 11 SRR PTPRRRRPRRRt 28

L 1001 0] 133O U 28

Lo q 1 = TR PPN 28
FTAIMEWOTK.evviieieeiieee ettt ettt e e et e e e eebaaeeeeeasseeeeesssseeeeesssseeeenssseeeeeeeansssssnnes 28
(016 111 L= 28
OTNET-FILES. ... ettt ee e e e et e e eeeaae e e eeasaeeeeesssseeeeessaeeeeeeeennnnssssnnnnes 28
SUPDPOT L. et iietteeeeeeeeeeierttteeeeeseeaaarertaeeeesassassssraaaeeesssssssnssestaaeessessssssnsaaseesssssnsssssesaaeeessenssnsnsaeeeeens 29
[1070) E-3 U USRNSSR SPRRRT 29

(A0 1) 1< F ORIt 29
LUR]<) i [0 = 16 KOO ST 29
Loading and Running the ACT-R SYStEIM.......ccctiriiiiiiriieitenieeiteete ettt et et see s eseseeeeeanees 30
ACT-R VEISiON AetailS......ccoouviiiiiiuiieiieiiiiieeeiieee ettt ceete e eetee e eeetaeeeeeetreeeeeesssaaeeeeeeeeeeeeeeeasessnsssens 30

LAY (16 L0 TR ¥ o) s LTRSSt 31
USET LOAA FILOS....uviiiieiieiee ettt ee e e eete e e e eeate e e e eeaaeeeeeessaeeeeesseeeeeeeesnssssssnens 32
Compiler OPtMIZAtIONS.iiecieeeiieeeitieeeieeeeiee et e esteeesteessteeeesseeeeseeessseeessseeessseeessseesssseesssnsssssees 32

| = (a1 B = (0] PRSPPI 32

| 0 Y: 1 o) (4 1<) WU 33
RECOMPILING.....cctiieiieiiiiieeteeeet ettt ettt e st e st e e be e st e s st e ssbeeseeesseesaesnseesaaessseeesnssees 34
PACKAGINE. ...ceneteeitiiteee ettt ettt ettt e be e st e e bt e st e bt e st e e bt e e abe e bt e e abe e ate e e nbteeeareas 34
CLBAN.....ccctveeee ettt ettt eete e eeett e e e e e e tae e e eebaseeeeessaseeeesaaseeeabaaeeeenasaseeeestaaeeeeeennnrsrarrrrraeees 34
PACKAGOM. ...ttt ettt et et h e s a b e bt et e e be e e et e e e e anaeeenanee 34
REQUITING FIlES....eeitieiieeiieeieeteeee ettt ettt s e et e st e e be e ssbe s taessbeessaessseensaesnsseesnnnns 34
OVerall SOftWare DESIBN.......ceeuierierierieriieeierieerie ettt et e st este st e st e se e tesaeessesnsesseenseenseesnseesnses 36

|\ (o Ta (<] 5 1 L= USSP PRRTRO 37
IV BLA-PIOCESS. «eeeeetieeueuirrteeeeetereeeatteteeeeesessnaertaeaeessasssssnsssaaeessssessssssstaaaessssssassnssaasessssssnsssssnsnssnsnnnnsssses 39

ACT-R7 11-Jul-17 ACT-R Reference Manual

(@00 13)80T: 1 16 KT TR 39

(ol [=F: 1 oF: || USRS SRRSO URSO PP 39
1Y PSSRSO 40
TELOAM. ...eee et ettt ettt eett e e ettt e e eeeaaeeeeeebas e e e e saaeeeeebaaeeeenataaeeeeraaeeeeenraeeeennrareeeans 41
ITIPD-EIITIC. «..etttteeeee e ettt e e e s ee sttt e eeeeesesaabtbtaeeeesssssssssaaaaeessssnssssssaaaaeessesssssssstaaaaeeessnsssssnsnsssssees 42
ITID-TIITIE-TTIS ¢ eteeeeiitteeeeittee e e ettt e e e ettt e e seaasteeseusaeeeesaaseeesesassaeesaastaeeesansaeeesssseeesanssaaeeansssnnnnsnnnnes 42

BV IIES oot e ettt eeeeeeeeeeeaa e e eeeeee e e e s b s aa———eeeeesrarara—aeeeeaeratarr—aaeeerrrrrrrnaeeerrnneens 44
COIMIMANAS.ccvveieeeeirieeeeciteeeeeeteeeeeeeteeeeeeiaeeeeesareeeeesssaeeeeesssseeeesssaseeeessssseeeesssssssssseseeeeeseennnnnssssnns 44
INP-SHOW=QUEUEc.eeviiiiiieecie ettt et e e e tee e s te e e s beeesaseeessseesssseeesseessseessseesennnns 44

TP -(UEUE-COUNL..eeeeeuurreeeeeurreerernreeeeasseeeeensseeesessuseeesssssseessssssseesssssseeessssssseesssssseeeeessessesssssssssnnnnes 45
INP-SHOW-WAITINE. ...ceeutiiiiiiieeiie ettt ettt et e bt e sat e s bt e s at e st e e s bt e e esaseeeenbaeeeanes 45
INP-TNOAUIES-EVENILS.eeeuviiireeiienieeiieerteeseesteesseestessseessteesseesssesseesssessseesssessseesssesssesssseessssseesnnes 46

1Y (Y6 L1 LU 48
COIMIMANAS.....ccvvvieeeetiieeeeete e e eecteeeeeeeteeeeeeitteeeeesareeeeesssseeeeessseeeesssaeseeessssseeeesssssssesaeeeeesesenannnssnsens 48
ITID-PIINE-VEISIOMS. 1ottt iutvreeieiireeeeeiireesesareeessstreeeesssseeessssssaeesssssseesssssseeesssssseessssssseesssssseesssssssnsnnes 48
All-MOAUIE-NIAIMIES.oeiieiieieeeeeee ettt eeerr e eeeate e e eeare e e eestbaeeeeessaeeeeensaeeeeensneseeennnnes 49
BUTTOIS. ..o eee e et e e e e et e e e e eaae e e e esaate e e e s naaeeseenaeeeeeennseeeeennraeeeeerrereeeas 51
COIMIMANAS.cctvvieeeeirieeeeeite e e eeeteeeeeeeteeeeeeiteeeeestreeeeesssseeeeessseeeessseeseeessssseseesssssssseseeeeeeeeeennennssssnns 52
8N (<) =P 52
DULEEI-CHUNK.ovviiieiiiee ettt eetre e et eeeate e e e eeaaeeeeenssaeeeeesraeeeeeas 52
RN R 7 110 TP RPN 54

1\ (o T4 L= 3T OO USRS PP 57
(@00) 13)50T: 1 16 KT TR 58
AEFINE-TNOMCL.......eveeieeeieeee ettt eeete e e ee it e e e e aaeeeeeeetaaeeeeeateeaeeeeeeeeeeeaennnnes 58

L6 S [T ' Lo a <) SRR ORRRRRY 59
ChUnKS & CRUNK-TYPES.......uiiiiieiiiiieiiieeieeit ettt ete et ste st esate e beessaesbaesatessseesssesssaesssesssessnssseesnnsns 61
Default ChUNK-LYPES......coiiiiiriieieeieeeereete sttt ettt st e e st et e et e s st et e s seesaseesasaesnseesaseas 62
CRIUDNIK. ..ottt e et e e e e bt e e e e e abaeeeeeaaaeeeeessaseeeensssseeeesaseeeeesseseeeesnnnnnes 62

[a0) 1] 72) T ool 110111 TSR 62
QUETY-SLOTS. ..t eeteetieeieet ettt ettt ettt e et e st e et e et e e be e saeease e stessbeassesnsaessaesseenssesnseenssesnssessnns 62

Lol 1<) OO 62
DefaUlt CRUNKS.ccoiitiiiieeiiiec ettt eeette e e eertae e e eeeataeeeeessaeeeeesssaraeeeeeeeeeeeeessnnnnssnens 63
(@00) 13)50T: 116 KT TR 63
Chunk-type COMIMANGS.......cccceeerieeriiirieeiiieeieeiteeteeseesteesseessseesseesseesseesssessseesssessssesssessseesssessssennsns 63
CRUNK ALY P ..ttt ettt et e st e bt e et e bt e st e e bt e eabeesseesabeesseesnreenns 63
PPIINE-CHUNK YD . ettt ettt ettt ebe e s b e e be e st e esbeesssessseesssaesseesssesnseesnsaesas 66
UK LY PPttt et e at e st e bt e st e bt e et e e at e et e e bt e e e arae e e anee 67
All-ChUNK-TYPE-NIAIMES.eiiiieiiiiieeieeeeee ettt et te e st eebeesssessseesssaesseesssesnsaennsaesns 68
chunk-type-possible-slot-NameS-TCL...........coerriirieriieierieeeeeee ettt 68
ChUnK COMIMANAS.ccooiiuiiiiierieeeeiiieeeeesteeeeeerireeeeeeseeeeeessseeeeesssseeeeessssseeessssseseesssseessssssseseeesssssns 70
AEFINE-CIUNKS.vvvieeeceeeee ettt ee e e e eaae e e e eeaaeeesenasaeessesaseesesssssesesssnnnnnnes 70
pprint-chunks & pprint-ChunKS-PIUS.........cceeviirriiiriiiiierieceeeee et e e s re e 72

(o311 113 o SRR 75
ChUNK-dOCUMENTAtION.uvviiiiiiiiieceieee ettt eere et eeetaaeeeeeareeeeenabeeeeeeasseeeeessseeeeesnnnnes 76

Lol 10001 Gy (o 1 v L (<R 76
SEt-CHUNK-SIOt-VAIUE......cccoiiiiiiieiiiie ettt et eeeta e e e e e aeeeeeebaseeeeesaaeeeeeennnssnnnnes 77

ol 100 1 (=T] (o R SRR 79
MOA-CHUNIK.otiiiiiieieiec et e et e e e ta e e eeare e e e eeaaseeeeesateeeeeaeeeeeeeeseessnsnnes 80

ACT-R7 11-Jul-17 ACT-R Reference Manual

COPY-CHUNK ..ttt ettt e st st e e st e e bt e sabe s sbeesaeeebeesnaee 82
ChUNK-COPIEA-TTOML. ... eiieiiiiieciecte ettt ettt e st e s te e st e e sbeessbesseesssaenseesnnns 83
CRUNKS. ...ttt e at e st e bt e et e e bt e et e e bt e e be e e e st e e esabaeeenanee 84
ChUNK-S10t-QUAL.....cuuiiiiiiiieeiecteee ettt ettt s e e sbe e st e s te e st e esbeesssesseesssaenseesnnns 85
EQUAL-CHUNKS.eieiieeeiieeeiee ettt e e e e e et e e s e e e ave e e atee e saeeessteeessaeesssaeenssaaensssaseaeesnnnsenaeens 86
BO-CHUNKS. ...ttt ettt s e st e e te e st e e st e esb e e st e sssaesaesssaeesanseaesnses 87
delete-ChUNIK.c..eieieteee ettt ettt e bt e st e bt e st e s sbeesbeeseanaeeeans 88
PUIZE-CHUNK. ...ttt ettt ettt te e st e st e e sat e esbeessbessseesssaeeennseeesnssaesennnes 90
INETEE-CHUNKS. ... ettt ettt e e sb e st e s bt e s a b e e bt e sab e e beesabe e bt esabesseesannaeesans 91
Create-ChUNK-al1aS.ccveruiiiieieieee ettt st ettt s e e b e e e eas 93
trUE-ChUNK-NAIMIE.eiiiiiiiiiiceee ettt ettt ettt e st e s abe e e e nbeessneeeeaas 94
NOrMalizZe-ChUNK-NAMIES.cooiiiiiiiieeiieeeereeste ettt ettt e st e e teesteesaeesssesssaessseesnseeennns 95
GeNETal PATa@mMBLETS.eeeiiiiieeieeeiieet et ettt et et e st e et e st e e bt e sab e e bt e sate e bt e sabeebeesabeeenbeeeeasbeeeenneeas 98
COMIMANAS. ¢ttt ettt ettt et s e sa et e e st e bt e beea e e bt et e e st e beeasesst e sbeebbeensseennseennbeenaseas 99
]2 PSP P PP RRPPPPPORRRRPPPR 99
get-parameter-default-ValUe...........coocvieiiiniieiiieeieceereee ettt er e e e saaaee s 101
WItN-PATAIMELETS. ... vieeiieeeeeee ettt et e et e e re e e tte e e aae e s ba e e e bt eeesseeenssaeensseeensseeesseesseens 101
SYSEIM PATAIMIETOIS. ..cceeuuviteeeeiiieeeeeiiteeeertteeeeette e e ettt e searteeeesnateeesnnteeessansaeesesnsseeesssnsnsaaaeaeeseessnnnnnns 104
COMIMANAS. ..ottt ettt ettt s e e tt e st e e bt e st e e bt e eabe e bt esab e e bt esabeebaee e ssaeeensaeeenseeeeannas 104
1] 0 OO OSSPSR PO PPPPPPPPRRRRRROR 104
Printing and OULPUL........coiiuiiiieeieeteet ettt ettt et et e bt e bt e st e e s st e sabe s bt e st e e bt e sabeebeesabeesenseeennns 106
IMOAE] OULPUL. c.veeivieeiieeiieeieecieeete et e st e et e ste e bt essteeteessseesseesssessseesssassseesssessaessseesseesssseesnssseesnnes 106
COMMANA OULPUL.c...vveieieeeeieeeeiieeeieeesteeesteeeetteeseseeessseeesseeesseesssseesssseesssseesssssessssesssssesssssseeesennnes 106
WAITHIIES. ...ttt ettt ettt s ettt e e e sttt e e et e e s eabteeeesaubeeee s assteeseaasbaeeesnsneeesassssnsnssaneaaaeeeens 106
COMIMANAS. ..ottt ettt ettt et e e et e st e e bt e s ab e e bt e eabe e bt e eab e e bt esabeebaee e sbteeeabeeeanraeeennns 107
MNOAEI-OULPUL ..eiiiiiiiieeieete ettt ettt e et e et e st eesbeesab e e beessseesseasssessseessseensseeesnnsenenn 107
ITIETA-POULDUL. ¢eeeuutteeeieiiteeeeeiiueeeeesureeeeseateeesesssreeeessssseessssssseesasssseeesssssseessssssseesssssseeesssssseesesssssnnns 108
COMMANA-OULPUL. ... veevteereerreeteesteesseessteesseesstessseesssessseesssessseesssesssessssessseesssesssessssesssssseessssssesans 109
TIO-OULDUL..teeeieuirreeeeniteeeeestreeeesaateeeessaeeeessasreeesssssaeesssssasessssssseessssssseesssssseessssssseesssssseeaseesessssnnnns 110
CAPLUTE-TNOAEI-OULPUL......eiiitiiiieiiieeieete et te et e s te e teesae s teessbeesbeesssesssaeesseeseanssesnssesennsneens 110
PIINE-WAITIHIIS . ..ceeeeiiieeeieiitee ettt e ettt e e eirtteeserteeseebreeessesnbte e s e nrateesessraeeesensraeesesnssaessemsneessannnes 111
MOAEI-WAITINE. ... eiiiieeiieiieeieeeee ettt e e e st e e beesatessbeessaessseesseessseenssesansseessssseeens 112
one-time-mOodel-WarniNg...........cooiiriiiiiieieeeee ettt et ettt et e e b et eenee s 113
SUDPIESS-WATITHIIIZS. ..ceeuuvreeereurreeearurreeeaasurreesassreeessssseesesssseeesssssseessssssseesssssssesssssseessssseeessssnnnnns 114
RUNNING the SYSTEIML ...ttt ettt ettt e st at e st e e bt e sabe e bt e sabe e bt e e s snbeeenans 116
COMIMANAS. ...ttt ettt ettt s e st e e b e s st et e b e s bt e be e b e s st e bt esbesstebeeaseesaaeesaseesaseesaseesaseenas 116
DLt iittteeeentteeeeeebeeeseeabteeeeeasbteeeembaeesseasbteeseemsbteeeeasbaeeseamsbaeeseansbeeeeensaaeeeeanabeeesesraeeeeeesessansnnnnnnns 116
TUN-FULI-EIINIE. .ttt ettt sbe et st sae b e eebeeeas 118
TUN-UNE-EIMIE. ..ttt ettt ettt et e st e e bt e sabe e st e e enbeeeeabaeeas 120
TUN-UNE-CONAIION. c..tteiteeiieeieceee ettt te e st e st e e e sbeesaeessseessseeesnsaeeennsaeens 122
TUDNENI-EVEIIES ¢ eeteeeeiitieeeeiteeeeeittee e sttt e e s ettt e e seibbeeeseesbbeeeeeanraeeseenraaeesessraeeseenbateeeeeessssssannnnnnmnnes 124
TUDI=STOP . et eeeuetteeeeriteeeeeuteeeeeeureeeseusteeeessereeesnsbaeeessssaeesesnntaeessssseeesssseeesassstaeeeeeesesessssnsnnnnnssnns 126
SChedULING EVENLS......coiuiiiieieeteeeete ettt ettt st et st e e bt e st e e bt e st e e st e sabe s st e sasaeeenane 129
DEtails Of EVENLS. ...c..eiiteriieiteieetecte ettt ettt ettt et sat ettt e b et sae ettt beeeabees 129

L0 00T<OTPOP TSOP PP PPPPPPPPPPPPO 129
PTIOTILY .t teeeuiitteeeeieee e e ettt e e ettt e e sttt eessarteeeseabteeesausaaeeaassseee e e sssteesssssseeeasassseesessssaaeessnssaeessnnsraens 130

- Tal 101 T OO PO PO OO P PSR PPOROPPTRIPPPPPP 130
PATAITIETOTS. .eeeeuureeeeeeuereeeeerrteeeaaaueteeeessreeeeasasteeessssaeeessnssaeesasssaeeeesssaeessssssaessasssnaesssssaeeeeesessnnnnnns 130

ACT-R7 11-Jul-17 ACT-R Reference Manual

1016 (<) RPN 130
TNOAULE. ...ttt ceee e eeete e e ee ettt e e e eeaaae e e e e saaeeeeesaseeeensssseeeensaseeeeessaaeeeeenssseesenssreees 130

[a STy 01 T [o) o TR 130
a7 11 SO PP 130
OUEDUL...ttteeeeeeeeeeeitttteeeeeseeeitrteeeeesessesuanraaeeeesssssssnssasaaaeessessasssnseeaeessssssssssseseeessesssssssssssssnnssnnnns 131
EVOIIE A CCESSOTS. .. uuuuuuiinnieieieeeieeeeeeee et et e e s sssssassssnssnsssssassssssssnsssssssnsssssnsssnsnnnsesssssnnnneesens 131
General Event COMIMANAS.......ccccvveeiiiiiiiiiiiiireeeeeeieeeeirtteeeeeeeessssssrereeeeessssssssssssssssssssnnnnssssssssseees 132
EVENL-AISPlAYEA-D. . eeeiieiieetieeee ettt ettt e st e st e e b e e s s be e baeeteebeeesbeesaeeennraeean 132
F0) § 10 EE LB V7<) o | SR 133
Scheduling COMMANAS........cccuteriiirieiiierieeieere et eete et e stessreessteesseesssesseesstessssseessssseessssseessssseens 133
el o e L1 (Rt AT/ <) o | RO R 134
SChEAUIE-EVENI-TEIALIVE.veiiieiieieiceieec ettt et e ettt eeeeeaaae e e eerstreeeeeeeeeeeeeennnnnnnns 136
SCHEAULE-EVENE-TIOW....oeiiiiiieciiiitiieeec ettt e eeeare e e e e e eessaaaaeereeeeeesesssssereeseerssesssrarsssasnnnnnes 137
schedule-event-after-MOULE.............cooviiieeiiiiieeiee e e e eeeeaareeeenes 138
schedule-event-after-Change.............cevieiieriereriereeee ettt e st esbeeeaees 141
SChedUule-PeriodiC-EVENL.cccuiriiriieeieeieeete ettt ettt et st e e teesbeebeessbesseeeesssaesesnsaeeas 143
el o e LU (= o) =T TR 144
SChedUule-Dreak-TEIAtIVE.ccuveiieeirieeeeeieie ettt et e e e e eeare e e eeesaeeeeeeeeennsssnnnnns 145
schedule-break-after-IMOAUIE.ccuveeiiiiiiiiieeeeccce et e e e e e e e e s e s snnannes 146
schedule-break-after-all............c..oooooiiiiiiiiie ettt e e e e e e e e e e nanees 149

(6 S] [R A v/<) 1 | R 150
EVEINE HOOKS.eeeieiiiiiieeeiee ettt eeetta e e eate e e e eeaaaeeeeeasaeeeeessaseeeenssaseeeensraeeeeeeaeeeenns 151
Add-Pre-eVent-NO0K.........c.uiiiiiiiiieceeeee ettt s rae e e e aaaaaeaeenn 151
Add-POSt-VENT-NOOK.......cooiiiiiiiiieieeeceee ettt s e e et e e e nabaee s 152
(a0 [R A 7/<) 1 [1[0 1o) SRR 154
About the INCluded MOAUIES...........oooeeiiiiiieieeeceeeee ettt eeere e eetre e e eeeaaae e e eeareeeeeeennannns 156
Printing MOAUIE.......ccc.eiiiiiieeee ettt ettt ettt e st e st e bt e st e e st e sabeesnneeeeas 157
PaTAIMIETEIS. ...evvviieieiiiiieieieeeeeeeeeeeeeeeeeeeeerereeerereseereeresesssssesssssssssssssssssssssssssssesssssssssssssssesssesesssssrnnnneesaes 157
(o] o 157
CIMMAL. . vveee ettt e eetee e e eetee e e eeete e e e eeetteeeeeeaaeeeeesssseeeeessseeeeesssseeeesssssseeansssseeeensssasaeeeeeeeeseennnnsnnnsnnns 157
TNOAI-WATITHIIES. . ..eeeeieiieeite ettt ettt ettt e et e e st e e sate st e e s st e et e esateseasbeeeeanbeeeennbeeeeanees 158
SV TTACE c.evererrrererreerererereerrererereserersssssessesesssssesssssssssssssssssssssssssssssesssssesssssssssssssssssnnneesssssssnnnnes 158

1 Ll (<] 7<) | R RRURRRRN 158

1 = Tal < 1 <) O USSR SRRSO 158

TV ettt ettt ee———eeeeii——eeeaa——teeaa———eeeaa——eeeeaaa—teeeaa—ateeeaa—tteeeaaateeeanateeeeaaaeeeeennnaaaaaaareaeeeeeeeeeeaaann 159
COIMIMANGS......cvvreeieirieeeeeiieeeeeeireeeeerteeeeeettaeeeeesaseeeeessseeeeeesssseeeassssseeessssseeeesssssssssrseeeeeeeeeenennsssssnes 159
ShOW-Saved-trace / Get-SAVEA-tTACE.cceteruerruieeieerite et et et et e st et e st e et e sbeesateesabeeeesaraeeas 159
INAMING MOAUIE.......eiiiiieieeieeee ettt et et e bt e s sb e s tee st e e seessseeseesnsassnssaessnssaesssseeennes 163
PaATAITIOTEIS. ... oo eeeeeeeeeeee ettt eeee e e e et et ettt eeeeeeeeeeestasaaaeeeeeasssssssnnnseeeeessssssnnnneesesssssssnnnnnesssnnneseen 163
(0 1 1=) N 163
(@00 131 53T: 1 16 KT 165
LS F: | 11 LD 165

Y S (T T aE=Y 0 (<D UTRR 167
NEW=-SYITIDOL. ... teeiiieiiieieeeet ettt ettt e et e st e e be e st e e beessteesseessbeesbeensseesseensneenseeennnaens 168
R Ta o) 0010 0370 e LU 1 [T 170
PaTAIMIETEIS. ...evvviieieiiiiieieieeeeeeeeeeeeeeeeeeeeerereeerereseereeresesssssesssssssssssssssssssssssssssesssssssssssssssesssesesssssrnnnneesaes 170
B =Y 0 16 [0) 1 811/ <E)0 <D USSR 170
SEB™...cuvreeeeeeireeeeeeee e eeee et e ee et e e e e e —r e e e e e ——reeeea——teeeaaa—ae e e ataeeeaaaareeeaaraeeeeaataaaaaaeeeeeeeeaaannnnnrre 170

ACT-R7 11-Jul-17 ACT-R Reference Manual

(@00 131 23T: 1 16 KT 171
P Lol o v 11 6 [0) .1 PO SO PR 171

Lo i i 1 (01 Y ST USSR 172
TANAOIMZE-TIINIO. .. .eeeieeiiieeeeeieeeceeieeeeeeeteeeeeeteeeeeebeeeeeersteeeeesssseseeessseeeeessseeeessssseeeeeeeeseenennnsnnns 173
TANAOIMNIZE-TIITIETIIS. ... eeevvvereeeeeeeeeeeireereeeeeeeeesabbreeeeeeeeesssasrrareeeeeesessssraeareeesessssssnnnsssssssssessessenes 174
BUuffer trace MOAUIE............veiiieiieeeeeeeee ettt ettt eeeeaae e e eesaaaeeeeeeeeeeeeessssssssssseeeeens 177
PaATAITIOTEIS. ... e ettt e e eeeeeetteeeeeeeeee ettt eeeeeeeeseessasaaaeeeeeesssssssnnnnaeeeesssssssnnnneesesssssssnnnnnssssnnneseen 179
IDULLEI-MTACE .eveiiiieeeee et eee e e e et e e e e eateeeeeesaae e e e e ssaeeeeensseeeeennnnes 179

W 01T (<) R = Tal i 110 10) USSR 179

W 0 e a0 Lot (] 0 TSRS 179

oY AV 0 1§ (<) 1 v Lol <Y 179
ATACEA-DULTETS.eveeeeeeeeeeee et e eeare e e et e e e eetaaeeeeesasaaaraeeeeeeas 179
(@00 1318 0T: 1 16 KT 180
Get-CUITENE-DUIEI-TACE. ... iieiieiieeieeteeee ettt e st e e ae e s sbeessaesbaesanneees 180

P a0 B o TR <) =T < 110 11 <1 PSSR 183
Central Parameters IMOAULE.............eeeeeiiiieeeiiieec ettt eeetee e eeatee e eeetreeeeesaaeeeeeessaseeeeesseeeeeessnnnnes 185
Lo 18 < 1<) o J P PUPRRRRUPRRE 185
<) PP RRPRPOt 185
ESCererrrerrrrerereeereeereeerear——t—————————————————————.————.———————atrrtraaaeeerres 186

(o) KOS RPN 186
SYSTEIM PATAIMIELETS. ...ccouutiiiiiieeiieeeiieeet ettt ettt st e st e sttt e s st e e s aae e e bt e e s beeessnbbeeeeeesnnnneees 186
SStATTING-PATAITIETEIS. ¢.eeeuerreeeerireeereieteeeeerreeeeestteeeeassreeesasnseeessssseaessssreeessssneesssnseeesssnsseeesssnsen 186
(@00 131 53T: 1 16 KT 187
register-subSYMDOliC-PArameterS.c.ueviiiriierieeiierieee et e ettt seesteesaeessbeessneesnreeeenraeens 187
The Procedural SYSTOIM.......ccc.ciiiiiiiiieeiteeteeteet ettt e et e bt e s bt e s te e s s abaeessabeeessnbeeenans 188
ProCedural IMOAUIE............ooooeiiiiiieeieee ettt ettt e eeetee e e eeeataeeeeesseeeeenssaseeeesssseeeeeennsnsssnnnes 189
(@) 11 T A 2T o) LU o) o FO R RERRRRRN 189
PATAIMIETETS ...evvvvveieiiiiieiiiiieeeeeeeeeeeeeeeeeeerereeerereseeseersresesesesesssssssssssssssssssssssssssssssssesssssssesssessssssssnnnneesans 190
Ol L. e eeetttt i eeeeeeeeeettta i eeeeeeeeesreasran i aaeeeessessssssnaeeeessssssssnnnnsseessssssssnnnnnseesssssssssnnnaseseesssssnneessnnneessnnneens 191

L) AP 191
CYCLE-NO0OK ...ttt ettt b e st bt et be e st e e s 191
ATttt eett e e eeee e e ee e e e eeaa e e e ee e aateeeebabae e e aaaeeeeaaraeeeabaaeeeenaaaeeeearreeeennrareeeans 191

(a0 1 0] B 1 = T/ Y] A 192
TRST. ettt e e e e et e e e ee it a e e e eeaa e e e eeaabaaeeeeaareeeeaaraeeeenaarreeeeraraaeeeas 192
2] ST PPPPPPPPPN 192

9] 2100 110 o) SRR 193

1 1] U 193
STV E-WAITHIIZS. ... veeveeiieeieeete ettt et e et e et e st eete e st e ssbe e saessseesseessseenseesnsaenseesssesnssensseensseessnnses 194
TUSBTC. .. eeeeeeereetttieeeeeeeereerranieeeeeeeerssssnsanaeeeesssssssnsnnaseesssssssnsnnasesssssssssnnnnasessessssssnnnnasesessssnnnsens 194

1 0] £ FO TSRS PSTR PR 194

| WoTa U e (o) o 01U Y i (<) VSRR 195
COIMIMANAS......cvvrieeeirieeeeeitieeeeeeiteeeeeetreeeeestaeeeeesareeeeesssseeeeassseeeesssseeeeesssseeeesssssssssssseeeeeeeseesnnsssssnes 195
P/define-p/P*/AETINE-P™oooeiieieeeeeee ettt ettt e ta e e e ae e aaeenns 195
All-PrOAUCTIONS. ...eeueiieiieeieeieeeteee ettt ettt e ae e st e e bt e st e eaeesssaessaesssaeessssaeesnsseeesnsseens 215
PP+ eeennnnrrrteeeeesannaiertateeesesaaurrtataeeeesana i a——aaateeeeaaa i abattaaeeeseaaahataaateeeeeae i nbaataaeeeseenaararaaaeeeeeeaann 216
PDIEaK/PUNDIEAK.ccviieiiieiieeiecteee ettt et e et e st e e be e st e ebeesnneennes 217
PAISADIE/PENADIE.cceviiiiieciee ettt e et e et e et e st e e s ba e e e e e e e ree e naae e naaaeas 219

A4 11728 1 | SO ST P USRS P ORISR 220

ACT-R7 11-Jul-17 ACT-R Reference Manual

ProdUCtiON-fITING-0MN1Y....cctiitiiiirierieieeeeee ettt ettt e st e s e sae s e enaees 223
UN-delay-Conflict-TeSOIULION.ccciiriiiieeitete ettt ettt ste e st e e sbe e st e ssaessaeenseeennns 224

ol 121 0] (0T L1 Lot 0] 1 -SSRSO 224
deClare-DUTTEIr-USAGE. ...c.ueieviieieeieeeeeeeteee ettt ettt e e ab e e e str e e e nsaeeennraeeas 225
UHHEY TNOAULE. ...ttt ettt et et e et e s at e st e e bt e eabe e s abeesenteeeeaneeeans 228
PaTAIMIETETS.ceiiiieiitieete ettt ettt s e sttt e s ab e e s nb e e s na e e s enna e e e e e ennee 228
11 5] 1 PSSR SPRRUPUPPRRE 229
B teeuuetteeee et e e ettt e e et t e e e ettt e e et t e e e e b bt e e e e bt e e e e ateee e e et e e e e e a bt e e e e abaeee e e aaaeeeeesbaeeeeeeenannnnnrnnaee 229

110 PO OO UPRRRRRR 229

3L PP OO P PSP PP PPRROPPPRPPRRORt 229
TEWATA-NOO0K. ... ittt ettt ettt e st e s 229

UL ettt ettt et h e b e a e h e e bt e st e h e e bt et e e h e e bt et e e sab e e eabeeeabeeeneeeas 230
101 ST PUPRRPPSPRRE 230

TUE. ettt ettt et e e et e e et e e bt et e at e bt et e e a e e bt et e e a e e eh et e e Rt e h e e a b e e Rt e bt e b e eat e bt et e ea e e bt et e e e abeeeabeeeabeeebaeeas 230
UL -R00K. ..ttt ettt ettt et s b et e s b 230
R0 1 0] T £ TSRS 231
COMIMANAS. ...ttt ettt ettt et e et eeat e st e e bt e st e e bt e s ab e e bt eeabeesbeesabeebaee e sbteeenbeeeenreeeennnas 231
ITIEEOT-TEWAIT.eeuvieeeieeieeeieeteeete et et e et e st e s ae e st e eseeseessseesseessseessaesssessssenssseeessssaeenssseesnnseeenn 231

] 0] 1 SO SP PP PPPPPPN 233
Production Compilation MOQUIE..........ccceeeiiiiiiiiiieiieieeeeieeee ettt re e seeesaeesaesseessnaeenes 239
PaTaIMELETS.eeiiiiiiiei ettt ettt e et e e et e e s s sb e e e s e ara e e e e e araeeeeeeeeeeaans 241
<0 T U USROS 241
POl atttttteeeteeeettt e ettt e e ee e bttt e e e e e e e s s ab et e e eeeeeea bbbt e aeeeeeaa e aabaaaaeeeeeee tbaataaeeeeeene nsbaaaaaeeeeesaanranas 241

11 SO O ST RE RS OU SOV SRUPPPRRPPPRROPPRRUPO 241
COMIMANAS. ..ottt ettt ettt et e e et e st e e bt e s ab e e bt e eabe e bt e eab e e bt esabeebaee e sbteeeabeeeanraeeennns 241
Show-Ccompilation-DUffer-tyPes.ccocvieiiiiiiiiieeeeeee e e s 241
COMPIlatioN-DUFfEI-LYPE. .. ceoeieiieieieeee ettt ettt e e 242
specify-compilation-DUffer-tyPe.......c.cocverieeriiirieiiieeeeeeeee et 243
GOAL MOAUIE. ...ttt ettt et e et e b e st e e atesabe e abt e e s sabteeesabeeesanbeeenans 245
GOl DUTET ...ttt e b st s et e bt e s bt e e saeesnee s 245
QQUETIES ..eeeeeiiiieeeeeeeeeeetteeeeeeeeeeeetatteeeeeeeeeresassnnaaaeeeeesssssssnnnaeeeessssssssnnnaeseessssssssnnnnseessssnnesssnnnesees 245
ROQUESTS. ..ottt ettt ettt e ettt e e e et e e e st e e e s e ar b e e s e anb e e e e rteeeeeeeeeeeeennanns 245
MOdifiCation REQUESTES.......ccciiiiieiieeiieeieeieeete et eeteete e teereesaeeteesaaeebeessseeseesssasesssesesnsseens 246
COMIMANAS. ...ttt ettt et s e s bt et e s st e s ae et e sat et e e b e sst e bt esbesstebesaseesaneesaseesaseesaseesnseenas 247
BOAI-TOCUS .ttt ettt ettt et e st a et et e s ae e beesaenaeenteeteenns 247
INIOA- OCUS. ¢ttt ettt ettt e s bt e bt st esat et e et e sae e b e st e e sabeesabeeeaseeeneeeane 248
IMAgInal MOUIE.......cc.eiiieie ettt et ettt e st st e st e et e e st e s st e e e s bbeeenaee 251
PaTAIMIETETS ...eoiniiiiiiieiite ettt ettt ettt et s et e st e s ab e s nb e e s nae e s ennae e e s e ennee 251
AMAGINAL-EIAY ettt ettt et e 251
EVIA ettt ettt ettt bt et e et e bt e beea b e ae e bt e e bee e beeennaeeas 251
Chunk-types & CRUNKS.......cooiiiiiiteeteee ettt ettt et e et e st e s sbe e st e e e saneeeeaas 251
IMAGINAL DUTET.....cciiieiieieee et te bt e e st e e st e e beessbesseessnaesans 251
REQUESTS. ..ceeeiieieete ettt et e e s ettt e e e e e s e bttt e e eeesessssasbaaaaeesesannssssnnsnnnnaaaesns 252
MOAIfICAtION TEQUESES. ...ccuveirereeiieniieeieerteerteeste et e stesteesateebeesssesseesseessseesssesnsessseesssessssessesnsees 253
Imaginal-action DUFTET........cc.eiiiiriiiieeeee ettt ae e s 254
ROQUESTS. ..ottt ettt ettt e ettt e e e et e e e st e e e s e ar b e e s e anb e e e e rteeeeeeeeeeeeennanns 254
COMIMANAS. ...ttt et e bttt e e e at e st e e bt e s ab e e bt e eabe e bt esabeesbeesabeebaee e ssaeeenbaeeenreeeenneas 256
SEt-TMAGINALI-TTEO.eetieeeieeeeee ettt e st eesbeessssbaesesneaesans 256

ACT-R7 11-Jul-17 ACT-R Reference Manual

SEt-TMAGINAL-EITOTeiiieiiietee ettt ettt ettt et e s te s sbe e st e e bt e sabeesbeesabaeean 257
Declarative MOAULE.............coeivviiieeieie ettt eeette e eeebee e e eetaeeeeeeasseeeeessaseeeeeeeensssssssssnseeeens 258
F AN 117721110) OTT U ST TSR PPPR 259
BaASE-LEVEL...ceeeeeiieeeeee e e et e e et e e e e aaa e e e eeaae e e e e raraeeeraraeaeeas 259
SPreading ACHIVALION. ...c...ceiittirieeitertteeieerte ettt ettt ettt e st e e bt e st e e bt e sate e sabeeeeneeeesaneeeeeanees 261
Partial MatChing.........cooiieiiiiiieieeeeeeeeee ettt et st ae e st e et e e st e esseessnesbaesnnnaees 262

IN OIS eiieeeeettceeee et ettt reeeeeeeeeeeeaat i eeeeeeeeesesssatanaeeeeesssssssnnnnseeesssssssnnnnseeeessssssntnnsesssnnnessnnnnesnnnn 263
RETTIOVAL tIINIB......ivviei ittt ceete e eetre e e ee et e e e eeataeeeeeaaeeeeenssaseeeessseeeeessaeseeessnsreeeeeeeenennn 264
DECIATALIVE FINSES...uvviiiiiiiiiiiieeeeeeeeee ettt e et e e e eeatae e e eesaeeeeesaaeeeeessaaeeseeaseeesennsaseessnrnneeeeas 264
PaTAIMIETETS. ...evvvieeieieieieeeieeeeeeeeeeeeeeereeeeeeereeeeereseereerssesessserssasssssssssssssssssssssssssssssssesssssssssssesesssssrnnneesaes 265
A0 ettt eeeee et ettt eeeeeeeee e ettt ——eeeeeeeartra——————eeeetettatra————_—eeeertrttnn_———eeeterernrar—aeeeeerertraraaaeeeeererarnnnneerrnn 265
Lol Av= L 0] 1 B0 i £ <L 1T SO 266
AT1S.1uuuueeeeeereeurunteaeeeeerrrarara_——eeeerrrrrara_——_—eeeterrrarn__——aeetertraran—aaeetereratrnnaaeeeerrrnrnnnaaaeersrnneseannneeres 266

0] B s T o) SRS PR U 266

) (RO RRRRRRRR 267
DLttt e et e e e aa e e e eeaaaeeeeearreeeeabareeeeaaaeeeeabaraeaaeeeeeeeaaannnaes 267

(a0 100 01 =T (a5 T 1o - OO 267
:ChUNK-METZE-N00K.......ciiiiiiiiieeeeeee ettt sttt e e e e s ssraesennns 267
:deClarative-fiNSt-SPAN.cccieeiieciecie ettt ettt ettt e et e e s b e e e et e ebe e sbeebaeetaeenbeenraeeennes 268
:declarative-NUIM-FINSTS.veeiiieiiie et ceerre e eeette e e e are e e e e aararaareeeeeeeeeeeeeenns 268
deClarative-StUFING........cocvererieeieieeee ettt ettt ettt e saae e naaeeas 268

LB e et e e et e e e e —— e e e e ——a e e e et b—aeeeaabaaeeaaaaaeeeettreeeentareeeenaraeeas 268
SRR 268
TT0AS ©vvvvvevevnnnnnnnsesesssnnneessssssnne 269
1L« FO TR 269
11010 SO OO OO O PSP PP PPPPPPPPPPPRRRIR 269
IS cuneeeeeieeurnuneeeeeeereeeraraeaeeeeesersanranaeeeeeresararanateeesrraaara—teeeerrrraranaeeeerrararnnaaeeeeeerrrnrnnaneesrnnnns 269
NOISE-NI0O0K. ... uviiiiiiieie ettt et e e eeeate e e e eeaae e e e e taaeeeeetaaeeeeetreeeeenaaareeeannns 269
TTISE wetteeeeiereeiitttee et e s e ettt e e e e e e s e b ta et e eeeesaa attaaaeeeeee e rbaataeeeesenaaataaaeeeeeeee s artaaaaaeeeeensnrrnnnnn 269
partial-matChing-NOO0K..........cociiiiiiiiiieeeece et s it e e s aeennes 270

|0 KT O PP PPPPPPTRN 270
TetTieVal-TeqQUEST-NOO0K.cooiieiieieeeeeeeee ettt s 270

N B (A2] Y < 1 [0 10) TR 270
Tetrieved-ChUNK-NOOK..........ccooiiiiiiiiie ettt e et e et e e e eeaareeeeeeeean 271

8 SRR 271
- [VU UP U UUPOt 271

3 105 10T OO RRRRR 272
STITNOOK . ettt et et e st e et e e a e e et e e ateeenttaeeanntaeennraeeeans 272
SPIEAAING-NO0K.eiiiiiiiii ettt ettt ettt e st e s 272
WoRI00K. .t ee e e et eeeaba e e e e aaaeeeeebaeaeeaeeeeeeeaaannnnaes 272
RETIOVAL DUFTOT......eviiiiieeiiieeeee ettt et e e et e e e eeaaae e e seabaeeeeeeeeeeesesnnnnnnnnes 273
O U L] o 1< RN 273
REQUESTS. ..ceeeiieieete ettt et e e s ettt e e e e e s e bttt e e eeesessssasbaaaaeesesannssssnnsnnnnaaaesns 273
COIMIMANAS......uvvreeieireiee ettt e eeeireeeeeetreeeeettaeeeeessreeeeesssseeeessssreeeasssseeeeesssseeeessssssssssseeeeeeeeseesnnsssssnes 275
e Ta (6 4) 0 VTSR 275
(411 2 TSSOSO PR UUTURRRRRRRROR 276

] | 4 SO RRERR 278
PINE-AIMFINSES. ¢ttt ettt sre et e s be e te e st e e st e ssbeessaesnsaensaessseensnennses 280

ACT-R7 11-Jul-17 ACT-R Reference Manual

16)2 TR SPUPPt 282
SJI/AAA=ST1u ettt ettt et b et e e bt st e aeeeaee 289
SIMIlarity/Set-SIMILATIIES.eeeiiiiiieieeteetee ettt ettt et et e st s 291
get-base-level/set-base-levels/set-all-base-1evels...........ccoceerirriiiiiiniieeiieeiieeeieeeeee e 294

ol 1<) T | T TP USP 297
1€St-AeClATAtIVE-FINSTS. . .eetieeieiiieeieeeee ettt ettt e st e e steessbe e seeeessaeesnnsaeeas 297

100 1S) N oL 111 IO OO OO OO P PR PPPPRRUPPPO 298
PIiNE-ACHIVATION-TTACE. c....eeteeeeeiteeeeeitteeeereteeeeertteeeesareeeeesurreeeessasteeeesnseeesssnsseessssssteessssnseaeeessenns 300
Print-ChUuNK-actiVatiON-trACe.c..eeeiieeeiiieeceeeeiieeeieeesteeesteeesaeeesaaeeesaeeesbeeesseeesaseeennsaesnssneens 302
SAVEd-aCtiVAtION-NISIOTYcccviieieeiieeieee ettt ettt e e sbe e st e e beesbeesaeesssessseeesasneeas 305
WHYTIOE-AM ettt ettt e bt e st e e bt e st e s bt e st e e bt e sabaeesabeeesnneas 306
SIMULALE-TEITIEVAL-TEQUEST......veieereeieeeiieeieeete et e ete et e ste e bt esteesbeesssesbeessteesseessnssaeesnsseessnsseeennns 309
Perceptual & MOtOr MOAUIES.........cccuiieeieeeiiieeieeecteeecteeeeeesteeeesteeessbeeessaeeessseesssaeessssaeesesssssneesanns 312
The DeVICe MOAUIL........ccouiieiieiieeieeteete ettt e et e st e e st e s be e st e sbeessaeesseesssesssaesssassseenssesnseesssees 313
PaTAITIOLETS. ..ttt e e sttt e et e e s ettt e e e e e sessesasbaaaeeeeesesssrbataaaeeeeeeaaaaanees 313
TNOUSE-TITES-COBTT...c.eeiieieeeee ettt ettt e st e e bae e eanes 313
TIEEUS-TTIOUSE. ... veeeeteeeereeeetreeeiteeeteeesaeeeasseeessseeessseessseeesaeeasseeessseesssseessssessssseessssesesssesnsssesnssens 314
IPIXEIS-POI-INCR. ... it sttt e b e e et e e e taeeenneee 314
PTOCESS=CUTSOT e euueeiiereeeeeeeesaeunnreeteeeeesansansserteeeessassssnssaasessssssssssssesseseesssssssssssaasesssesssseseeseeeasaen 314

TS OWATOCUS. ¢ ettt ettt s et e e e et e e be e sbeebeeeenntaeeennees 314
=1 0] [(o Tal v =1 1. 1< S PSPPSR 314
ETACE-TIIOUSE. ..c..eevreeeeeireeeeeeirteeeesnteeeessureeesesnsteeesassaeeesassaeesassssaeeessnsseeessssaaesssssaeessssnaeeeeeessnnnns 315
VIEWING-AISTANICE. ...ccuuteitiieiieeiteeteesi ettt ettt et e et e e s at e et e e st e s be e st e saseesseesabe e st e sasbeesanseeesnnsaes 315
VW ettt ettt et ettt et sa et e b e e a e e bt et e a e e bt et e e a e e he et e e Rt e eh e e bt e Rt e e bt et e et e eat et e e bt e e nteeeaneeeateeeaneena 315
(010)10100F-1 1 16 TP SPPR 315
INSTALL-EVICE. ... teetieieeeieete ettt ettt e st eebe e st e e beessteesbeessseessaessseennsaeeennsaeens 315
CUITEINE-AEVICE. .. eeeetieeeiieeeieeeeteeeettee e sttt eeetaeeeeteeesbeeessseeeasseeesseeansseeassaeasssseesssssaaesennnssseeesensnssnees 316
BL-TIIOUSE-TTACE. ... eeeeeeiereeereurteeeestreeeaaaurreesasarteeessseeeeesnseeesssssseessassseeessssseesssssssaessssssaeessssnnnsnns 317
MOdel-geNerated-aCtiON.......c.ueeiuiirieeieerte ettt ettt ettt et st et e e bt e bt e s b e sat e s e sbeeebeenne s 317
ViSION MIOAUIE......veiiiiiiieiecieeteeeee ettt ste et e et s st e st e e aeessbe e saesnseesseesssesassseesssnseenns 319
The model’s VISUAl WOTIA..........ueiiiiiieieeceeceeceeee et e s are e s eaa e e e aae e s aaeeee s 319
The WRETE® SYSIEIML......ccuiiiiiiiiieieeiteeieesite ettt et e et e etee st e esseessbeesaessseesseesssaesseessseesnssseesnsseeens 319
DS et ittt ettt e ettt e e e st e e s e tte e e e st ae e e e s e e e e e e taaeeeanbaeeeentaaaaeeeeeeeeaann 320
The WRat SYSTOIM......eiiiiiiiiiiiieeieeieeeie et ete et ettt e st e e ste e st e e steeeabeebeessseessesssaesseesssesasssaeessssaenns 320
RE-ENCOAING ...ttt ettt ettt et et e st e st e bt e st e e st e e e nbeeeeabaeeas 321
SCONE ChANGE......c..veiiieeieeieee ettt et s e st e e st e s te e s st e e baessbesbeesssassseesssesnsaennsasens 321
TTACKITIZ ..ttt ettt et et e s at e et e s at e et e e st e st e e st e sabeessteeenseeeenbaeeas 322
PATAIMELETSeeeiieiiiiee ittt ettt e e ettt e e s sttt e s e anbe e e e s aseeeeseasseeesesnnbeeeesnsaaeeeeesssnnnnnn 322
=110 -1 =) 1 1 AU UP PR 322
:delete-ViSICON-CHUNKS.coociiiiiiiecitetcetee ettt et e et e st e e sibe e e enbaeeesnsaeeennns 322
SOPHIMIZE-VISUAL oiiiiiiiiiiiicieecee et ee st e e e te e s s ae e e see e s neeeesaeesssaeesssneennnens 323
:0VerStUff-VISUAI-10CAtION.ueiiiieiieieeteeceeeee ettt et e s 323
1SAVE-VISICOM-NISTOTY .. ettt ettt ettt et et e e e e 323
:scene-change-threShold..........oo.eiiiiiiiiic e s 324
(] G (<Y LT OO UU ST 324
TACKINE-CLOAT ... iiiiieeieeteete ettt ettt s e e st e e te e s st e st e e s st e esbeesseaeennsseesnnsaeesnsns 324
UNSTUFF-ViSAUI-I0CAtION. ... eectiiiiecii ettt e ae e e b e ebe e e nraeeeennas 324
:VISUAl-AtteNtION-1AtENICY ... ceiuiieiieeieeiieeieet ettt ettt et e s b e s ae e st e e beessaessseesasaenseesnnns 325

ACT-R7 11-Jul-17 ACT-R Reference Manual

SVISUAL-TINSE-SPAN. ... e evieeiieiie et ecte ettt et e te et eete e be e et eebeessbe e saessbeesseensseenseensaeenseensaeeenees 325
:VISUAl-TNOVEMENT-tOIETANCE.eerieeiieeiiieiieeieeceeeie et e sreesteesteeseessaeessaessseeseesssessseesnsesseesnnns 325
SVISUAL-TIUIMI-FINISTS. ...ttt ettt e e te e aa e e be et e ebeessaeeessaeeeenssaeeenssaeennnens 325
IVISUAL-OMSEI-SPAMN....c..ueeeureeiieeieeiteeteeseeesteesteeeseesstesbeesstessseesssesssaessseasseesssesassseesassseesnssseesnsnses 325
Visual-10Cation DUFET........cceciiiiiicieceececeeee ettt s e e re e s b e e e raae e araaeenns 325
[U L) o <N 326
REQUESTS. ..ceieiieeeeteee ettt et e e s ettt e e e e e se s bbbt e e eeesessssasbaaaaeesesannnsssnnnnnnnaaaeens 327
VSUAL DUTTOT ...ttt ettt e bt e s e st e et eesbeessbteessssteesnsseassnsseaennns 331
QQUEBTLES. ...ceeeeeeieeeeeeeeeeeett i eeeeeeeeeeeetaateeeeeeeeesessssaaaaaeeeeessssssssnnaeeeessssssssnnnsseessssssssnnnnseessssnnessssnnesees 331
ROQUESTS. ..ottt e ettt e et e e e bt e e e st e e s e bt e e et e e e e e rbeeeeeeeeeeeeeannns 332
Chunks & CRUNK-LYPES.coiiieiiiieeiteee ettt ettt ettt e st e e bt e sabesbe e st e e s sanaeesaas 337
COMIMANGS. ... eeeiveeiieeiteete et este et et e s rte e st e e ae e stessseessaessseeseassseessaeassaesseesssessseeensssessssssesansseesnnsses 338
PIOCAISPLAY ..ttt ettt ettt et s e e bt e st e e bt e st e e bt e st e e bt e e ate e ebaesabeesateeabeanne 338
PIINE-VISICOM. cttetieiiiteeeeitteeeeeiteeeeerttee e ettt e e s iabeeeseabteeeesanreeeesnsaeeessnnsaeesasnnseeeessnsaneaaeeeeeesnnnsnnns 340
TEMOVE-VISUAI-FINSS. .. eecuiieiieeiiicieecie ettt ettt e et e be e s e e e beessaeenbeesaseenseeesseennneas 340
SEt-VISIOC-AETAUIL.......eeiiieiiiieceeeee ettt et e st e ae e s sbe e aaeebaesnaae s 342
AAA-WOTA-CHATACTETS. .. .ccvveeeiiieeieeeeiee et e eeteeeeteeestteeesteeesseaeessseeesssaeensseessseessseessseesnsseesssseesanns 343
SEt-VISUAL-CONEEI-POINL. . .veetieeieiriieeieertteete et e et e st e steesteessseesseesssesseesssessseesssessseesssesseenssessseens 345
SOt-CHAT-TEAUTE-SOL. .. eecuieeiieciieeteeete ettt ettt e e e te e e ae e tae e b e e s aaessbeeseesssaesseessseesaenssaeans 346
ShOW-VISICON-NISTOTYiiiiiiiieiiieeieeeeee ettt ettt e st e ae e ssbeessaeetaesnnneeas 347
AUAIO MOAUIE.....ceiiiiieeiieecee ettt et e et e e e tee e e beeesbeeessseeessbeeessseesasseessseessseessseennssenes 351
AUAILOTY WOTLA.....c.eviiiieeieeeeeeeee ettt ettt e s e e e b e e s e e s b e e s st e esseessnesnssaesnnsseeas 351
The WREI® SYSTEIML......cuuiiiiiiiiieeiteeee ettt ettt et et e bt e st e bt e st e e bt e s beeesabaeeenaraeeas 352
The WRat SYSTOIM......eeiiiiiiiieiieeieeiteeie ettt ettt e et e estee st e e saeesabeebeessseesseesssaenseesssesassseesnssseenns 352
PaTAIMIELETS ...ttt ettt et e e sttt et e e e e s e bt teeeeeesesssssasbaaaeeeessessnssstaaaeeeeeeeaeeanens 352
6o | e (e ot et (<] F | OO RORRUPRRSPR 353
SAEGIE-AUTALION. c...eeieeeiee ettt et ettt e et e et e e st e et e e sate s e bbeeeeaabeeeeanbeeeeaneas 353
(AiGIt-TECOAR-AELAYeveeiieeiieeiieeteeeeee ettt et e b e e ae e et e e st e ssst e e snsbeeesnnes 353
:OVErStUf-aUIal-l0CAtION.eeciiiiieciieee ettt re e e be e ate e e rae e e eabaeeensaaeeennns 353
:SAVE-AUAICON-NISTOTY.c..tiieiiiiiieeiieiteteee ettt et e et e st e e seesste e seeesssaeeennns 353
:SOUNA-AECAY-TIIMIE ..eiiieiiiieeieetie ettt ettt et s e e bt e st e e bt e et e e b e e s st e esbeesabeeabeesaeeenseessseeeane 353
EONE-LECT-ARIAY eeeeeeeiieeieeteete ettt ettt s e e be e st e e bt e ssb e e saessseessaesssessaesnsasnseeennns 354
EONE-TECOAR-ARIAYeeeueiiiiieieiite ettt et ettt et e et e bt e s be e s bt e sabe e s st e sabeesaeesaseessaenane 354
UNSTUFF-AUTal-10CAtION. ..coviiiiiiieeie ettt e st e e e e be e naeenes 354
AUTal-10CatioN DUFTT.......ciiiiieiieiececeee ettt e re e sae e ae e saeesbeenaneens 354
O U L) o 1< RN 355
REQUESES. ..ceeeiieeeeteee ettt et e e s ettt e e e e e se bttt e aeeesessssasbaaaaeeseseensssnnnnnnnnnnaaeens 355
AUTAL DUTET ...ttt e et e st e st e st e e beessbeesaesnsaesseaesnsseens 358
QQUEBTIES. ...ceeeeeeieeeeeeeeeeeetteeeeeeeeeeeetataeeeeeeeeessssssnaaaeeeeessssssssnnaseeessssssssnnneeessssessssnnnnseessssnnessssnnesees 359
ROQUESTS. ..ottt ettt ettt e ettt e e e et e e e st e e e s e ar b e e s e anb e e e e rteeeeeeeeeeeeennanns 360
Chunks & CRUNK-LYPES.coiiieiiiieeiteee ettt ettt ettt s bt e st e s bt e st e s be e st e e e saneeesans 361
(021011071216 F3 O SUPRURRR 362
new-digit-sound/new-tone-sound/new-other-sound/new-word-sound.............ccccceeceeereeeeennneenn. 362
PIANE-AUAICOM. ... eteeiiieiieeieect ettt sttt e et e et e st e e saeessteesseessseesseessseesseanssessseessseennseeesnnsenenn 365
SEt-aUAIOC-AETAUIL.......cocuiiiiiiieceece ettt e e e e e s ae e reesbe e beeesaeesaesnaaeeas 366
ShOW-aUAICON-NISTOTYeiiiiiiiiieiieteeeeeeee ettt sb e et e st e e e e ssbessaesnsaeens 367

1A% (o] (o) ot 1. T 16 111 <IN 370
PRYSICAL WOTIA....cciiiiiieeieeteceee ettt ettt e st e s e e s sae e bt e ssb e e saesnsaeseesssaesssseesnns 370

ACT-R7 11-Jul-17 ACT-R Reference Manual

(00723 1110) 1 OO SRR SPPPPP 370
FAEES™S LLAW . eeeitieeeitee ettt ettt et e e ettt e e e et e e e st e e e s bt e e e s aabeeeseaneaeeeeeeeeeeeasssssnnnnnnnns 372
PaTAITIOLETS. ..ottt ettt e e e sttt e e e e e s e ab bt e e e e e e se s ssasbaaaeeeeesessasrbbtaaeeeeeeeeaaaanees 373
TCUTSOT-TIOISE. ¢eeeuvrteereutteeeeeurteeeeaureeesesstteeesuseeeessnseeesssnsteeessssseeesassteesssssseeessnnssnesssssaeesesnsnnnns 373
sdefault-target-Width.........cooeieriieee ettt 373
:INCTeMENtAl-TNOUSE-TNIOVES eevivieiuieeiieniieeiteestteeteesttesteesseessseesseesssesseessseesseesssesssessnssseesnsnees 373
TN FIEES IO ...ttt ettt et e e ae e re e e b e e raeeabe e saeenbeeeensaee e nraeeennns 373
NOLOT-DUIST-HIME. ...ceiiiiieeieeeee ettt et e aa e s b e e se e st e esseeesseeessseaesnnes 373
MOLOT-TEAtUTE-PIEP-TIIME .iouiiiiiiiiiiecieeie ettt eeee et et e e e et eeteesteesaeessaeesseenssesnseessaessseanseennns 373
TMOLOT-INITIATION-TIITIC. ...eeeeeeiiteeeeeiteeeeeetee e ettt e e et ee e et e eeesuateeessaarteesesnsneeeesnrraeessnnsaeeessnnsnnnes 374
PECK-TILES-COBTT ..eeieeieeeeee ettt e re e st e e be e sa e e be e saeeebeessaeeennns 374
ManUAl BUFTET......cooiiiiiiiecececeee ettt st s bt e e st e e s st e s be e saesnsseeenssneeennns 374
REQUESES. ..ceeiiiieieeteee ettt et e e s ettt e e e e e se s bttt e e eeesessssssbaaaaeesesannssssnnnnnnnnsaaeens 376
ChUnkKs & CRUNK-TYPES.......iiiiieiiiniieiiteeieeteete et ste et e stessteesate e st essaesseesssassseesssessassssasssssseennns 387
(010)10100F-1 1 16 TSP SPPR 388
Start-hand-at-TNOUSEcocciiriiiiiieeieeteeeet ettt e e e st e e bt e s b e e be e s s e esseesssesnsaenssassseens 388
start-hand-at-Keypad...........cooeeriiiiiiee ettt st 389
SEL-CUISOT-POSITION. ¢ uuttierieirieeeeeiiteeeesiieeeesetteeeeesteeeeessreeeesasrreeeesaseeeessnsreeessssseeessssnsaeesssssseesennn 389
SEt-NANA-10CATION.eiiiiieeieeeie ettt e e ete e e ste e e steeessaeeesaaeessseeesssaeessseessseesssseeesnnnns 390
EXteNA-MANUAI-TEQUESES.eiiuierieeiieeieerteeteesee et et e ste et esbeessaessbaesseesssessseesasssassnsssessssseeesnns 391
TEMOVE-TNANUAI-TEQUESE. ... eeeevieeeieeeeieeeiieeesteeeiteesseeesseeeesseeessseeesseeessseesssseesssseesssssesssseesssseenns 393
SPEECH MIOAUIE......couiiiiiieiieeeeeceeee ettt ettt et e st e e be e s beebeessbeebeesssesssssaessseaesssees 395
The VOCAl WOTIA......eiiiieeiieeee ettt et sete e et ae e e aee e stee e e essnaaeeeeessnssneeeeannnns 395
OPIALION.eteeieietteeeeite ettt e ettt e e ettt e e e sttt e e seabteeeesarteeessanraeesaasaeeeesasseaeessnnsaeesssnseaeessnseeesssnnns 395
PaTAIMIELETS ...ttt ettt et e e sttt et e e e e s e bt teeeeeesesssssasbaaaeeeessessnssstaaaeeeeeeeaeeanens 396
1CHAT-PET-SYILADIE.coiiieiieieeeeec ettt e et e e e abae e ennees 396
:SUDVOCAlizZe-deteCt-delay.......ccciiriiiiiiieeee et 397
SSYILADIETALE.eueeeeiiieeieeeeeeet ettt e ettt e et e e bt e s b e et a e et e e beeesbe e taeenteesaeennns 397
VOCAl DUFTET ...ttt ettt e sbe e s ae e s beessbe e beesabeeesbaeeessaaeessaeennes 397
O U L] o 1< RN 397
REQUESTS. ..ceeeiieieete ettt et e e s ettt e e e e e s e bttt e e eeesessssasbaaaaeesesannssssnnsnnnnaaaesns 399
ChUnKs & CRUNK-LYPES.......iiiiieiiiniiiiiieeieeiteete et ste et e stessteessteesseessaesseesssesssaesssessessssasssssseesnns 400
(O10)10100F-1 1 16 TSP SPPR 401
get-articulation-time/register-articulation-time.............ccoceervierrieriieerienieee e 401
TemPOTal MOAUIE..........uiiieiieeciieeeiee ettt et e e e e e ae e e e teeesaeeessbeeessbeeessseesenseessseesnsseesnsseannnssnes 404
PATAIMELETSeeeiieiiiiee ettt ettt e e ettt e e s sttt e s s abte e e e s aseeeessasseee s e nsbeeeesnsnaeeeeesannnnnnn 404
8 N T0) Y T TR TSP 404
:time-master-Start-INCIOIMEIE.eeiirureeererrreeeerireeereeereeeeesreeeeessnseeessssreeesssnseeesssssseeesssnssseeeeees 404
83T 1 101 L PRSP 405
THIITIETIONSE. . ettt ettt ettt e ettt e e ettt e e ettt e e s e ab bt e e e e are e e e e nbt e e e e arb e e e e e bt ae e e naaeeeenaraeeeeennres 405
TEMPOTAL DUFLET.....ceviieieeeeceeee ettt et et e v e et eebe e bsesabeessbaeeenraaesnssaeennns 405
ROQUESTS. ..ottt ettt ettt e ettt e e e et e e e st e e e s e ar b e e s e anb e e e e rteeeeeeeeeeeeennanns 405
MOAifiCAtION TEQUESES.......veeeeieetieeiieeieeete et eetteeteeseteeteessaeeseessaesseessseesseesssesssesssessseenssessseensens 407
ChUnKS & CRUNK-LYPES........iiiiieiiiniieiiteeieerteeete et eete et stessteessteesseesssesseesssassseesssesssaesssesssssseesnns 407
(070)101 00 F-1 1 16 TSR PPPR 407
AAVANCEA TOPICS. . veivieeiieitieeiiirieerteste et e ste st e et e ebeesseesteesseeessessseessseesaeassessssessseeseessseesssesssesnseens 408
Extending Possible ChUunk SIOts.......ccc.cooiiiiiiiiiiieieteeeee ettt ettt 409
COMIMANGS. ... teeiveeiieeieeeie et este et et e s te et esbeesseessseeseessseeseassseessaessseasseessseesseesssssessssseesansseesnssns 409

ACT-R7 11-Jul-17 ACT-R Reference Manual

EXLENA-POSSIDIE-SIOLS. ... eeiiiieieiieieieeeeeeee ettt rre et e e et e e s tee e s beeesabee e ssee e saeeennaeeeeennns 409
CRUNK-SPOCS. ettt ettt et e et e st e st e e s st e e beessbeessaessseessaeasseesseesnsessnssaessnssaeesnsseeennes 411
COMIMANAS. ..ottt ettt et e et e et e st e e bt e s ab e e bt e e ab e e bt e s st e e bt esabeebaee e ssaeeenbaeeenreeeanneas 412
efine-ChUNK-SPEC.......ciiiiiiieiiieieeeete ettt ettt e e et e st e s beessbeeaeessteesnseeeennsaeeas 412
ChUuNK-Name-t0-ChUNK-SPEC.........ccciitieiiiiieiieeeieeeee e et e esteeesteeesaeeesaaeesaeeesaseesssseesssseessseesannnns 415
PPIINE-CHUNK-SPEC......eiiiiieiiiiiieeieecte ettt ettt ettt et esbe e st e e sbeessbessseesssseeennsseeennsseesnnsenenn 416
MAtCh-CHUNK-SPOC D ... tiiiiiieceeceeee et ste e et e e s saae e s saeesaaeeeenssnaaeaeas 416
find-matChing-ChUNKSccciiiiiiiieeeeeee ettt et e s sbe e e saneees 419
CHUNK-SPEC-SIOLS. .. e ttieeieeeieeee ettt e et e et e e e aae e s bae e stae e s baeesssaeessseesnnseeenssaaeanns 421
SlOt-IN-CHUNK-SPECP..c vttt e e sbe e st e s be e st e e bt e e sssseeesssaaesnsseaennns 422
ChUNK-SPEC-SIOt-SPEC......eiieiiieiieeeie ettt ettt e e rre e e e e e s ateestaeessbeeessseeesseessseessseeeannnns 422
slot-spec-modifier/slot-spec-slot/slot-Spec-value............coceerueerieriienieenieeiiee et 424
ChUNK-SPEC-Variable-P.....cccuviieiiiieiieeeeeeee et et s e e e ae e e aae e e saaeeeeennns 425
Chunk-spec-t0-ChUNK-def............cooriiriiiiecieeeeee ettt br e e s e e s saneaeenes 425
Verify-Single-eXPliCit-Valte........cccevieriiriiinieieeieeesee ettt sttt e s naeens 427
LESt-TOT-ClOAT-TEGUESE.eetieeeieeieeete ettt ettt ettt e e te et e sbeessaeeste e s st e ssseesssesssaesssssaesssees 428
chunk-difference-to-ChUuNK=-SPEC..........ccuiiiiiiiieeiicieeeteee ettt ve e reetr e e e e rraeesnaaeenes 429
USING BUTTETS.....eiitieeieeieee ettt ettt e e et e st e e s ae e st e e aeeesseesseesssaesaesensseeesnsseesnnns 431
COMIMANAS. ..ottt ettt ettt s e e tt e st e e bt e st e e bt e eabe e bt esab e e bt esabeebaee e ssaeeensaeeenseeeeannas 433
DUFFEI-TOA. ... ettt ettt st et s e ae et s enae s 433
QUETY-DUTTOT. ..ottt ettt et sae et e st e s bt et e estesrbeesnsaeenseeennnesnnes 435
ClEAT-DUTTET ...ttt sttt ettt st sae et et e e 438
SEt-DUFEr-CHUNK.eieiieiieece ettt sttt 440
OVerwrite-buffer-Chunk..........cooooiiiiiiii et 443
MOA-DUFFET=CHUNK......eoiiiiieiieieee ettt e s 446
SEL-DUFLEI-TAIIUTE. ..ottt sttt s 449
INOAUIE-TEQUESE......eeeereeeiieeeiteeetee et et e e ste e e te e e stteeeteeeesaeeessseeessseeansseeesseessseessseeessseesnsseesanns 452
MOAUIE-TNOA-TEQUEST.eeuviieeieeiieeieeie et et e et et e et e sieesteesatesbeesssessaesssessseesssessssaeesnsseeesnsseens 455
DU EI-SPIOA. ... eieetieieecie ettt et e e et e e be e s sa e ebe e s b e esbeessbeeaseeeesnaeeennnees 459
buffers-module-Namme............coouiriiiiiieieee ettt s 460
TEQUEST-COMPIELEA-P...eeeciiieeiieieiieeeteeeetee et e e ete e e ste e et eeeaeeestee e saeesssseeessseessaeessseesssseesnsseesanns 461
COMMPIELE-TROUESE....eeuveetieeiieeiiieeieerteeteeseesteesetesseesseesseesseessseesssessseesssesssessssessseensseessseesessseeens 462
complete-all-Duffer-TEQUESES.ccciieciieeieeie ettt ettt e re et e e eeeeaeesrae e nsaeeeenraeeas 463
complete-all-MOdUIE-TEQUESES.........c.coriirieriieeieerteete ettt et esaeesaaesbeesaeessbeessaeesaesanneeas 465
EXtending CRUNKS.c...oiiiiiieeeee ettt ettt ettt s bt et e et e s ate e st e e e s beeeenane 467
COMIMANAS. ...ttt ettt ettt s e st e e b e s st et e b e s bt e be e b e s st e bt esbesstebeeaseesaaeesaseesaseesaseesaseenas 470
EXEENA-CHUNKS. ..ottt ettt ettt e e et e e e aeee e e 470
Defining NeW MOGUIES.......ccc.iiiiiiiieieeiteeeeet ettt sttt te et e e sae et este e aeessbeesseesnsesseassnsseesanns 474
D OCUIMEITATION.eveiiiiiiieeeeiieeeeette ettt e et e e e e irte e e se bt e e e e s rrteesesbaaessenrteesesnrraeeeesssssessnnnns 474
BUTTETS. ...ttt ettt ettt et sa et e bbb et e sae e e b s 475
spreading activation WeIGht..........eoiuiiriiiiiieiee ettt st s e e 475
TEQUESE PATAITIETETS. ...ceeeeurreeeerureeererrteeeessrreeeaausreeessssseeesessseeesssssseesssssseeessssssneeeeeesessssssssnsnnsnsnns 475
QUETIES. . eeeereteeeteeeeeiittteeeeeeeeseuabttaeeeeseaesaanstaaaeeeessassansaraaaesesssssssastaaeeessssssssnseaaaeeeessnssannnsnsssesees 476
QUETY PIIINEIIIE. ..eeeeeirreereiirteeeeriteeeeeiteeeeeeereeeeesusteeeessreeeesssseeeesssaseeeesssseeesssssseessssnsteesasnsseeeeessenns 476
INULE -DUFTET ...ttt sttt st e b st e et eesabeenas 476
TEQUEST TTACKITIZ ... eeuvieeiieiiie ettt ettt ettt e e sae e st e s bt et e e beessbessse e saesnseenseessseensseesnnsseenn 476
PaTAIMELETS.eeiiiiiiiei ettt ettt e e bt e e s e et e s s eab e e e s esbb e e e e e nbaeeeeeeeeeeaans 477
TIAITIC. c..eteeiiteeette ettt e e tte e e bt e e e bee s ab e e s sb e e s nb e e s nb e e s st e e s bt e e b bt e e h et e e bb e e e b e e e e b e e e et e e e enbeeeenbeeesnnrraeeeeas 477

ACT-R7 11-Jul-17 ACT-R Reference Manual

OWIIET e eeeiiuieteeeeeesensuenraeeeeesessasassaaaeeessssssnnseseaaeessensssssnsaaseeesessesssssesaeeesessnssssesseeeesssnssnssnseeneees 477
AOCUIMENEATION. ..cuveeeiieeiteeieerite et et eeste et e ste e et essbeesteessseeseessseessaesssaessaesssessseenssessseenssessessnsseens 477
EfAUIL-VAIUE.coviiiiceecec ettt ettt e e te e ta e e beessbeenbe e s saee e ssaeeennsaeeennsaeens 477
VALIAEOSE. ettt ettt e et e s te e st e e bt e st e et e e st e et e e s at e e beeeateebeensaeesaeenseensaeannn 478
WAITHIIZ . ..eeeeutteeeuiteeeitteeette s et e s ettt e seae e e sab e e s bt e e s st e e e st e e easeeeeaseeeeasee e aseeesaseeesabeeessenssbeeesesnnsaaeeennn 478
INtErface fUNCHIOMNS.ccviiiieriieieeieeeee ettt ettt e st e st e et e e bt e ssbeesaesssae st essseesssesnsaesseenssennns 478
(a2 1 10) 1 FO OO PRSP RRUSUPN 478
TBSEE. e teeeeuereeeeeureeeeeeureeeeeasteeeeauateeeaassaeeeaasteeeeaassaeee s asaaeesesstaeee e nbaee e e naaaeeeearbaeeeentaaaaeeeeeeeanans 479

(4 123 P PSPPI 479
PATAITIETOTS. ¢.eeeuurreeeeruureeeeerreeeeaeauereeeesareeesasusteeessssaeeessnssaeesasssaeeeessssaeesssssseessssnsneesssssneeesesessssnnnns 479
QUETIES. e vveeeeeireeeeeeitteeeesteeeeesaueteessssraeesssaseeeesssaaeeessssaaessssssaaeessssaeesssssseesessssseesenssseeaeeesessennnnns 480
TRQUESES. ..eeeeeuereeeeeruteeeeeiureeeeesureeesasusteeeessereeasssstaeeessnsaeeeessssaeessssaeesssssseeesasstaeaeeeesesssssnssnsnnsssnns 480
buffer ModifiCation TEQUESES........cccuiieieeiieeieeie ettt et ere e reeereeebeesbee s bae e e svaeeenaaeas 481
NOtIfY UPON CLEATINE. ...evvieiieeiiiiieeieeteee ettt te e st e st e e e sbeesseessseessnesesnsaeessnsaeens 482
notify at the start of a new call to Tun the SYSteM........ccceecievieriieriieninieneeeee e 482
notify upon a completion of a call to run the SyStem..........cccceeeierriierieriieirieeeeeeeeeee e 483
Wwarning of an UPCOMING TEQUESE........ccueervereerieeiereereeieeseesteeteseestessesseessesssesseessesssessesssessseesns 483
S@ATCH AN OFfSOL...ccuviiiieiiieiee ettt s te et e e bt e e s sba e e ssbeeesnneaennns 484
Common Class of Modules — GOal Style........coeuerirriirieririirieeeeeeeee e 484
WItiNg MOAUIE COTE........viieieeiieiiieieeee ettt ettt ettt e ste e s teesteessbeessaesaseesssaesssseasssseesnnns 485
MOAUIE @XAMIPIES. ..cc.uvieieiieeeiieeeieeeeiee et e ettt eeetteeseteeessseeesbeeeesseeessseeessseeensseesssseesseeesessnssseeesennnses 486
COMIMANGS. . ..veeiveeiieeieeeie et et e et et e s te et e e bt esseessseeseessseeseassseessaessseasseesssessseesssssessnsssesansseesenssns 486
BEE-TNOAULE. ...ttt ettt s e bt e st e e s bt e et e e bt e s e bt e e s abteeesaneeeeaas 486
AEfINE-DUITT.....eeieiiieeeee ettt et e sttt e e e ata e e e s nsaeeennraeean 487
AEfiNE-PaATAIMELET.......ccctieeiieciiecieeeee et eete et e ete et e e teeebe e tteebeessaesseessseseseesssesseesssasessseeesnsseens 488
defiNe-MNOUIE........ccuiiiiieiieeeee ettt et e st e et e et e e ssa e s nba e e snbaaesnnaeas 490
UNAETINE-TNOAULE.......oeieeiieiieiececece ettt et e et e e eaeesabe e beessaeebeessbeeessaeesssaaesnseeas 496
B0Al-STYLO-QUETY ... eieiieeiieeieeteete ettt ettt ettt s e et e st e e saesst e e beessbeenseesasstaesasstaeeanseaennns 497
B0Al-STYLE-TEGUESE. ...ttt ettt ettt et e st e et esa e e bt e st e e bt e et e e bb e e e e abaeeas 498
create-New-buffer-ChunK...........coooiiiiiiiiie e et s 499
B0al-STYIE-TNOA-TEQUEST......ceeueiiiiiiiiiteeee ettt ettt st e st e e bt e e s sabt e e sabeeessaseeenans 500
MU -DUTETS. ..ttt ettt e bt et e et e e bt e s be e aeeesbeesseesssaensaesensseessnsseesnnes 502
(O10)10100F-1 1 16 TSP SPPR 503
StOTe-M-DUFFET-CHUNK.....cocuiiiiiiiieciieeeee et te e e s e e e ataeeas 504
Get-TN-DUFTET-ChUNKS......coctiiieieeeee et ettt e s 505
remove-M-bUffer-ChUunK...........cccooiiiiiiiie e e s 506
remove-all-Mm-buffer-ChUunks...........ccoooiiiiiiieceeeeeece et 508
ETASE-DUTTET.....ecutiieieeiiece et ettt te et e e be e s e e s te e st e essbaeeesssaeeennnaenans 509
SEArChADIE DUFTEIS.ccuiiiiiieieeeee ettt ettt e et e e bee e b e e bae s be e saeenbeensaesnsaeeennnns 511
IMUIEIPLE MO IS.....coneviiiieiieeieete ettt ettt ettt e et e et e st e esseessbeessaesssaesseesssessssesnsessseeessseesnnes 514
SYNChronous MOGEIS.........coiuiiiiiiieieee ettt ettt et e st e bt e e s abe e e s easeeesneees 515
(021011071216 F3 O SUPRURRR 517
CUITENE-TNIOAEL. ...ecetieeeiieeeieeeeiee ettt ete et e e et e e e s ae e e s aee e aaee e ateeessaeessseeesssaaassseessssessssssaesennnns 517
100] 010107 (<] £SO P SRR 518
(a2 e e w010 a =) O U TR STRRPSTPN 519

A 411 1 1010 T (<] TSP PRRRPPPRPP 520
ASYNCHIONOUS MOAEIS. ...cc.uiiiiiiiieeiieeieete ettt ettt ettt et e st e e s bt e s be e s aeeeeeaneeeeas 522
COMIMANGS. ... teeiveeiieeieeeie et este et et e s te et esbeesseessseeseessseeseassseessaessseasseessseesseesssssessssseesansseesnssns 523

ACT-R7 11-Jul-17 ACT-R Reference Manual

AEfiNE-TNELA-PIOCESS. ...cuveevieeireetieeteeeteee e eeteeeteesteestteeseessseeseesseeeseesssessssenseesssaesssesesseeeensseeens 524
INELA-PIOCESSTIAITIES.eeeeeuureeeeeurreeeaaurreessausteesssnsreeessssseeesssssseeessssseesssssseesssssseesssssneeeeessessnnns 524

el ETE-TIIELA-PIOCESS. ... vveeeureeeeieeeeteeesteeesteeesreeaseeessseeessseeessseeaasseesssseesssesaseeessseeenssesensssesssseenns 525
CUITENE-TTICLA-PIOCESS. .. evveeeeuerteeeerurreeeansurreesassreeeassseeesssssseeessssseesssssseeesssssseessssssseessssseeessssnsnsnes 526
WD A PIOCESS. ..eeevieeeiieeeiee ettt ettt e et e e et e e ste e e aeeesabeeessaeeessaeeeseeessseeensseesessssseeeenns 527
Combining synchronous and asynchronous models............ccccecuerreeriiieniinreinienieenee e eesree e 528
Other multiple MoOdel @XaMPIES..........cceuiieriieeiiieeieeeee e ere e e ee e s aae e e s enraaeee e e e aeans 529
Configuring Real Time OPeration........ccceeveeriveesiienierrieenieeseestesseesseesseessessssesssesssssseesssssesssssseesns 530
DYNAITIC BVEIIS. ..ceiiuiiiiiiiiiiieiiitee ettt et e e et e e e e ssra e e s e esbt e e s esnbaeeesesraeessensrteesesnrrteesessenes 532
COMIMANAS. ...ttt ettt et s e s bt et e s st e s ae et e sat et e e b e sst e bt esbesstebesaseesaneesaseesaseesaseesnseenas 533
MP-Teal-time-MAaNAZEIMIENL.ccoutirierieeiieete ettt et et e st e e bt e st e sabe e seesbeesatesaseessaeeesasaeeas 533
Module Activity and Brain PrediCtions..........ccecueerieriieenierieenieeieesreesieesieeaeesaeeessseeessssaessssseeesnns 538
Configure a model to record MOdule aCtiVILY......c.cecvererrierierierieniereee ettt e e 538
Commands for getting MOdUle aCHIVILY.........eccuirrieriiiirieeieerieeie ettt e ebe e e e s eeesareeseaeens 538
What counts as buffer aCtivity?........ceceeeeriirienierenteeeeeteee ettt n 539
MOAUlE-demMANd-tiIMES.......cc.eertiririerteneeie ettt ettt ettt et sae et e st e sbeesbesasesaeesseennenas 539
module-demand-fUnCHONS.cocueriiririereee ettt e e e e e e saee e e 541
module-demand-PrOPOTITiON.........cuieverriierieriieeieeree et et e eteesreesteesaeesseesseeesseeesssaeesssseeesssseens 543
BOLD IMOQUIE....cnutiiieieeteee ettt ettt ettt et e et e e s st e et e e s bt e sabeesatesbeenstesnseesnsneeenns 545
PaTAIMITETS.ceiitiiiiiie ettt ettt ettt st e s bt e s bt e s nb e e s b e e s enna e e e e e ennae 547
:D0ld-Param-MOde.........cccuiiiiiiieiieecee et e s ae e et e et e e be e e rbeeerte e e reee e nnaees 547
:b0ld-eXP & NEG-DOLA-EXP....eeiiiieiiieiiiiieeieeee ettt eb e et saraeeas 548
:bold-scale & :Neg-bold-SCale.........c.coviiriiiiiiie e 548
:bold-positive & :Dold-NEGALIVE.........ccccviriiieeiieiieieceee et e e s enes 548
TDOLA-SOLLLE ...ttt ettt sttt et e et e aeesbe e 549
TDOLAIIIC. ¢ttt st h e ettt a et et be e s b e e b e e nee s 549

1000 101) (6 (ol PR STSR 549
COMIMANAS. c... ettt ettt ettt et s e st e b s st e st et e s bt et e e abe s st e bt esbesstebesaseesaaeesaseesaseesaseesseenas 550
PIediCt-DOIA-TESPOMSE.uveeieeiieeeieeectee et e ecte e ette e e te e e s teeesbeeesabeeesaaeeesaaeessseeeeseeessseesnssaesnssneens 550
Checking and testing version infOrmation.............c.eeceerieriieenieeieenie et ee e esreesbeeessebeeesssreeesnes 553
FRATUTE LOSES.....eeeiiiiiieieiiiiee ettt ettt e st e s e bt e s e bt e e s sba e e s s sbteesenraeeesenrneeneas 553
SYSLEIM PATAIMELETS.ceeeeeurteiieiiteeeeriitteeeettteeeeerteeeeearteeessasteeesssasaeesssnsteeessssseaeessessssssnnnssssseseeeeees 553
=6l B V<) 13 0] 4 IO OO P O PP TRROPPPPPPPPPPPPN 553
1ACt-T-ATCHILECIUTE-VEISION. ..c..eeruieieiieriteteet ettt ettt ettt et sttt et e st e sae et e saeesaeeseenseesanees 554
2ACE-T-TNIAJ OT-VETSION. ... uuuueeriteeeeeereesaierteeeeesesseianreeteeeessesssnssnressesesesssssssessaseesssnsssssssseseeesssessasnnes 554
SACT-T-TTNIOT-VETSION. ...eetiiieiiiitiette ettt ettt s it e e e e e e e e e e bae e s baeessbeesembaesennraeeeeesanrnneeas 554
Version teSt COMIMANA.cceuteeriierierteerteeieeste et estee e bt e s stesbeesseesaseesseesase s bt esabeeseesssesaseesnteennseeens 554
WD -FOT-ACt-T-VOISIOM. . .eeuiiuiieitieeietertert ettt ettt s et e b st sae e bt e e et e e sabeesaneesareeeas 554
Loading EXtra COMPOMENLS.......ccc.certtirtterieeriteeteeriteeteesstesteesstesteesstesseesatesseessseeessnsaeessnseeessnseeennns 557
COMIMANAS. c... ettt ettt ettt et s e st e b s st e st et e s bt et e e abe s st e bt esbesstebesaseesaaeesaseesaseesaseesseenas 557
TEQUITE-EXITA. .. eetteeeeereerurrreeeeeesersaaurreeeeeeeesaesusretteeesssesssssssaeeeessssssssssesseessssssssssesaeessessnssssssseses 557
Adding new production COMPIlation tYPES.......cccverrvieriieriiirrierieertenieestesreesreesteesseesseeeesaseeesssseeeas 559
RETEIEIICES. ...c.vteveeieeitete ettt ettt e e st et e st e s bt et e e st esseesbe e st ebeestesaeensesasesseeseensesaeesnseennseanns 560

15

ACT-R7 11-Jul-17 ACT-R Reference Manual

Preface

This document is a work in progress. The content is accurate for the components covered, but it
contains references to sections on advanced materials which have not yet been included. The hope is

that although it is not yet complete, this working version will be of some use to ACT-R modelers.

16

ACT-R7 11-Jul-17 ACT-R Reference Manual

Introduction

ACT-R is a cognitive architecture: a theory about how human cognition works. Its constructs reflect
assumptions about human cognition which are based on numerous facts derived from psychology
experiments. It is a hybrid cognitive architecture — it has both symbolic and subsymbolic
components. Its symbolic structure is a production system and its subsymbolic structure is
represented by a set of massively parallel processes that can be summarized by a number of
mathematical equations. The subsymbolic equations control many of the symbolic processes, and are

also responsible for most learning processes in ACT-R.

Using ACT-R, researchers can create models that incorporate ACT-R's view of cognition and their
own assumptions about a particular task. These assumptions can be tested by comparing the results of
the model performing the task with the results of people doing the same task. By "results" we mean
the traditional measures of cognitive psychology: time to perform the task, accuracy in the task, and,

(more recently) neurological data such as those obtained from fMRI.

One important feature of ACT-R that distinguishes it from other theories in the field is that it allows
researchers to collect quantitative measures that can be directly compared with the quantitative

measures obtained from human participants.

ACT-R has been used successfully to create models in domains such as learning and memory,
problem solving and decision making, language and communication, perception and attention,

cognitive development, or individual differences.
Beside its applications in cognitive psychology, ACT-R has also been used in other fields including:

- human-computer interaction to produce user models that can assess different computer
interfaces

- education (cognitive tutoring systems) to "guess" the difficulties that students may have and
provide focused help

- computer-generated forces to provide cognitive agents that inhabit training environments

- neuropsychology, to interpret fMRI data.

For more detailed information, please refer to the description of the ACT-R theory in the paper "An

Integrated Theory of the Mind" (2004) which is available from the ACT-R web site at: http:/act-

17

http://act-r.psy.cmu.edu/papers/403/IntegratedTheory.pdf

ACT-R7 11-Jul-17 ACT-R Reference Manual

r.psy.cmu.edu/papers/403/IntegratedTheory.pdf, or to the book “How Can the Human Mind Occur in

the Physical Universe?”.

18

http://act-r.psy.cmu.edu/papers/403/IntegratedTheory.pdf

ACT-R7 11-Jul-17 ACT-R Reference Manual

Document Overview

This manual is a guide and reference for the ACT-R 7 software implementation. It is not meant to be
a tutorial or a textbook on the ACT-R theory or a “how to” on writing models using ACT-R. The
ACT-R Tutorial, which accompanies the software, is designed to introduce the theory and techniques
for modeling with ACT-R. This document is intended to be a compliment to the tutorial, and it
describes the components of the implementation, how they are connected, the commands available to

the user, and some recommended practices for use.

This manual is a reference for the ACT-R 7 implementation only. It does not describe mechanisms
from older implementations nor does it thoroughly discuss how commands may differ from similar

commands in previous versions.

19

ACT-R7 11-Jul-17 ACT-R Reference Manual

General Software Description

ACT-R 7 (hereafter referred to only as ACT-R) is written in Common Lisp. It was implemented and

tested using Allegro Common Lisp by Franz Inc. http:/www.franz.com/, Clozure CL

http://www.clozure.com/clozurecl.html, LispWorks by LispWorks Ltd http://www.lispworks.com,
CMUCL http://www.cons.org/cmucl/, CLISP http://www.clisp.org, SBCL

http://sbcl.sourceforge.net/, ABCL http://common-lisp.net/project/armedbear/, and Embeddable
Common-Lisp https://common-lisp.net/project/ecl/. It should run in any ANSI compliant
implementation of Common Lisp, but has only been tested with those listed above. If you have

problems loading or running ACT-R in any Lisp please contact Dan Bothell

(db30@andrew.cmu.edu) with the details. We also make the ACT-R system available as a
standalone application for those that do not have Lisp software. The standalone versions include a
command line only version of Clozure CL and thus are as complete a system as one has when using
the ACT-R source code, but it may not be as easy to use as a Lisp which has a nice IDE or which is
used through an interface like SLIME, SLIMV, or with the Inferior Lisp mode of Emacs.

It is not necessary for one to be a Lisp programmer to be able to use ACT-R for basic modeling work.
However, because ACT-R is running in Lisp, some basic understanding of how to program in Lisp
can be helpful, and for those looking to extend the capabilities of a model it will be essential. An
introduction to Lisp is beyond the scope of this document, but there are many introductory Lisp
books available as well as many online resources. Two online resources where you can find

additional information about Lisp are The Association of Lisp Users, http://www.alu.org/alu/home,

and CLiki, the Common Lisp wiki, http://www.cliki.net/.

The primary means of interacting with ACT-R is through the Lisp read-eval-print loop - a command
line interface. All of the commands described in this manual are available through that interface, and
the manual assumes that that is how one will be using the system. However, there is also a set of GUI
tools available (included with the main distribution) called the ACT-R Environment. The ACT-R
Environment provides an alternate interface to a subset of the commands and is described in its own
manual. The ACT-R Environment is useful for beginners, and because it uses separate windows to

display the information, can be helpful to coordinate viewing model data for advanced users as well.

Case sensitivity

20

http://www.cliki.net/
http://www.alu.org/alu/home
mailto:db30@andrew.cmu.edu
https://common-lisp.net/project/ecl/
http://common-lisp.net/project/armedbear/
http://sbcl.sourceforge.net/
http://www.clisp.org/
http://www.cons.org/cmucl/
http://www.lispworks.com/
http://www.clozure.com/clozurecl.html
http://www.franz.com/

ACT-R7 11-Jul-17 ACT-R Reference Manual

Commands and names in ACT-R are not case-sensitive. The ACT-R software should only be used
with an ANSI compliant case insensitive Lisp system. A Lisp like the modern mode provided with
ACL may result in problems when trying to use ACT-R and a warning will be displayed if the

software is loaded into such a system to indicate that problems could occur.

Functions vs. Macros

Many ACT-R user commands are implemented as macros which do not evaluate their arguments so
that one does not have to quote the arguments. This makes it generally easier to work with the ACT-
R software without having to worry as much about Lisp syntax, but does mean that if one wants to
use ACT-R commands programmatically more effort is required to either explicitly evaluate the
macro command with its arguments or to use a corresponding ACT-R function. Most of the macro
based ACT-R commands also have a corresponding function which will have the same name, but
with a —fct appended to it e.g. add-dm and add-dm-fct. The functions occasionally require a slightly
different specification of the parameters relative to the macro, for example requiring that a list of
items be provided instead of just specifying an arbitrary number of items. A command’s description

and examples will indicate any such differences.

Compatibility issues

While the software should run in any ANSI compliant Common Lisp, there are occasionally minor
issues with particular Lisp versions and there are patches in the ACT-R code to address those. Those
changes are described here because it may affect other Lisp code which one writes in those Lisps
while using ACT-R.

Three such issues occur with SBCL. The first is that SBCL takes a very strict interpretation of how
defconstant should operate which prevents some code which contains defconstant calls from being
compiled and then loaded within the same instance of SBCL. To avoid that problem the ACT-R code
shadows the defconstant macro in SBCL with a macro which calls cl::defconstant and wraps it with
an ignore-errors when the variable specified is already bound. The second is that the internal SBCL
code already defines a function called reset. To fix that the ACT-R code just shadows the reset
function. The final patch for SBCL occurs for the Windows version of the directory function because
it does not handle wildcard characters in the same way as other Lisps (or even other OS versions of
SBCL). Again, to address this the default function is shadowed with one in the ACT-R code which

handles things as needed.

21

ACT-R7 11-Jul-17 ACT-R Reference Manual

There is one such issue with CLisp because it has a function named execute defined internally. The

fix for that is to shadow the internal function with the one defined in ACT-R.

22

ACT-R7 11-Jul-17 ACT-R Reference Manual

Notations in the Documentation

In the description of some commands it will describe a parameter or return value as a “generalized
boolean”. What that means is that the value is used to represent a truth value — either true/successful
or false/failure. If the value is the symbol nil then it represents false and all other values represent
true. When a generalized boolean is returned by one of the commands, one should not make any
assumptions about the returned value for the true case. Sometimes the true value may look like it
provides additional information, but if that is not specified in the command’s description then it is not

guaranteed to hold for all cases or across updates to the command.

Command Syntax

When describing a command’s syntax the following conventions will be used:

items appearing in bold are to be entered verbatim

- items appearing in italics take user-supplied values

- items enclosed in {curly braces} are optional

- *indicates that any number of items may be supplied

-+ indicates that one or more items may be supplied

- | indicates a choice between options which are enclosed in [square brackets]

- (parentheses) denote that the enclosed items are to be in a list

- a pair of items enclosed in <angle brackets> denote a cons cell with the first the car and the
second the cdr

- -> indicates that calling the command on the left of the "arrow" will return the item to the

right of the "arrow"

::= indicates that the item on the left of that symbol is of the form given by the expression on
the right
Examples

When examples are provided for the commands they are shown as if they have been evaluated at a
Lisp prompt. The prompt that is shown prior to the command indicates additional information about

the example. There are three types of prompts that are used in the examples:

- A prompt with just the character >’ indicates that it is an individual example — independent

of those preceding or following it.

23

ACT-R7 11-Jul-17 ACT-R Reference Manual

- A prompt with a number followed by ‘>, for example “2>” means that the example is part of
a sequence of calls which were evaluated and the result depends on the preceding examples.
For any given sequence of calls in an example the numbering will start at 1 and increase by 1
with each new example in the sequence.

- A prompt with the letter E preceding the >’, “E>”, indicates that this is an example which is
either incorrect or was evaluated in a context where the call results in an error or warning.

This is done to show examples of the warnings and errors that can occur.

24

ACT-R7 11-Jul-17 ACT-R Reference Manual

ACT-R Software Distribution

There are two primary means of acquiring the ACT-R software. The first is from the ACT-R web

site http:/act-r.psy.cmu.edu. The software page of the web site has the most recently released

version of ACT-R available as either a .zip of the source files or built into a standalone application
for Windows or Mac OS. The released versions have been tested against the reference models and
the output of the models should be consistent with respect to what is printed in the tutorial. New
releases are made when there are significant updates or patches and typically happen two or three
times a year. The other method for acquiring the software is via version control software called

Subversion. More information on Subversion can be found at http://subversion.apache.org/. The

ACT-R archive is located at <svn://act-r.psy.cmu.edu/actr7>. The Subversion archive contains the
most up to date version of ACT-R, and often contains minor changes or bug fixes not yet available in
a released version. Note however that the minor changes made to the sources available through
Subversion are not all tested thoroughly against the tutorial models and there may be discrepancies

with respect to the tutorial documentation until the next released version.

25

http://subversion.apache.org/
http://act-r.psy.cmu.edu/

ACT-R7 11-Jul-17 ACT-R Reference Manual

Distribution Contents

The ACT-R distribution consists of: the Lisp source code files which implement ACT-R, the ACT-R
Environment application along with its corresponding Tcl/Tk source code files, the ACT-R Tutorial
unit texts and models, documentation for the software and tools, examples showing some advanced
capabilities not covered in the tutorial, and some extensions of the system which are not included by
default. All of the files are distributed in a single directory, called actr7, which contains two files and
several subdirectories. The files are load-act-r.lisp which is the file that should be loaded to load the
main ACT-R software (see Loading and Running the ACT-R System) and a file called readme.txt
which contains some information about the distributed files. Here is a listing of the subdirectories

along with a general description of their purpose and some of their specific contents.

Subdirectories

commands
This directory contains the Lisp code for user commands for some of the central modules. One

feature of this directory is that any file with a .lisp extension placed into this folder will be compiled

and loaded with the rest of the system.

core-modules
This directory contains the Lisp code that defines the modules which instantiate the main ACT-R

system described in the theory. They are assumed to always be available, but are not absolutely
required. The base modules are Procedural, Declarative, Goal, Vision, Auditory, Motor, Speech and

Imaginal and are all described in this manual.

devices
This directory contains subdirectories which each contain two files. Those files contain the Lisp code

which control the interaction between an ACT-R device and some particular Lisp’s GUI components
(as well as a generic virtual system which simulates a GUI that is available for all Lisps) and a set of
tools for interacting and creating interfaces called the ACT-R GUI interface (AGI). A device is

described later in this manual and the AGI has a separate manual.

docs
This directory contains the documentation files for ACT-R. They include details on using the system,

as well as documents describing particular features. Most are either Microsoft Word documents (.doc

26

ACT-R7 11-Jul-17 ACT-R Reference Manual

files) or PDFs depending on how the files were acquired (the Subversion repository holds the .docs
but they are converted to .pdf for the releases found on the website). Here are descriptions of some of

the files found there:

- AGI
0 The manual for the AGI tools
- compilation
0 A document describing the details of how the production compilation mechanism
works.
- compilation.xls
0 An Excel Spreadsheet that is used to define the operation of the production
compilation mechanism for different buffer styles.
- device-interaction-issues
0 A document indicating some issues to be aware of when building and working with
devices in ACT-R which connect to real GUI items or external systems.
- differences-between-6-and-7
0 Slides covering the most significant changes between ACT-R 6.0 and ACT-R 7.
- EnvironmentManual
0 A manual for the GUI tools provided by the ACT-R Environment application.
- extending-actr
0 A set of slides which describe mechanisms through which the ACT-R software may be
extended with a focus on devices and modules which was presented at the ICCM
tutorial in 2007.
- LGPL.txt
0 The Lesser Gnu Public License text. That is the license under which the ACT-R
software is distributed.
- new-utility
0 A document describing the current utility learning mechanism which replaced the
prior “PG-C” mechanism in 2006.
- QuickStart.txt
0 A text file with instructions on how to load ACT-R and start the ACT-R Environment.
- reference-manual
0 This document.

- template.lisp

27

ACT-R7 11-Jul-17 ACT-R Reference Manual

0 A lisp file which contains a documentation header, the LGPL license notice, and some
switches used for packaging the ACT-R source code that is a recommended starting

point for writing any new modules or additions which are for general use with ACT-R.

environment
The environment directory contains all of the files necessary for using the ACT-R Environment.

There are several items in this directory: Lisp files that define the tools and the communication
between ACT-R and the Environment, the Environment applications for both Windows and Mac OS

X, and a GUI directory that contains the Tcl/Tk files used by the Environment application.

examples
Several Lisp files and directories which contain examples of using more advanced components of the

software like multiple models, visual tracking, creating new devices, and adding new modules.

extras
The extras directory contains additional modules and other files that have been contributed to the

distribution, but which are not part of the default ACT-R system and are not loaded by default. Each
addition is included in its own subdirectory and directions for using the extension should be found
within the files themselves or the documentation which accompanies them. For most of the extras
there is a command which can be added to a model file to load the file(s) necessary to use that extra

automatcally described in the loading extra components section.

framework
The framework directory contains the Lisp files that define the software framework upon which the

ACT-R system is based. The software framework is a basic discrete event simulation system that

was designed to implement ACT-R, but is not based on the theory of the ACT-R.

modules
The modules directory contains Lisp files which implement additional modules which are loaded into

the default ACT-R system. As with the commands directory, any files with a .lisp name placed into

this directory will be loaded automatically when ACT-R is loaded.

other-files
This directory contains Lisp files that add additional tools for generating BOLD response data and

providing some of the graphic information for the ACT-R Environment. Like the commands and

28

ACT-R7 11-Jul-17 ACT-R Reference Manual

modules directories, any file with a .lisp extension placed into this directory will be automatically

loaded with the system.

support
The support directory contains Lisp files that may be needed for certain Lisp implementations, by

certain modules of the system, or for particular extensions or tools. These files are loaded when
required by other files. Files with a .lisp name placed here can be compiled and loaded using the

require-compiled command.

tools
The tools directory contains Lisp files that define user functions and modeling tools for ACT-R. Like

the commands and modules directories, all files with a .lisp name placed into this folder will be

automatically loaded.

tutorial
The tutorial directory contains several subdirectories. Each one holds the files for a unit of the ACT-

R Tutorial. Each unit consists of a text on a particular aspect of ACT-R, one or more demonstration
models, a partial model which provides a starting point for an assignment, a text describing the Lisp
code in the provided models, and in some units an additional text with details on how to debug

models along with a broken model to work through debugging.

user-loads
The user-loads directory contains no files in the distribution. It is provided as a place for users to add

files which will be loaded automatically after ACT-R has finished loading and initializing. All of the
files in the user-loads directory with a .lisp name will be compiled and loaded in order based on the
file names sorted using the Lisp string< function. Because this occurs after the system has been

initialized it is safe to put a model file into this directory.

29

ACT-R7 11-Jul-17 ACT-R Reference Manual

Loading and Running the ACT-R System

To start ACT-R all one needs to do is load the load-act-r.lisp file into a supported Lisp system. That
will load all of the necessary files for ACT-R. The file should only be loaded into a given Lisp

session once.

The files are compiled before loading and that will usually generate a lot of warnings from the
compiler. Those warnings can be safely ignored. The files are only compiled the first time you load
ACT-R. The compiled files are saved with the source files and on subsequent loadings there is no
need to recompile everything. Thus, on all loadings after the first one, it should load faster and
produce fewer warnings, but there may be times when you need to have files compiled again and that

is described in a section below.

ACT-R version details

Once the loading of the ACT-R code is complete, you will see a print out describing the current
version of ACT-R that has been loaded. That is indicated by the line that starts with Software

followed by a version description. That will take one of two general forms:

ACT-R 7 Version Information:
Software 1 7.0-<internal>

or

HHHHBHHBHHHHHHBHHHBHH R H BB R A
ACT-R 7 Version Information:
Software 1 7.0-<1930:2015-12-21>

All of the versions will start with 7 because that indicates the current theoretical architecture (it is
effectively the name much like the X (ten) in the name of the current Apple Macintosh operating
system). That will be followed by one or two digits (separated by periods) indicating the specific
software version, and then a hyphen and a tag in angle brackets which describes where that code
came from. If the tag says “internal” that means that it was not a relased version of the software and
it was likely checked out from the repository. For an official release of the software the tag will
indicate which specific repository revision it contains followed by a colon and then the date on which
the release occurred (the above example indicating that it is repository revision 1930 and was

released on December 21st, 2015). If it is a standalone version there will be an additional .w or .m

30

ACT-R7 11-Jul-17 ACT-R Reference Manual

after the revision number indicating whether it was built for the Windows or Macintosh operating

system.

The digits representing the software version will be updated when a significant change (not routine
maintenance or bug fixes) to the software occurs. A significant change which does not affect the
operation of existing models (which would usually be an addition of a new capabilty or extension of
an existing one) will result in an increment of the second version number or setting the second
version number to 1 if it doesn’t currently have one (like those above). A change which may affect

the operation of existing models will cause the first version number to be incremented.

That means models written for version 7.A.B should run the same in any version 7.A.C where C is
greater than or equal to B (where B is considered to be 0 if it does not exist) i.e. within a given major
version (the A) models can be expected to run the same in any version after the one in which they
were initially created but not necessarily those before because those prior versions may be lacking in
some new feature or capability. Whereas a model written for major version A is not guaranteed to

run the same in any different major version — it might still work the same but that is not guaranteed.

In a later section there are additional details on how one can test the current version information if
needed, and it also describes a command which can be placed into a model file to warn users if the
version of ACT-R being used may not be compatible with the version for which the model was

written.

There is one minor note about the early releases of ACT-R 7. They did not have exactly the same
format for the version number as described here. For those releases the repository revision number
was outside of the angle brackets and looks like it is the minor version number, like this: 7.0.1930-
<2015-12-21>. For those relesases there is no minor version number and they should be considered

as 7.0-<...>.

Module versions

After the ACT-R version has been printed there will be a listing of all the modules that are defined
for ACT-R along with their versions and brief descriptions. That will look like this:

AGI 2.0 Module based manager for AGI windows
AUDIO : 4.0 A module which gives the model an auditory attentional system
BOLD 3.0 A module to produce BOLD response predictions from buffer request activity.

31

ACT-R7 11-Jul-17 ACT-R Reference Manual

The version information for a module is not as structured as the overall ACT-R version, but generally
a change in the major version number for a module indicates a significant change that likely affects
the compatibilty with existing models/code (and would trigger a corresponding change in the ACT-R
version). Whereas a minor version number change can occur for many reasons, but typically does

not affect the existing functionality of the module.

The module details will be followed by a line that looks like this:

#i#H##### Loading of ACT-R 7 is complete ########H#H

At that point, all of the ACT-R code has been loaded and if there are no user provided files to be

loaded the software is ready to use.

User Load files

If there are any files in the user-loads directory then there will be at least two additional lines

displayed. The first will be:

#H###H##H Loading user files ########H

That will be followed by any information displayed while the files in that directory are compiled and

loaded. After all of those files have been loaded this will then be displayed:

#Hpuns#s# User files loaded #####H#HAH

The software is then ready to use.

Compiler Optimizations

Normally, when ACT-R compiles its files it uses the current optimization settings of the Lisp.
However, if :actr-fast is on the features list when load-act-r.lisp is loaded it will apply these settings
before compiling the ACT-R sources:

(proclaim '(optimize (speed 3) (safety 1) (space 0) (debug 0))))

and will remain after the loading is finished. With those settings ACT-R should run faster, but how
much faster will vary from Lisp to Lisp. If the ACT-R source files were compiled without the switch

then setting the switch and recompiling them will be required to see the improved performance.

Logical Host

32

ACT-R7 11-Jul-17 ACT-R Reference Manual

As part of loading ACT-R a logical host of “ACT-R” is defined which maps to the directory where
the load-act-r.lisp file is located. That logical host is available for use by the user. It can be useful
when working with the tutorial in a command-line only Lisp to load the tutorial models. Here is an
example which will load the count model from unitl (assuming that one has not moved the tutorial
files):

> (load "ACT-R:tutorial;unitl;count.lisp")

; Loading C:\Users\db30\Desktop\actr7\tutorial\uniti\count.lisp
T

Note however that some Lisps will not allow a logical pathname to be passed to commands like load
and one will have to translate that into a physical pathname using translate-logical-pathname:
> (load (translate-logical-pathname "ACT-R:tutorial;unitl;count.lisp"))

; Loading C:\Users\db30\Desktop\actr7\tutorial\uniti\count.lisp
T

or instead of explicitly translating the pathname, the command actr-load may be used which performs

the two steps indicated in the last example directly i.e. this:

> (actr-load "ACT-R:tutorial;unitl;count.lisp")

is equivalent to the previous example and will work in all Lisps.

Load order

For those considering adding extensions or just having files loaded automatically, the files and

directories are loaded in the following order:

- framework directory files in a predefined order
- core-modules directory files in a predefined order
- all .lisp files from the commands directory in no particular order
- the virtual device files
- any Lisp specific device files
- all .lisp files from the modules directory in no particular order
- all .lisp files from the tools directory in no particular order
0 the ACT-R Environment files are loaded as part of this step
- all .lisp files from the other-files directory in no particular order
- all .lisp files from the user-loads directory in order based on file name sorted using the Lisp

string< function.

33

ACT-R7 11-Jul-17 ACT-R Reference Manual
Recompiling

If one of the source files in the distribution changes (the date on the .lisp file is newer than the date on
the compiled version of that file) then it will automatically be recompiled the next time it is loaded.
However, there may be times when you need to force all of the ACT-R files to be recompiled. For
instance, if you upgrade or change your Lisp system you will likely need to recompile everything.
Also, if you get an update to your current set of ACT-R files it is often best to force a recompile the
next time you load it because there may be some interdependencies that will require more than just

the updated file to be recompiled.

To force ACT-R to recompile all of its files you should add the :actr-recompile switch to the features

list which can be done with this call before loading the load-act-r.lisp file:

(push :actr-recompile *features*)

Packaging

By default, the ACT-R files are loaded into which ever package is current at the time they are loaded
i.e. there are no package specifications. However, there are two features which can be set that will
change the package into which ACT-R is loaded. If the ACT-R files have been compiled previously,
then it will be necessary to also force the recompiling of the sources when changing the package into
which they are loaded. Note that these options may not work properly in all systems — please contact

Dan if you have any problems or questions with using the packaged ACT-R code.

Clean
The first option is to add the :clean-actr switch to the features list before loading. That will force the

files to be loaded into the :cl-user package in most Lisps (the only exception is that in ACL with the

IDE it will load them into the :cg-user package).

Packaged
The other option is to add the :packaged-actr switch to the features list. That will create a new

package called :act-r when the load-act-r.lisp file is loaded and the ACT-R code will be loaded into
that package. Nothing is exported from that package by the ACT-R code.

Requiring files

34

ACT-R7 11-Jul-17 ACT-R Reference Manual

Files placed into the support directory of the distribution can be compiled and loaded when needed by
using an ACT-R extension of the Lisp require function. The function is named require-compiled and
it takes two parameters. The first is the Lisp module name string as would be passed to the require
function (note this is not the same as an ACT-R module name) and the second is the pathname to the
file to be loaded. Since the pathname can be anywhere this is not technically specific to the support
directory of ACT-R, but of the ACT-R source code files only those in the support directory use the
provide function to specify a module name for use with the requiring. There is another logical host
created when ACT-R is loaded called “ACT-R-support” which refers to the support directory of the
current ACT-R source code tree. Here is an example which would compile and load the central-

parameters.lisp file from the support directory of the distribution:

(require-compiled "CENTRAL-PARAMETERS" "ACT-R-support:central-parameters")

The reason for using require-compiled compared to just loading the file directly is that require-
compiled will only compile and load the file if it has not been loaded previously. That way one can
specify that a particular support file is necessary in multiple files and only the first one will actually

compile and load it.

35

ACT-R7 11-Jul-17 ACT-R Reference Manual

Overall Software Design

The ACT-R software is composed of two major components. From the perspective of the user, these
components operate together seamlessly to form the ACT-R system, but it is worth noting from the

perspective of the theory of ACT-R that there are really two separate pieces to the system.

The first is a discrete event simulation system which controls the timing and coordination of
operations within ACT-R. It was designed to provide all of the support necessary to implement the
current ACT-R theory, but is not itself a part of the theory. It defines the abstractions and tools which

underlie the operations of the system, namely a meta-process, a model, a module, a buffer, a chunk

and a parameter. Some of those items are components of the theory of ACT-R, for example buffers

and chunks, but their specific implementation in the software is not prescribed by the theory.

The other component is the set of modules that instantiate the theory of ACT-R. These modules
contain the components that are used to model human cognition as described in the paper “Integrated
Theory of the Mind” and the book “How Can the Human Mind Occur in the Physical Universe?”.
The actions and timing profiles generated by these modules when a model is run are the actual
predictions of the theory. Anything else, for instance the actual time it takes the software to run the
simulation, is not based on the theory. Most of the time, the distinction is immaterial to the user, but
sometimes it is important to distinguish between what is a psychological claim of a model and what is

just a consequence of the current software implementation.

36

ACT-R7 11-Jul-17 ACT-R Reference Manual

Model files

Generally, when working with ACT-R one will generate text files that contain the description of a
model along with any necessary control and support code which will be loaded into a Lisp that has
the ACT-R system already loaded. This is not the only way to develop models in ACT-R, but is by

far the most typical usage.

An ACT-R model file is a text file of Lisp source code. It can be generated in any text editor.
Because it will be loaded into Lisp it must be syntactically correct Lisp code. Thus, it can be useful to
use an editor that helps with that. The editors built into the GUI based Lisp systems (like CCL on a
Mac, LispWorks, or ACL with its IDE) are good choices if using such a Lisp, but if not, an editor like

Emacs which has automatic Lisp indenting and parentheses matching will also help.

A typical model file will have the following structure:

(clear-all)
{Lisp functions for presenting an experiment, data collection or other support needs}
(define-model model-name

(sgp {parameter value}*)

{chunk-type definitions}

{initial chunks are defined}

{productions are specified}

{any additional model set-up commands}

{additional model parameter settings}

The ACT-R commands shown above and the model components referenced (chunk-types, chunks,
and productions) will be described in detail in later sections of this document, but for now here is a

basic description of what the components of the model file do.

- (clear-all)
The clear-all command completely resets ACT-R’s state to a clean slate. This does not have to be
the first thing in the file, but it should occur before defining any models.

- {Lisp functions for presenting an experiment, data collection or other support needs}
The Lisp commands that define any experiment for the model or other code typically come before
the ACT-R model description. The amount and nature of the code can vary significantly between
models.

- (define-model model-name

37

ACT-R7

11-Jul-17 ACT-R Reference Manual

The define-model command is used to specify exactly what constitutes the components of the
model and to give it a name for reference. Everything between the name specified for the model
and the closing parenthesis of this command are considered the model’s initial configuration. The
commands are processed sequentially, thus the order of things does matter.

- (sgp {parameter value}*)

The sgp command is used to set parameters that control the general operation of the system. This
is typically the first command in the model’s definition so that all of the conditions are properly
set before anything else occurs.

- {chunk-type definitions}

Descriptions are given for declaring the configuration of slots that will be used in the chunks in the
model.

- {initial chunks are defined}

The initial chunks for the model are created and typically placed into the model’s declarative
memory.

- {productions are specified}

The productions that control how the model will act are written here.

- {any additional model set-up commands}

Any other commands necessary to configure components of the model or modules are specified.

- {additional model parameter settings}

Parameters for chunks and productions specified above are set.

The define-model call is ended with a closing parenthesis.

38

ACT-R7 11-Jul-17 ACT-R Reference Manual

Meta-process

The main component of the simulation system is called a meta-process. It is essentially the clock and
event coordinator for the system. It maintains a schedule of events that the other components have
initiated and executes them at the desired time. It also maintains a list of events that are waiting for
specific events to occur before they are added to the main event queue. It is not part of the ACT-R

theory — it is purely a component of the software system.

It is possible to have more than one meta-process defined in a running ACT-R system. Doing so
would allow one to have multiple asynchronous models. That is an advanced topic discussed in a
later section of the manual. Typically there is only one meta-process (the default that exists when the
system is loaded) and users will not need to create any others. For most users, the meta-process is

invisible — it runs the system behind the scene.

Regardless of how many meta-processes are defined, only one is accessible at any given time. This is
referred to as the current meta-process. Only the current meta-process will be manipulated by the
commands. If there is only one meta-process, then it will always be the current meta-process. If
there is more than one meta-process defined, then it is up to the modeler to specify which is current

before executing any commands.

Commands

clear-all

Syntax:

clear-all -> nil
Arguments and Values:
none

Description:

Clear-all restores ACT-R to its initial state. It removes all meta-processes except for the default
meta-process and all attributes of the default meta-process are set to their initial values: no model
defined, the time is set to 0.0, the event queue is cleared, waiting events are removed and the event

hooks are cleared.

39

ACT-R7 11-Jul-17 ACT-R Reference Manual
In addition, the current binding of the Lisp variable *load-truename* is recorded for use by the reload

command.

Typically usage is to place clear-all at the top of a model file to ensure that when the model is defined

it starts in a clean system and that the reload command can be used.

Examples:

> (clear-all)
NIL

reset

Syntax:

reset -> [meta-process-name | nil]

Arguments and Values:

meta-process-name ::= a symbol which is the name of the meta-process that was reset
Description:

The reset command is similar to clear-all except that it only affects the current meta-process and
instead of removing all currently defined models they are restored to their initial conditions.
Specifically, for the current meta-process the time is set to 0.0, the event queue is cleared, all waiting
events are removed and then each of the currently defined models is reset. The details of what

happens when a model is reset are described in the models section. The name of the meta-process

which was reset is returned.

There are also two special situations which can result when there is a single empty model in the
current meta-process. If the empty model was loaded from a file, then a warning is displayed and
that file is reloaded (using the reload command). If the empty model was not loaded from a file then

the call to reset has no effect on the system and a warning is displayed to indicate that.
If there is no current meta-process, then a warning is displayed and nil is returned.
Examples:

> (reset)
DEFAULT

40

ACT-R7 11-Jul-17 ACT-R Reference Manual

> (reset)

#|Warning: Resetting an empty model results in a reload |#

; Loading C:\model.cl

DEFAULT

> (reset)

#|Warning: CANNOT RESET an empty model that wasn't loaded. |#
#|Warning: RESET had no effect! |#

DEFAULT

E> (reset)

#|Warning: reset called with no current meta-process. |#
NIL

reload

Syntax:

reload {compile?} -> [load-return-value | :none]
Arguments and Values:

compile? ::= a generalized boolean indicating whether or not to compile the file
load-return-value ::= a generalized boolean returned from calling the load command

Description:

The reload command calls the Lisp load command to load the file recorded during the last call to the
clear-all command. If the compile? parameter is specified with a true value and that file has a type of
“lisp” it will be compiled before loading. The return value from reload is the value returned from the
call to load which is a generalized boolean that indicates true for a successful load or false if there

wadsS an error.

If the compile? parameter is specified as true but the recorded file is not of type “lisp” then it is not

compiled. A warning is printed and the file is just loaded.
If the recorded value from clear-all is nil then no file is loaded and the keyword :nene is returned.

Additional information may be printed by the call to load depending on the Lisp implementation and

current settings.

Reload is essentially a shortcut for reloading a model file that has been edited to incorporate those

changes.

Examples:

41

ACT-R7 11-Jul-17 ACT-R Reference Manual

> (reload)
; Loading C:\model.lisp
T

> (reload t)

;3 Compiling file C:\model.lisp
;75 Writing fasl file C:\model.fasl
;1 Fasl write complete

; Fast loading C:\model.fasl

T

> (reload t)

#|Warning: To use the compile option the pathname must have type lisp. |#
; Loading C:\model. txt

T

E> (reload)
#|Warning: No load file recorded |#
:NONE

mp-time

Syntax:

mp-time -> [current-time | nil]

Arguments and Values:

current-time ::= a number representing time in seconds
Description:

Mp-time returns the current time of the current meta-process in seconds.
If there is no current meta-process, then a warning is displayed and nil is returned.

This is generally used for two purposes, either debugging a model or collecting response time data

from a model.

Examples:

> (mp-time)
0.3

E> (mp-time)
#|Warning: mp-time called with no current meta-process. |#
NIL

mp-time-ms

Syntax:

42

ACT-R7 11-Jul-17 ACT-R Reference Manual

mp-time-ms -> [current-time | nil]

Arguments and Values:

current-time ::= a number representing time in milliseconds

Description:

Mp-time-ms returns the current time of the current meta-process like mp-time. The difference is that
mp-time-ms returns the time as an integer count of milliseconds.

If there is no current meta-process, then a warning is displayed and nil is returned.

Examples:

> (mp-time-ms)
300

E> (mp-time-ms)

#|Warning: mp-time-ms called with no current meta-process. |#
NIL

43

ACT-R7 11-Jul-17 ACT-R Reference Manual

Events

As indicated in the description of the meta-process, the simulation system for ACT-R is implemented
using discrete events. The system runs by executing a sequence of events each occurring at a specific
simulated time. Effectively, every action of the model is performed by an event in the system, and

the model’s trace when it runs is just a printing of those events as they occur.

Basically, each event consists of the time at which it should occur, an indication of which, if any,
module made the request, and an action to perform. There are some additional details and
capabilities of events (like the ability to have them wait for some other action to occur instead of

having a pre-specified time) and those will be described in the section on creating events. This

section will only describe the commands for inspecting the events which exist in the current meta-

process.

Commands

mp-show-queue

Syntax:

mp-show-queue {indicate-traced} -> [event-count | nil]
Arguments and Values:

indicate-traced ::= a generalized boolean indicating whether to mark events that will occur in the trace
event-count ::= a number indicating how many items are in the event queue

Description:

Mp-show-queue prints all of the events that are on the event queue of the current meta-process to the
Lisp stream *standard-output* in the order that they will be executed. If the indicate-traced value is

sk

provided and is non-nil then the character will be displayed before the events which will be

displayed in the trace with the current parameter settings. It returns the number of events in the

queue.
If there is no current meta-process then a warning is displayed and nil is returned.

This command can be useful for debugging a model as well as when working on creating modules

and experiments which generate events.

44

ACT-R7 11-Jul-17 ACT-R Reference Manual

Examples:

> (mp-show-queue)
Events in the queue:

0.000 NONE CHECK-FOR-ESC-NIL #S(CENTRAL-PARAMETERS :ESC T :0L T :ER NIL)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL

0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000 GOAL CLEAR-DELAYED-GOAL

4

> (mp-show-queue t)
Events in the queue:

0.000 NONE CHECK-FOR-ESC-NIL #S(CENTRAL-PARAMETERS :ESC T :0L T :ER NIL)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL

0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000 GOAL CLEAR-DELAYED-GOAL

4

E> (mp-show-queue)
#|Warning: mp-show-queue called with no current meta-process. |#
NIL

mp-queue-count

Syntax:

mp-queue-count -> [event-count | nil]

Arguments and Values:

event-count ::= a number indicating how many items are in the event queue
Description:

Mp-queue-count returns the number of events which are in the queue of the current meta-process. If

there is no current meta-process then a warning is displayed and nil is returned.

Examples:

> (mp-queue-count)
4

E> (mp-queue-count)
#|Warning: mp-show-queue called with no current meta-process. |#
NIL

mp-show-waiting

Syntax:

mp-show-waiting -> [event-count | nil]

45

ACT-R7 11-Jul-17 ACT-R Reference Manual
Arguments and Values:

event-count ::= a number indicating how many items are in the waiting queue
Description:

Mp-show-waiting prints all of the events that are on the waiting queue of the current meta-process to
the Lisp stream *standard-output* along with the description of the condition for which it is waiting
to occur to be added to the main event queue. The first element in the waiting description indicates
whether it is waiting for any event or a particular module. If it is waiting on a module then the
second element indicates which module, and the last element of the description indicates whether a
maintenance event will satisfy the condition. It returns the number of events that are in the waiting

queue.
If there is no current meta-process a warning is displayed and nil is returned.

This command can be useful for debugging, but is generally more important when working on

creating modules and experiments than when debugging a model.

Examples:

> (mp-show-waiting)
Events waiting to be scheduled:

NIL PROCEDURAL CONFLICT-RESOLUTION Waiting for: (ANY NIL)
1

E> (mp-show-waiting)
#|wWarning: mp-show-waiting called with no current meta-process. |#
NIL

mp-modules-events

Syntax:
mp-modules-events module-name -> [event-list | nil]

Arguments and Values:

module-name ::= a symbol which should be the name of a module
event-list ::= a list of events scheduled for the named module

Description:

Mp-module-events returns a list of all of the events from both the regular and waiting queues of the

current meta-process which have a module specified that matches the module-name provided. The

46

ACT-R7 11-Jul-17 ACT-R Reference Manual

elements of the list are the actual event structures which should only be accessed with the commands

described in the event accessors section.

If there is no current meta-process a warning is displayed and nil is returned.

Examples:

> (mp-modules-events 'procedural)
(#S(ACT-R-EVENT ...))

> (mp-modules-events 'not-a-module)
NIL

E> (mp-modules-events 'procedural)
#|Warning: mp-modules-events called with no current meta-process. |#
NIL

47

ACT-R7 11-Jul-17 ACT-R Reference Manual

Module

Module is an overloaded term in ACT-R because it has different connotations when talking about the
software and the theory. At the software level a module is a basic component of the system. It can
serve any number of purposes, for instance there is a printing module, a random number generator
module, as well as a vision module, a declarative memory module and many others. Each module is
essentially an independent component, and it is the modules which provide the functionality of the
overall system. There are basically no restrictions on what a software module can do and adding new

modules is the primary way of extending or modifying the overall system.

From the theory perspective however a module is a reference to some cognitive faculty which can
typically be ascribed to a particular region of the brain. Thus, something like the random number
module in the software obviously would not be considered a module of the theory. Another issue is
that the implementation of the cognitive modules as software modules is not always one-to-one. For
example, the vision system of ACT-R, which is implemented in the software as one module, is more
appropriately considered as two cognitive modules — one for location information and one for object
information. In the other direction, the theory’s procedural module is actually implemented as three
modules in the software (one that controls production definition and matching, one to handle the

utility computations and one to implement the production compilation mechanism).

Often the context in which one encounters “module” with respect to ACT-R makes it clear what is
being discussed (the software or the theory) so it is not usually as confusing as it might seem. For
clarity, from this point on in the manual, when it says module, the reference will always be to the

actual software modules unless explicitly stated otherwise.

Each of the specific modules of the ACT-R software will be described in its own section of this
manual. Other sections will include details on the components of a module, like buffers and

parameters, as well as how to implement a new module. This section will only describe the

commands for printing the currently defined modules in the system and getting their names.

Commands
mp-print-versions

Syntax:

48

ACT-R7 11-Jul-17 ACT-R Reference Manual
mp-print-versions -> nil

Arguments and Values:

none

Description:

Mp-print-versions prints the specific version number of the ACT-R software with a tag indicating

whether the code is an official release or an internal version checked out of the source repository

followed by the name, version number, and documentation string of each module which is currently

defined in the system in alphabetical order by module name. It always returns nil.

Examples:

> (mp-print-versoions)
ACT-R 7 Version Information:

Software 1 7.0-<internal>

AGI : Module based manager for AGI windows

AUDIO A module which gives the model an auditory
BOLD A module to produce BOLD response predictions

BUFFER-HISTORY
BUFFER-PARAMS
BUFFER-TRACE
CENTRAL -PARAMETERS

Module to record buffer change history for
Module to hold and control the buffer parameters
A module that provides a buffer based tracing

a module that maintains parameters used by other

DECLARATIVE The declarative memory module stores chunks from

DEVICE The device interface for a model

ENVIRONMENT A module to handle the environment connection if opened
GOAL The goal module creates new goals for the goal buffer
IMAGINAL The imaginal module provides a goal style buffer

MOTOR Module to provide a model with virtual hands

NAMING-MODULE
PRINTING-MODULE
PROCEDURAL :
PRODUCTION-COMPILATION:
PRODUCTION-HISTORY
RANDOM-MODULE
RETRIEVAL-HISTORY

Provides safe and repeatable new name generation
Coordinates output of the model.

The procedural module handles production definition
A module that assists the primary procedural module
Module to record production history for display in
Provide a good and consistent source of

Module to record retrieval history for display in

ANNWORRERPENWORRERPWONNWONNENRROWONSN
NNFRPOFRORFROOFRWOROOOONOOOONO®

SPEECH A module to provide a model with the ability to speak
TEMPORAL The temporal module is used to estimate short time
UTILITY A module that computes production utilities

VISION A module to provide a model with a visual

NIL

all-module-names

Syntax:

all-module-names -> (module-name?*)
Arguments and Values:

module-name ::= a symbol which names a module in the system

49

ACT-R7 11-Jul-17 ACT-R Reference Manual

Description:

All-module-names returns a list of the names of the currently defined modules in the system in

alphabetical order.
Examples:

> (all-module-names)
(AGI :AUDIO BOLD BUFFER-HISTORY BUFFER-PARAMS BUFFER-TRACE CENTRAL-PARAMETERS ...)

50

ACT-R7 11-Jul-17 ACT-R Reference Manual

Buffers

Buffers in ACT-R are the interfaces between modules. Each buffer is connected to a specific module
and has a unique name by which it is referenced e.g. the goal buffer or the retrieval buffer which are
associated with the goal and declarative modules respectively. A buffer is used to relay requests for
actions to its module, to query its module about the module’s state, it can hold one chunk which is
visible to all other modules, and it will respond directly to queries about the contents of the buffer

itself.

A module will respond to a query through its buffer with a generalized-boolean indicating the result.
In response to a request, the module will usually generate one or more events to perform some
action(s) and may place a chunk into the buffer to indicate the result of that action. Any module may
access or modify the chunk in any buffer at any time, but typically a module will only manipulate its

own buffer(s).

The buffer itself responds to five queries all specified with the name buffer and the possible values:
empty, full, failure, requested, and unrequested. Each query will return t if the condition is true and
nil if it is false. The first three query values, empty, full, and failure, are determined based on
whether there is a chunk in the buffer and whether or not the failure flag for the buffer has been set.
Only one of those queries will be true at a time. If the buffer contains a chunk then full will be true.
If the failure flag has been set then failure will be true (it is not possible to set the failure flag if there
is a chunk in the buffer). If neither of those is true then empty will be true. The other two queries
indicate whether the chunk which is in the buffer or the failure flag, if it is set, was the result of a
request or not. The determination of whether a chunk or failure flag in the buffer was the result of a
request is determined by the call to the function which sets that item (see the Using Buffers section
for details). If there is no chunk in the buffer and the failure flag is not set then both of those queries

will be false.

An important thing to note is that when a chunk is placed into a buffer the buffer makes a copy of that
chunk which it then makes available. Any changes made to the chunk in the buffer only affect the

copy that it holds — they do not affect the original chunk from which it was copied.

One of the current research areas with ACT-R is in using the buffers to track the activity of their
associated modules and then comparing that activity to data from neruoimaging studies (fMRI, MEG,

or EEG) to find correlations between regions of the brain and particular buffer/module activity in

51

ACT-R7 11-Jul-17 ACT-R Reference Manual

ACT-R models. Thus providing a mechanism for mapping cognitive modeling work onto actual
brain regions and even being able to make predictions about where activation should show up in

future neruoimaging research. Details on how that is done can be found in the Module Activity and

Brain Predictions section.

The commands described here provide general information about buffers which is most often needed
for modeling in ACT-R. The Using Buffers section describes the commands one can use for more

low-level interaction with the buffers which would be necessary for creating a new module.

Commands

buffers

Syntax:

buffers -> (buffer-name?*)

Arguments and Values:

buffer-name ::= a symbol which is the name of a currently existing buffer
Description:

The buffers command will return a list with the names of all the currently defined buffers in no

particular order.

Examples:

> (buffers)
(VISUAL-LOCATION MANUAL RETRIEVAL IMAGINAL VISUAL AURAL PRODUCTION VOCAL AURAL-LOCATION
IMAGINAL-ACTION GOAL)

buffer-chunk

Syntax:

buffer-chunk buffer-name* -> [(<buffer-name [chunk-name | nil]>*) | ([chunk-name | :error]*) | nil]
buffer-chunk-fct (buffer-name®*) -> [(<buffer-name [chunk-name | nil]>*) | ([chunk-name | :error]*) | nil]

Arguments and Values:

buffer-name ::= a symbol that names a buffer
chunk-name ::= a symbol that names a chunk

52

ACT-R7 11-Jul-17 ACT-R Reference Manual
Description:

Generally, the buffer-chunk command prints out the names of buffers along with the chunks those

buffers hold in the current model of the current meta-process.

If no buffer names are specified, then it prints all the buffers and the chunk name of the chunk in that
buffer (or nil if the buffer is empty) one per line to the model’s command output stream and returns a
list of cons cells where the car of each cons cell is the name of a buffer and the cdr is the name of the

chunk it holds (or nil) in no particular order.

If specific buffers are provided, then for each of those buffers, in the order provided, it prints the
buffer name followed by the name of the chunk in that buffer (or nil if the buffer is empty) and if
there is a chunk in the buffer that chunk is also printed. In this case it returns a list of the names of
the chunks in the buffers provided in the same order as they were specified in the call. If an invalid
buffer name is provided the corresponding value in the return list will be the keyword :error and

nothing will have been printed.
If there is no current model or current meta-process then a warning is printed and nil is returned.

Examples:

These examples were generated after running the count model in unit 1 of the tutorial.

> (buffer-chunk)
RETRIEVAL: E-0 [E]
IMAGINAL: NIL
MANUAL: NIL

GOAL: NIL
IMAGINAL-ACTION: NIL
VOCAL: NIL

AURAL: NIL
PRODUCTION: NIL
VISUAL-LOCATION: NIL
AURAL-LOCATION: NIL
TEMPORAL: NIL
VISUAL: NIL
((VISUAL-LOCATION) (MANUAL) (RETRIEVAL . E-0) (IMAGINAL) (VISUAL) (AURAL) (PRODUCTION)
(VOCAL) ...)

> (buffer-chunk-fct '(retrieval goal))
RETRIEVAL: E-0 [E]
E-0

FIRST 4

SECOND 5

GOAL: NIL
(E-0 NIL)

E> (buffer-chunk-fct '(bad-buffer-name))
(:ERROR)

53

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (buffer-chunk retrieval bad-name goal)
RETRIEVAL: E-0 [E]
E-0

FIRST 4

SECOND 5

GOAL: NIL
(E-0 :ERROR NIL)

E> (buffer-chunk)

#|Warning: buffer-chunk called with no current model. |#
NIL

E> (buffer-chunk)

#|Warning: buffer-chunk called with no current meta-process. |#
NIL

buffer-status

Syntax:

buffer-status buffer-name* -> [([buffer-name | :error]*) | nil]
buffer-status-fct (buffer-name®*) -> [([buffer-name | :error]*) | nil]

Arguments and Values:
buffer-name ::= a symbol that names a buffer
Description:

The buffer-status command prints out the current values for the possible queries to which the buffers
and their modules respond from the current model in the current meta-process using the current
model’s command output stream. For each buffer specified (or all buffers if none are specified) the
buffer name is printed followed by the current result of the buffer’s queries and the required module
queries, one per line, indicating t for a true query and nil for a false result. That is followed by any
module specific status the module prints (the module specific status is not constrained by the system
and could be any type of output). It returns a list of the buffer names of the buffers for which the

status was printed.

If specific buffers are provided, and an invalid buffer name is specified, the corresponding value in

the return list will be the keyword :error and nothing will have been printed.
If there is no current model or current meta-process then a warning is printed and nil is returned.

Examples:

> (buffer-status)
RETRIEVAL:

54

ACT-R7

buffer empty
buffer full

buffer failure
buffer requested
buffer unrequested
state free

state busy

state error

recently-retrieved nil:

recently-retrieved t
IMAGINAL:

buffer empty

buffer full

buffer failure

buffer requested

buffer unrequested

state free

state busy

state error
MANUAL :

buffer empty

buffer full

buffer failure

buffer requested

buffer unrequested

state free

state busy

state error

preparation free

preparation busy

processor free

processor busy

execution free

execution busy

last-command

H

T
H
H

H

NIL

: NIL

NIL
NIL

NIL
NIL
NIL
NIL

NIL
NIL
NIL
NIL

NIL
NIL

NIL
NIL
NIL
NIL

NIL
NIL

NIL

NIL

NIL
NONE

11-Jul-17

ACT-R Reference Manual

(RETRIEVAL IMAGINAL MANUAL VISUAL AURAL PRODUCTION VOCAL ...)

> (buffer-status goal)
GOAL:
buffer empty
buffer full
buffer failure
buffer requested
buffer unrequested
state free
state busy
state error
(GOAL)

> (buffer-status-fct '(retrieval))

RETRIEVAL:
buffer empty
buffer full
buffer failure
buffer requested
buffer unrequested
state free
state busy
state error

recently-retrieved nil:

recently-retrieved t
(RETRIEVAL)

T

H

NIL
NIL
NIL
NIL

NIL
NIL

NIL
NIL
NIL
NIL

NIL
NIL
NIL
NIL

55

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (buffer-status goal non-buffer)

GOAL:
buffer empty T
buffer full : NIL
buffer failure : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL

(GOAL :ERROR)

E> (buffer-status)
#|Warning: buffer-status called with no current model. |#
NIL

E> (buffer-status)
#|Warning: buffer-status called with no current meta-process. |#
NIL

ACT-R7 11-Jul-17 ACT-R Reference Manual

Models

An ACT-R model is one simulated cognitive agent. Theoretically the software can have any number
of models loaded simultaneously (practically there is a limit that will depend on the hardware and
Lisp software) and they can be run either individually or synchronized. However, the most common
usage of ACT-R is to work with only one model at a time. Most of this manual assumes that one is
working with only one model at a time. Information about dealing with more than one model

simultaneously is covered in the multiple models section.

A model is referenced by a name specified when it is defined, and that name must be unique within
the current meta-process. A model consists of the code specified in its definition, an instance of each
module in the system (which is independent of any other model’s copy of that module unless a
specific module indicates otherwise), and its set of chunks (which are always independent of the

chunks of any other model).

A model is created using the define-model command which specifies the model’s name and its initial

conditions and results in the creation of a new instance of each module for that model to use.

Specifically, when a model is created the following sequence of actions occur:

* A new instance of each module is created

* The default chunk-types and chunks are created

* All of the buffers are set to empty

* The model’s modules have their primary reset functions called (in no specific order)

* The parameters of all the modules are set to their default values (in no specific order)
* The model’s modules have their secondary reset functions called (in no specific order)
* The model’s definition code is evaluated in the order given (left to right)

* The model’s modules have their tertiary reset functions called (in no specific order)

When a model is reset a similar sequence of actions occurs. The difference is that new module

instances are not created and instead any chunks and chunk-types in the model are deleted first.

As with meta-processes, it is possible to define more than one model at a time, and regardless of how

many models are defined in a meta-process, only one is accessible at any given time. This is referred

57

ACT-R7 11-Jul-17 ACT-R Reference Manual

to as the current model (note that different meta-processes will each have their own current model).
Only the current model in the current meta-process may be manipulated by the commands. If there is
only one model in the current meta-process, then it will be the current model. If there is more than
one model defined in the current meta-process, then it is up to the modeler to specify which is current

before executing any commands (see the multiple models section for more details).
Commands
define-model

Syntax:

define-model model-name {model-code*} -> [model-name | nil]
define-model-fct model-name ({model-code*}) -> [model-name | nil]

Arguments and Values:

model-name ::= a symbol that will be the name of the model
model-code ::= a Lisp expression that will be evaluated when the model is created and when it is reset

Description:

The define-model command creates a new model with the given model-name in the current meta-

process. Its initial conditions are specified by the model-code provided.

If there is not already a model by that name in the current meta-process and there are no errors in

evaluation of the model-code forms then the new model is created and model-name is returned.

If there is not a current meta-process, model-name is already the name of a model in the current meta-
process, or an error occurs during the evaluation of the model-code then a warning is printed and nil

is returned.
Special case:

If no model-code is specified when the model is defined, then the new model is considered an “empty
model”. That has some implications when using the reset command, and generally empty models are

not recommended.

Examples:

58

ACT-R7 11-Jul-17 ACT-R Reference Manual

Only basic usage of define-model is shown here — see the tutorial for definition of actual cognitive
models that perform meaningful tasks.

> (define-model-fct 'model-10 (list '(chunk-type start slot)))

MODEL -10

1> (define-model model-1 (chunk-type goal state))
MODEL-1

2E> (define-model-fct 'model-1 nil)

#|Warning: MODEL-1 is already the name of a model in the current meta-process. Cannot be
redefined. |#

NIL

E> (define-model model-2)

#|wWarning: define-model called with no current meta-process. |#
NIL

E> (define-model model-3 (pprint "start") (pprnt "end"))
"start"

#|wWarning: Error encountered in model form:

(PPRNT "end")

Invoking the debugger. |#

#|Warning: You must exit the error state to continue. |#

Debug: attempt to call "PPRNT' which is an undefined function.
[condition type: UNDEFINED-FUNCTION]

#|wWarning: Model MODEL-3 not defined. |#
NIL

delete-model

Syntax:

delete-model {model-name} -> [t | nil]
delete-model-fct model-name -> [t | nil]

Arguments and Values:
model-name ::= a symbol that should be the name of a model
Description:

The delete-model command removes the model with the specified model-name from the current
meta-process. If model-name is not provided the current model is deleted. Deleting a model
removes all events generated by that model from the event queues, deletes each of the model’s
instances of the modules, and removes the model from the set of models currently defined. If a

model is successfully deleted then t is returned.

59

ACT-R7 11-Jul-17 ACT-R Reference Manual

If there is not a current meta-process, model-name is not the name of a model in the current meta-
process, or no model-name is given and there is no current model, then a warning is printed and nil is

returned.
The delete-model command is typically only useful when working with multiple models.

Examples:

\%

(delete-model)

\

(delete-model-fct 'model)
T

E> (delete-model)

#|Warning: delete-model called with no current meta-process.
No model deleted. |#

NIL

E> (delete-model)
#|Warning: No current model to delete. |#
NIL

E> (delete-model-fct 'model)

#|Warning: No model named MODEL in current meta-process. |#
NIL

60

ACT-R7 11-Jul-17 ACT-R Reference Manual

Chunks & Chunk-types

Chunks are the elements of declarative knowledge in the ACT-R theory and are used to communicate
information among modules through the buffers. A chunk consists of a set of named slots each
holding a single value. A chunk also has a name which is used to reference it, however, the name is
not considered to be a part of the chunk itself from a theoretical standpoint. Previous versions of
ACT-R also required each chunk to have a specific chunk-type associated with it that defined the set
of slots which it had. As of ACT-R 6.1 chunks are no longer cast into specific types. A chunk may
have any combination of slots desired without having to first specify an appropriate type, and a chunk
may also now have slots removed as well as added. Chunk-types still exist as a tool which the

modeler may use, but they are no longer a required component of chunks.

In the ACT-R software, chunks exist at the “model level” and may be created and used by any
module or additional code — they do not have to be associated with a model’s declarative memory
module unlike older versions of ACT-R. In addition to the slots and values of a chunk, in the
software each chunk also maintains a set of parameters which contain additional information needed
by the modules or the modeler. A modeler may add chunk parameters for recording additional
information as needed. See the section on extending chunks for more information on adding and
manipulating chunk parameters. Along with the parameters, there is an additional feature associated
with a chunk in the ACT-R software which indicates whether the slots and values of the chunk can be
modified or not. When a chunk is created it is initially able to have its content modified, but the
modeler (or a module) may mark a chunk as “immutable” at any point after it has been created. Once
a chunk is marked as immutable it cannot be changed back to modifiable. The final thing to note
about chunks is that in the software they must always be referenced by their name — the underlying

representation of a chunk in the code is not considered to be part of the API.

Chunk-types in ACT-R are used essentially as a pre-processing mechanism in the definition of a
model. A chunk-type associates a name with a set of slots and optional default values for those slots.
That chunk-type name may then be used when creating chunks and specifying productions to indicate
the slots which are intended and to include the default slot values from that chunk-type for any slots
not specified in the chunk or production. The chunk-type name itself does not get recorded in the
model with the chunk or production it is used in — it only serves as a declaration which will provide
warnings if the chunk or production does not conform to the chunk-type indicated. If a chunk-type

does not include default values for its slots then whether it is specified or not in the creation of a

61

ACT-R7 11-Jul-17 ACT-R Reference Manual

chunk or production will not affect the resulting item — it will be the same with or without the chunk-

type specification.

When creating chunk-types they may be organized into a hierarchy, with new chunk-types inheriting
slots from one or more parent chunk-types. If a chunk-type is created with one or more parent chunk-
types then that new type will include all the slots and default values from all of the parent chunk-
types along with those specified in the new chunk-type. A default value specified for a slot directly
in a chunk-type overrides any default value which would be inherited from a parent type. If multiple
parent chunk-types specify a default value for the same slot then unless those default values are all
the same such a chunk-type cannot be created. When specifying a chunk-type in creating a chunk or
production a parent type may be specified and use any of the slots specified for the children of that

chunk-type, but only the default values for the specific chunk-type named will be applied.

Default Chunk-types

There are a few chunk-types created with a model automatically. Those are, chunk, constant-chunks,
query-slots, and clear. These are used to create some of the default chunks for the model and may be
used freely in creating additional chunks or productions. Many of the provided modules also specify

new chunk-types which may be used and those will be indicated with the module description.

chunk

The chunk-type named chunk has no slots specified for it. Its purpose is to serve as the root of the
chunk-type hierarchy i.e. all chunk-types which are created implicitly inherit from the chunk-type

named chunk.

constant-chunks

The constant-chunks chunk-type specifies one slot named name.

query-slots

The query-slots chunk-type specifies three slots named state, buffer, and error. Those are the names
of the queries which all buffers will respond to and by creating a chunk-type with those slot names

one can create chunk-specs which use those slots to perform queries from code.

clear

62

ACT-R7 11-Jul-17 ACT-R Reference Manual

The clear chunk-type has one slot named clear which has a default value of t. It is provided as a
convenient and consistent mechanism for use when creating a module which needs to provide a

request which performs some sort of “clearing” of the module.

Default Chunks

There are several chunks created for each model automatically which may be used as needed. All of
these default chunks are marked as immutable. There will also be many chunks created by the

provided modules and the details of those can be found in the specific module sections.

Chunks named free, busy, error, empty, full, failure, requested, and unrequested are created each with
a slot named name that is set to the chunk’s name i.e. the chunk named free has one slot called name

with the value free.

A chunk named clear is created having one slot named clear with a value of t.

Commands

The commands described here are general chunk and chunk-type actions which can be used for any
chunk. Some modules provide additional commands for manipulating or inspecting the chunks that
are being used by that module and the details of those commands can be found in the specific module

sections.

Chunk-type Commands
chunk-type

Syntax:

chunk-type { [new-name | (new-name (:include parent-name)*) | {doc-string} [slot-name |
(slot-name default-value)]*} -> [type-name | (type-name?*) | nil]

chunk-type-fct [nil | ([new-name | (new-name (:include parent-name)®)] {doc-string} [slot-name |
(slot-name default-value)]*)] -> [type-name | (type-name*) | nil]

Arguments and Values:

new-name ::= a symbol that is to be the name of the new chunk-type

type-name ::= a symbol that is the name of a chunk-type

parent-name ::= a symbol that names a chunk-type to be a parent type of this new chunk-type
doc-string ::= a string that is used as documentation for this chunk-type

63

ACT-R7

slot-name ::= a symbol that names a slot which will be part of this chunk-type

ACT-R Reference Manual

default-value ::= any Lisp value which specifies the value that will be used as the default value for the

corresponding slot-name

Description:

The chunk-type command creates a new chunk-type for the current model of the current meta-process

or displays all of the currently defined chunk-types for the current model.

If no parameters are passed to the chunk-type command (or nil to the function) then all of the existing

chunk-types in the current model are printed to the command output stream as described by pprint-

chunk-type and a list of their names is returned (in no particular order).

If a valid chunk-type specification is provided then a new chunk-type is created for the current model

and the name of that chunk-type is returned. If the chunk-type provides the same specification as an

existing chunk-type in the model then a warning will be displayed.

If there is no current model, no current meta-process, the given new-name already names an existing

chunk-type in the current model, or there is an error in the specification of the chunk-type then a

warning is printed and nil is returned.

Examples:

> (chunk-type)

SOUND
KIND
CONTENT
EVENT

AUDIO-COMMAND

MOVE-CURSOR <- MOTOR-COMMAND
OBJECT
LoC
DEVICE

(SOUND AUDIO-COMMAND MOVE-CURSOR ...

1> (chunk-type goal slotl state)
GOAL

2> (chunk-type-fct '(other-type slotl slot2))

OTHER-TYPE

3> (chunk-type (subgoall (:include goal)) new-slot)

SUBGOAL1

64

ACT-R7 11-Jul-17 ACT-R Reference Manual

4> (chunk-type-fct '((subgoal2 (:include goal) (:include other-type))))
SUBGOAL2

5> (chunk-type new-type (slot default-value) (other-slot 4))
NEW-TYPE

6> (chunk-type detailed-type "The chunk-type detailed-type" slot)
DETAILED-TYPE

7> (chunk-type-fct nil)

GOAL
SLOT1
STATE

OTHER-TYPE
SLOT1
SLOT2

SUBGOAL1 <- GOAL
NEW-SLOT
SLOT1
STATE

SUBGOAL2 <- GOAL, OTHER-TYPE
SLOT2
SLOT1
STATE

NEW-TYPE
SLOT (DEFAULT-VALUE)
OTHER-SLOT (4)

DETAILED-TYPE "The chunk-type detailed-type"
SLOT

(CHUNK CONSTANT-CHUNKS CLEAR AUDIO-EVENT SET-AUDLOC-DEFAULT SOUND GENERIC-ACTION ...)

8E> (chunk-type repeat slotl state)
#|Warning: Chunk-type REPEAT has the same specification as the chunk-type GOAL. |#
REPEAT

E> (chunk-type (new-type (:include bad-type)))

#|Warning: Non-existent chunk-type BAD-TYPE specified as an :include in NEW-TYPE chunk-
type definition. |#

NIL

E> (chunk-type (bad :include goal))
#|Warning: Invalid modifier list specified with the chunk-type name: (:INCLUDE GOAL) |#
NIL

E> (chunk-type no-model)
#|Warning: chunk-type called with no current model. |#
NIL

E> (chunk-type no-meta-process)

65

ACT-R7 11-Jul-17 ACT-R Reference Manual

#|Warning: chunk-type called with no current meta-process. |#
NIL

pprint-chunk-type

Syntax:

pprint-chunk-type type-name -> [type-name | nil]

pprint-chunk-type-fct type-name -> [type-name | nil]
Arguments and Values:

type-name ::= a symbol that is the name of a chunk-type
Description:

The pprint-chunk-type command is used to print a description of a chunk-type. The output is sent to

the current model’s command output stream.

If the parameter provided is the name of a chunk-type in the current model of the current meta-
process then that chunk-type is printed like this: the chunk-type name is printed, if the chunk-type
had any parent types specified then the name is followed by “<-” and the names of the parent chunk-
types separated by commas, the documentation string for the chunk-type, if it has one, is printed, and
then the slot names of the chunk-type are printed one per line with the slot’s default value in

parenthesis after the slot name if one was provided.

If there is no current model, current meta-process, or the given type-name does not name an existing

chunk-type in the current model then a warning is printed and nil is returned.

Examples:

1> (chunk-type test slotl (slot2 2))
TEST

2> (chunk-type (subtest (:include test)) "a subtype of test" slot3)
SUBTEST

3> (pprint-chunk-type test)
TEST

SLOT1
SLOT2 (2)

TEST

4> (pprint-chunk-type-fct 'subtest)

66

ACT-R7 11-Jul-17 ACT-R Reference Manual

SUBTEST <- TEST "a subtype of test"
SLOT1
SLOT2 (2)
SLOT3
SUBTEST
E> (pprint-chunk-type not-a-chunk-type)
#|Warning: NOT-A-CHUNK-TYPE does not name a chunk-type in the current model. |#
NIL
E> (pprint-chunk-type chunk)
#|Warning: pprint-chunk-type called with no current model. |#
NIL
E> (pprint-chunk-type chunk)

#|Warning: pprint-chunk-type called with no current meta-process. |#
NIL

chunk-type-p

Syntax:

chunk-type-p chunk-type-name? -> [t | nil]
chunk-type-p-fct chunk-type-name? -> [t | nil]

Arguments and Values:
chunk-type-name? ::= a symbol to be tested to determine if it names a chunk-type
Description:

The chunk-type-p command returns t if chunk-type-name? is a symbol that names a chunk-type in the
current model of the current meta-process and returns nil if it does not. If there is no current model

or no current meta-process then a warning is printed and nil is returned.

Examples:

\

(chunk-type-p clear)

\%

(chunk-type-p-fct 'chunk)
T

> (chunk-type-p bad-name)
NIL

> (chunk-type-p-fct 'non-chunk-type)
NIL

E> (chunk-type-p chunk)

#|Warning: get-chunk-type called with no current model. |#
NIL

67

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (chunk-type-p clear)
#|Warning: get-chunk-type called with no current meta-process. |#

all-chunk-type-names

Syntax:

all-chunk-type-names -> (type-name*)
Arguments and Values:

type-name ::= a symbol that names a chunk-type
Description:

All-chunk-type-names takes no parameters and returns a list of all the chunk-type names in the
current model of the current meta-process. The type names are ordered based on the order in which

they were defined (first name in the list is the first one defined).
If there is no current model or current meta-process a warning is printed and nil will be returned.

Examples:

> (all-chunk-type-names)
(CHUNK CONSTANT-CHUNKS CLEAR AUDIO-EVENT SET-AUDLOC-DEFAULT SOUND GENERIC-ACTION ...)

E> (all-chunk-type-names)
#|Warning: all-chunk-type-names called with no current model. |#
NIL

E> (all-chunk-type-names)
#|Warning: all-chunk-type-names called with no current meta-process. |#
NIL

chunk-type-possible-slot-names-fct

Syntax:

chunk-type-possible-slot-names-fct chunk-type-name -> [(slot-name*) | nil]
Arguments and Values:

slot-name ::= a symbol which names a slot usable in the specified chunk-type
Description:

Chunk-type-possible-slot-names-fct takes one parameter which should be the name of a chunk-type.

It returns a list of all the names of slots which are valid for use with that chunk-type in the current

68

ACT-R7 11-Jul-17 ACT-R Reference Manual

model of the current meta-process along with all of the request parameters which have been defined
for the buffers. A slot is valid for the chunk-type if it is specified in that chunk-type’s definition, is
specified in a chunk-type which has the specified chunk-type as a parent, or is a slot which has been

added to chunks through extension with extend-possible-slots.

If there is no current model or current meta-process or the specified name does not name a chunk-

type in the current model then a warning is printed and nil is returned.

Examples:

> (chunk-type-possible-slot-names-fct 'clear)
(CLEAR :MP-VALUE :RECENTLY-RETRIEVED :CENTER :NEAREST :FINISHED :ATTENDED)

> (chunk-type-possible-slot-names-fct 'chunk)
(SCALE RIGHT LEFT TYPE SET-VISLOC-DEFAULT SIZE DISTANCE SCREEN-Y SCREEN-X COLORS ...)

E> (chunk-type-possible-slot-names-fct 'bad-name)

#|Warning: Invalid chunk-type name BAD-NAME passed to chunk-type-possible-slot-names-fct.
| #

NIL

E> (chunk-type-possible-slot-names-fct 'chunk)

#|Warning: get-chunk-type called with no current model. |#

#|wWarning: Invalid chunk-type name CHUNK passed to chunk-type-possible-slot-names-fct. |#
NIL

E> (chunk-type-possible-slot-names-fct 'clear)

#|wWarning: get-chunk-type called with no current meta-process. |#

#|Warning: Invalid chunk-type name CLEAR passed to chunk-type-possible-slot-names-fct. |#
NIL

69

ACT-R7 11-Jul-17 ACT-R Reference Manual

Chunk Commands

define-chunks

Syntax:

define-chunks ({chunk-name}{[doc-string isa chunk-type | isa chunk-type]} {slot value}*)* -> (chunk*)
define-chunks-fct (({chunk-name}{[doc-string isa chunk-type | isa chunk-typel} {slot value}*)*) -> (chunk?*)

Arguments and Values:

chunk-name ::= a symbol that will be the name of the chunk

doc-string ::= a string that will be the documentation for the chunk

chunk-type ::= a symbol that names a chunk-type in the model

slot ::= a symbol that names a slot for the chunk

value ::= any Lisp value which will be the contents of the correspondingly named slot for this chunk
chunk ::= a symbol which names a chunk that was created

Description:

The define-chunks command creates a new chunk in the current model of the current meta-process
for each valid chunk description list provided and returns a list of the names of the chunks that were

created.

Within a chunk description list the chunk name is optional. If a chunk-name is provided, it must not
name an existing chunk in the current model and must be a non-keyword, non-nil symbol that begins
with an alphanumeric character. If a chunk-name is not provided, a new name will be generated for

the chunk, and that name is guaranteed to be unique.

The name may be followed by an optional chunk-type specification and if it does it may also include
a documentation string for the chunk. If a chunk-type is specified it must name a valid chunk-type in

the current model.

That may then be followed by any number of slot and value pairs for the chunk. If a given slot is
named more than once in the definition then the last value it is given (rightmost) will be the one set
for the chunk. If the value for a slot is non-nil then that slot is added to the chunk being created with

the value specified.

If a chunk-type is specified then each of the slots specified will be tested to see if it is a valid slot for

the type indicated. If it is not then a warning will be printed, but the chunk will still be created. If it

70

ACT-R7 11-Jul-17 ACT-R Reference Manual

is not a valid slot for any chunk-type then it will automatically extend the valid slots for chunks with

that slot name.

If a chunk-type is specified and there are slots with default values in that chunk-type’s definition
which are not included in the chunk definition the chunk will get all of those unspecified slots with

their corresponding default values.

If a value for a slot is a non-nil symbol other than the Lisp true symbol t then it is assumed to be the
name of a chunk. If there is not already a chunk by that name, then one is created automatically

which has no slots and a warning is printed to indicate that.

However, within a call to define-chunks one can use the names of the chunks that are being defined
in the other chunks without having them created as default chunks. Here is an example to clarify
that:

(define-chunks (a slot b)

(b slot a)
(c slot d))

Because both a and b are being defined in the same call to define-chunks neither will need to be
created automatically. However, unless d already names a chunk in the model a chunk with that

name will be created automatically in the process of creating chunk c.

If the syntax is incorrect or any of the components are invalid in a description list then a warning is
displayed and no chunk is created for that chunk description, but any other valid chunks defined will

still be created.

If there is no current model or current meta-process then a warning is printed, no chunks are created

and nil is returned.

Examples:

1> (chunk-type testl slotil)
TEST1

2> (chunk-type test2 slotl (slot2 2))
TEST2

3> (define-chunks (a isa testl) (b isa test2))
(A B)

4> (define-chunks-fct '((c slotl a) (d slot2 c)))
(C D)

71

ACT-R7 11-Jul-17 ACT-R Reference Manual

5> (define-chunks ("this is chunk e" isa testl slotl 100))
(TEST10)

6E> (define-chunks-fct '((isa testl slot2 "value")))

#|Warning: Invalid slot SLOT2 specified when creating chunk with type TEST1, but creating

chunk TEST11 anyway. |#
(TEST11)

7> (define-chunks ())
(CHUNKO)

8E> (define-chunks (slotl new-name))
#|Warning: Creating chunk NEW-NAME with no slots |#
(CHUNK1)

9E> (define-chunks ("not allowed" slot2 t))

#|Warning: Invalid chunk definition: ("not allowed" SLOT2 T) chunk name is not a valid

symbol. |#
NIL

10E> (define-chunks (slotl t new-slot 10))

#|Warning: Extending chunks with slot named NEW-SLOT because of chunk definition (SLOT1 T

NEW-SLOT 10) |#
(CHUNK2)

E> (define-chunks (z isa chunk))

#|Warning: define-chunks called with no current model. |#
NIL

E> (define-chunks (z isa chunk))

#|Warning: define-chunks called with no current meta-process. |#
NIL

pprint-chunks & pprint-chunks-plus

Syntax:

pprint-chunks chunk-name* -> [chunk-name-list | nil]
pprint-chunks-fct (chunk-name*) -> [chunk-name-list | nil]
pprint-chunks-plus chunk-name* -> [chunk-name-list | nil]
pprint-chunks-plus-fct (chunk-name*) -> [chunk-name-list | nil]

Arguments and Values:

chunk-name ::= a symbol that should be the name of a chunk
chunk-name-list ::= ([chunk-name | :error]*)

Description:

The pprint-chunks family of commands are used to print a description of each of the chunks

specified, or all of the chunks in the model if no names are provided. The output is sent to the current

model’s command output stream.

72

ACT-R7 11-Jul-17 ACT-R Reference Manual

For each chunk specified, on one line it will print the chunk’s name followed by its “true name” in
parentheses if the chunk’s true name differs from the chunk’s current name (see merge-chunks and
true-chunk-name below for more details on a chunk’s true name). If a documentation string was
provided for the chunk that is printed on the next line. Then one per line, each of the chunk’s slots is

printed followed by that slot’s value.

The pprint-chunks-plus command prints all of the chunk’s parameters after the description of the
chunk is printed. The parameters are printed one per line with the name of the parameter and its
current value. Note, that these chunk parameters are the ones that have been added to the chunks
(typically by a module as described in the extending chunks section) and may not have any direct

significance to the model or modeler. For example, the declarative memory parameters of chunks

used by the declarative module to compute and record the activation of chunks should be viewed
using the declarative module’s sdp command because the values shown with pprint-chunks-plus are
values used internally by the declarative module and may not adequately reflect the current value of
activations as would be shown by calling the module’s command for inspecting the declarative

memory chunk’s parameters (sdp).

These commands return a list with the names of all the chunks that were printed in the same order as
they were specified. If an invalid chunk-name is given nothing is printed for that item and the value

:error is returned in its place in the list.

If there is no current model or current meta-process then a warning is printed and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (pprint-chunks)

TEST10
"this is chunk e"
SLOT1 100
BUSY
NAME BUSY
SPEAK
NAME SPEAK
CURRENT

NAME CURRENT

SUBVOCALIZE
NAME SUBVOCALIZE

AUDIO-EVENT

73

ACT-R7 11-Jul-17 ACT-R Reference Manual

NAME AUDIO-EVENT

SLoT2 C

CHUNKO

(TEST10 BUSY SPEAK CURRENT SUBVOCALIZE AUDIO-EVENT D CHUNKO B MAGENTA ...)

> (pprint-chunks a b test10)
A

SLOT2 2
TEST10
"this is chunk e"
SLOT1 100
(A B TEST10)

> (pprint-chunks-fct '(c d))
c

SLOT1 A
D

SLOT2 C
(C D)

> (pprint-chunks-plus chunko)
CHUNKO

--chunk parameters--
VISUAL-APPROACH-WIDTH-FN NIL
REAL-VISUAL-VALUE NIL
SPECIAL-VISUAL-OBJECT NIL
VISUAL-OBJECT NIL
VISUAL-TSTAMP NIL
VISUAL-FEATURE-NAME NIL
VISICON-ENTRY NIL
VISUAL-NEW-P NIL
SYNTH-FEAT NIL
FAST-MERGE-KEY NIL
RETRIEVAL-TIME NIL
RETRIEVAL-ACTIVATION NIL
SJIS NIL

PERMANENT-NOISE 0.0
SIMILARITIES NIL
REFERENCE-COUNT ©
REFERENCE-LIST NIL
SOURCE-SPREAD 0
LAST-BASE-LEVEL ©
BASE-LEVEL NIL
CREATION-TIME 0

FAN-IN NIL

C-FAN-OUT ©

FAN-OUT ©

IN-DM NIL

ACTIVATION 0O
BUFFER-SET-INVALID NIL

ACT-R7 11-Jul-17 ACT-R Reference Manual

(CHUNKO)

E> (pprint-chunks a bad-name b)
A

B
SLOT2 2

(A :ERROR B)

E> (pprint-chunks)

#|Warning: pprint-chunks called with no current model. |#
NIL

E> (pprint-chunks)

#|Warning: pprint-chunks called with no current meta-process. |#
NIL

chunk-p

Syntax:

chunk-p chunk-name? -> [t | nil]
chunk-p-fct chunk-name? -> [t | nil]

Arguments and Values:
chunk-name? ::= a symbol which is being tested to determine if it names a chunk
Description:

The chunk-p command returns t if chunk-name? is a symbol that names a chunk in the current model
of the current meta-process and returns nil if it does not. If there is no current model or current meta-

process then a warning is printed and nil is returned.

Examples:

These examples assume that chunks named a and b have been created.

> (chunk-p a)
T

> (chunk-p not-chunk)
NIL

> (chunk-p-fct 'b)
T

E> (chunk-p-fct 'a)
#|Warning: get-chunk called with no current model. |#
NIL

E> (chunk-p a)

#|Warning: get-chunk called with no current meta-process. |#
NIL

75

ACT-R7 11-Jul-17 ACT-R Reference Manual

chunk-documentation

Syntax:

chunk-documentation chunk-name -> [doc-string | nil]
chunk-documentation-fct chunk-name -> [doc-string | nil]

Arguments and Values:

chunk-name ::= a value which should be a symbol that names a chunk
doc-string ::= a string of the documentation provided when chunk-name was created

Description:

Chunk-documentation returns the documentation string of the chunk chunk-name from the current
model of the current meta-process if it names a valid chunk and has a documentation string. If it does
not have a documentation string it returns nil. If chunk-name is not the name of a chunk in the
current model, there is no current model, or no current meta-process then a warning is printed and nil

is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (chunk-documentation test10)
"this is chunk e"

> (chunk-documentation a)
NIL

> (chunk-documentation-fct 'test10)
"this is chunk e"

E> (chunk-documentation-fct 'not-a-chunk)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (chunk-documentation c)

#|Warning: get-chunk called with no current model. |#

NIL

E> (chunk-documentation c)

#|Warning: get-chunk called with no current meta-process. |#
NIL

chunk-slot-value

Syntax:

76

ACT-R7 11-Jul-17 ACT-R Reference Manual

chunk-slot-value chunk-name slot-name -> [slot-value | nil]
chunk-slot-value-fct chunk-name slot-name -> [slot-value | nil]

Arguments and Values:

chunk-name ::= a symbol which should be the name of a chunk
slot-name ::= a symbol that should be the name of a slot in the chunk chunk-name
slot-value ::= the Lisp value from slot-name in chunk chunk-name

Description:

Chunk-slot-value is used to get the value of a slot in a chunk. If chunk-name is the name of a chunk
in the current model of the current meta-process and slot-name is the name of a slot in chunk-name
then the value in the slot-name slot of the chunk chunk-name is returned. If chunk-name is the name

of a chunk but it does not have a slot named slot-name then nil will be returned.

If chunk-name does not name a chunk in the model, there is no current model, or there is no current

meta-process then a warning is printed and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (chunk-slot-value c slotl)
A

> (chunk-slot-value c slot2)
NIL

>(chunk-slot-value-fct 'd 'slot2)
c

> (chunk-slot-value a other-slot)
NIL

E> (chunk-slot-value bad-chunk-name slotl)

#|Warning: BAD-CHUNK-NAME does not name a chunk in the current model. |#
NIL

E> (chunk-slot-value c slotl)

#|Warning: get-chunk called with no current model. |#

NIL

E> (chunk-slot-value c slotl)

#|Warning: get-chunk called with no current meta-process. |#
NIL

set-chunk-slot-value

Syntax:

set-chunk-slot-value chunk-name slot-name slot-value -> [slot-value | nil]

77

ACT-R7 11-Jul-17 ACT-R Reference Manual
set-chunk-slot-value-fct chunk-name slot-name slot-value -> [slot-value | nil]
Arguments and Values:

chunk-name ::= a symbol which should be the name of a chunk
slot-name ::= a symbol that names a slot
slot-value ::= a Lisp value for slot-name in chunk chunk-name

Description:

Set-chunk-slot-value is used to set the value of the slot slot-name in the chunk chunk-name in the

current model of the current meta-process to the value slot-value. If successful, slot-value is returned.

If slot-value is a symbol and not the name of a current chunk in the current model then it is created as

a new chunk with no slots and a warning is displayed.
If a slot-value of nil is specified for a slot that will remove that slot from the chunk.

If the chunk chunk-name has been marked as immutable then a warning is printed, no changes are

made to the chunk and nil is returned.

If either chunk-name or slot-name is invalid or there is no current model or current meta-process then

a warning is printed and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (set-chunk-slot-value a slotl 10)
10

> (set-chunk-slot-value-fct 'b 'slot2 "value")
"value"

> (set-chunk-slot-value a slot2 new-chunk)
#|Warning: Creating chunk NEW-CHUNK with no slots |#
NEW-CHUNK

1> (make-chunk-immutable 'b)
T

2E> (set-chunk-slot-value b slotl 10)
#|Warning: Cannot change contents of chunk B. |#
NIL

E> (set-chunk-slot-value-fct 'not-a-chunk 'slotl t)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

78

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (set-chunk-slot-value c not-a-slot b)

#|Warning: NOT-A-SLOT is not a valid slot name. You can use extend-possible-slots to add
it first if needed. |#

NIL

E> (set-chunk-slot-value a slotl b)

#|Warning: get-chunk called with no current model. |#

NIL

E> (set-chunk-slot-value a slotl b)

#|Warning: get-chunk called with no current meta-process. |#
NIL

chunk-filled-slots-list

Syntax:

chunk-filled-slots-list chunk-name {sorted} -> slot-list
chunk-filled-slots-list-fct chunk-name {sorted} -> slot-list

Arguments and Values:

chunk-name ::= a symbol which should be the name of a chunk

slot-list ::= (slot-name*)

slot-name ::= a symbol that names a slot

sorted ::= a generalized boolean indicating whether the slot-list should be returned in canonical order

Description:

Chunk-filled-slots-list is used to get the list of slots which contain values for the chunk named by
chunk-name in the current model of the current meta-process. If the optional parameter sorted is
provided as a non-nil value then the list of slot names will be sorted into a canonical order (the same

ordering used when printing chunks with pprint-chunks).

If chunk-name is not the name of a chunk in the current model or there is no current model or current

meta-process then a warning is printed and nil is returned.
Examples:

1> (chunk-type test slotl slot2 slot3)
TEST

2> (define-chunks (a isa test slot3 3 slot2 2)
(b isa test slot2 t slot3 a))

(A B)

3> (pprint-chunks a b)

A

SLOT2 2
SLOT3 3

79

ACT-R7 11-Jul-17 ACT-R Reference Manual

B
sLot2 T
SLOT3 A

(A B)

4> (chunk-filled-slots-list a)
(SLOT3 SLOT2)

5> (chunk-filled-slots-list-fct 'b)
(SLOT2 SLOT3)

6> (chunk-filled-slots-list a t)
(SLOT2 SLOT3)

E> (chunk-filled-slots-1list not-a-chunk)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (chunk-filled-slots-list a)

#|Warning: get-chunk called with no current model. |#

NIL

E> (chunk-filled-slots-list a)

#|Warning: get-chunk called with no current meta-process. |#
NIL

mod-chunk

Syntax:

mod-chunk chunk-name {slot-name slot-value}* -> [chunk-name | nil]
mod-chunk-fct chunk-name ({slot-name slot-value}*) -> [chunk-name | nil]

Arguments and Values:

chunk-name ::= a symbol which should be the name of a chunk
slot-name ::= a symbol that should be the name of a slot in the chunk chunk-name
slot-value ::= a Lisp value for the corresponding slot-name in chunk chunk-name

Description:

Mod-chunk is used to set the value of multiple slots in the chunk named chunk-name in the current
model in the current meta-process. It is essentially a short hand for multiple calls to set-chunk-slot-

value.

If chunk-name is the name of a chunk in the current model and there are an even number of items
specified thereafter, then those items are considered pair-wise to be the name of a slot and a value for
that slot in that chunk. All of those slots in the chunk are set to the values specified and chunk-name

is returned.

80

ACT-R7 11-Jul-17 ACT-R Reference Manual

If any slot-value is a symbol and not the name of a chunk in the current model then it is created as a

new chunk with no slots and a warning is displayed.

A slot name may only be specified once in the set of slot-names. If a slot name is specified more than

once a warning is printed, no changes are made to the chunk, and nil is returned.

If any slot name provided is not a valid slot for chunks no changes are made to the chunk, and nil is

returned.

If the chunk chunk-name has been marked as immutable then a warning is printed, no changes are

made to the chunk and nil is returned.

If chunk-name does not name a chunk in the current model, there is no current model or current meta-
process, or there are an odd number of items provided after the chunk-name then a warning is

displayed, no changes are made, and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

\

(mod-chunk a slotl b slot2 c)

\%

(mod-chunk-fct 'b '(slotl 10 new-slot t))
B

> (mod-chunk a slotl new-chunk-name)
#|Warning: Creating chunk NEW-CHUNK-NAME with no slots |#
A

1> (make-chunk-immutable 'b)
T

2E> (mod-chunk b slotl 10)
#|Warning: Cannot modify chunk B because it is immutable. |#
NIL

E> (mod-chunk a slotl 1 slotl 2)
#|Warning: Slot name used more than once in modifications list. |#
NIL

E> (mod-chunk-fct 'a '(slotl b slot2))
#|Warning: 0dd length modifications list in call to mod-chunk. |#
NIL

E> (mod-chunk a slotl b)
#|Warning: get-chunk called with no current model. |#
NIL

E> (mod-chunk a slotl b)

#|Warning: get-chunk called with no current meta-process. |#
NIL

81

ACT-R7 11-Jul-17 ACT-R Reference Manual

copy-chunk

Syntax:

copy-chunk chunk-name -> [new-name | nil]
copy-chunk-fct chunk-name -> [new-name | nil]

Arguments and Values:

chunk-name ::= a symbol which should be the name of a chunk
new-name ::= a symbol which will be a unique name for a new chunk

Description:

Copy-chunk creates a copy of the chunk chunk-name in the current model of the current meta-process
and returns the name of the newly created chunk. The newly created copy has the same slots and
values as the chunk chunk-name. The values of the parameters defined for the new chunk will have
the default value unless the parameter was specified with a copy-function, in which case, the value

will be the one returned by that function.

If chunk-name does not name a chunk in the current model or there is no current model or meta-

process then a warning is displayed and nil is returned.

Examples:

These examples assume that there are chunks named a and b in the current model.

> (copy-chunk a)
A-0

> (copy-chunk-fct 'b)
B-0

E> (copy-chunk not-a-chunk)
#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (copy-chunk a)
#|Warning: get-chunk called with no current model. |#
NIL

E> (copy-chunk a)

#|Warning: get-chunk called with no current meta-process. |#
NIL

82

ACT-R7 11-Jul-17 ACT-R Reference Manual

chunk-copied-from

Syntax:

chunk-copied-from chunk-name -> [original-name | nil] {other}
chunk-copied-from-fct chunk-name -> [original-name | nil] {other}

Arguments and Values:

chunk-name ::= a symbol which should be the name of a chunk
original-name ::= a symbol which is the name of a chunk
other ::= a generalized boolean indicating whether this chunk was a copy and is still unmodified

Description:

The chunk-copied-from command returns one or two values. If chunk-name is the name of a chunk in
the current model of the current meta-process then two values will be returned. If chunk-name was
created with copy-chunk, it has not been modified since its creation, and the original chunk has not
been modified such that it now differs from the copy (the original could have been modified but if it
is still a match using equal-chunks it is still considered the same) then the name of the chunk from
which chunk-name was copied is returned as both the first and second value. If it was not created
using copy-chunk, it has since been modified, or the original chunk has been modified in such a way
that the two now differ (including being deleted) then nil is returned for the first value. If the chunk
was created using copy-chunk and has not been modified then the second value will be the name of
the chunk from which it was copied (which may no longer be an interned symbol if that chunk was

purged) otherwise the second value will also be nil.

If chunk-name does not name a chunk in the current model or there is no current model or meta-

process then a warning is displayed and a single value of nil is returned.

This command is rarely used by modelers because needing to copy chunks and keep track of how
they came about are not typical actions. However, it can be important to those creating new modules
where it can be used to determine if a chunk passed in as part of a request is a copy of a chunk which
the module had placed into a buffer i.e. the request is using a copy of a chunk for which the module

has created the original.

Examples:

1> (chunk-type test slotl slot2)
TEST

2> (define-chunks (a slotl 10 slot2 "answer") (b slotl a))

83

ACT-R7 11-Jul-17

(A B)

3> (copy-chunk a)
A-0

4> (copy-chunk b)
B-0

5> (chunk-copied-from a-0)
A
A

6> (chunk-copied-from a)
NIL
NIL

7> (mod-chunk a slotl 5)
A

8> (chunk-copied-from-fct 'a-0)
NIL
A

9> (chunk-copied-from-fct 'b-0)
B
B

10> (mod-chunk b-0 slot2 10)
B-0
11> (chunk-copied-from b-0)
NIL
NIL

E> (chunk-copied-from-fct 'not-a-chunk)

ACT-R Reference Manual

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#

NIL

E> (chunk-copied-from b-0)

#|Warning: get-chunk called with no current model.

NIL

E> (chunk-copied-from b-0)

#|Warning: get-chunk called with no current meta-process. |#

NIL

chunks

Syntax:
chunks -> [(chunk-name?*) | nil]

Arguments and Values:

chunk-name ::= the name of a chunk in the current model

Description:

ACT-R7 11-Jul-17 ACT-R Reference Manual

The chunks command returns a list of the names of all the chunks defined in the current model of the

current meta-process in no particular order.

If there is no current model or current meta-process then a warning is printed and nil is returned.

Examples:

> (chunks)
(GREEN CYAN SPEECH C DARK-CYAN RED-COLOR B-0 OVAL ...)

E> (chunks)
#|Warning: chunks called with no current model. |#
NIL

E> (chunks)
#|Warning: chunks called with no current meta-process. |#
NIL

chunk-slot-equal

chunk-slot-equal val-1 val-2 -> equal-result
Arguments and Values:

val-1 ::= any value
val-2 ::= any value
equal-result ::= a generalized boolean indicating whether the chunks are equal

Description:

The chunk-slot-equal function is used to determine if two values are considered equivalent for the

contents of slots in chunks. The values will be equivalent if one of the following is true:

* the values are eq
* both values are symbols which name chunks in the current model and those chunks return true

from eq-chunks

* both values are strings and those strings return true from string-equal

* if the values are not both chunk names or not both strings and they return true from equalp

If the two values are equivalent, then a true value is returned. Otherwise, nil will be returned.

Examples:

> (chunk-slot-equal 1 1)
T

85

ACT-R7 11-Jul-17 ACT-R Reference Manual

> (chunk-slot-equal 1 1.5)
NIL

> (chunk-slot-equal "Stringl" "strING1")
T

> (chunk-slot-equal 'not-a-chunk 'not-a-chunk)
T

> (chunk-slot-equal 'not-a-chunk :not-a-chunk)
NIL

1> (define-chunks (c1)(c2))
(C1 C2)

2> (chunk-slot-equal 'cl 'c2)
NIL

3> (merge-chunks c1 c2)
c1

4> (chunk-slot-equal 'cl 'c2)
T

equal-chunks

equal-chunks chunk-name-1 chunk-name-2 -> equal-result
equal-chunks-fct chunk-name-1 chunk-name-2 -> equal-result

Arguments and Values:

chunk-name-1 ::= a symbol that should be the name of a chunk
chunk-name-2 ::= a symbol that should be the name of a chunk
equal-result ::= a generalized boolean indicating whether the chunks are equal

Description:

The equal-chunks command can be used to determine if the chunks named by chunk-name-1 and
chunk-name-2 in the current model of the current meta-process are equivalent chunks in the current
model. They will be equivalent if they are eq-chunks or if they have the same set of slots and for
each slot the values of those slots in the two chunks are the same as determined by the chunk-slot-
equal function. If the two chunks are equivalent, then a true value is returned. Otherwise, nil will be

returned.
If either name does not name a chunk or there is no current model or current meta-process, then a

warning is printed and nil is returned.

Examples:

86

ACT-R7

1> (chunk-type testl slotl slot2)
TEST1

2> (chunk-type test2 slot2 slot3)
TEST2

3> (define-chunks (cl1l isa testl)
(c2 isa test2)

11-Jul-17

(c3 isa testl slotl 10 slot2 "value")
(c4 isa testl slotl 10 slot2 "VALUE")
(c5 isa testl slot2 10)
(c6 isa test2 slot2 10))

(C1 C2 C3 C4 C5 C6)

4> (equal-chunks c1 c2)
T

5> (equal-chunks-fct 'cl 'c3)
NIL

6> (equal-chunks-fct 'c3 'c4)
T

7> (equal-chunks c5 c6)
T

8> (mod-chunk c5 slot3 t)
C5

9> (equal-chunks c5 c6)
NIL

E> (equal-chunks not-a-chunk free)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model.

NIL

E> (equal-chunks c1 c2)

#|Warning: get-chunk called with no
#|Warning: get-chunk called with no
NIL

E> (equal-chunks c1 c2)
#|Warning: get-chunk called with no

#|Warning: get-chunk called with no
NIL

eq-chunks

Syntax:

current
current

current
current

model. |#
model. |#

meta-process.
meta-process.

eqg-chunks chunk-name-1 chunk-name-2 -> equal-result
eqg-chunks-fct chunk-name-1 chunk-name-2 -> equal-result

Arguments and Values:

chunk-name-1 ::

a symbol that should be the name of a chunk

chunk-name-2 ::= a symbol that should be the name of a chunk
equal-result ::= a generalized boolean indicating whether the chunks are the same

| #
| #

ACT-R Reference Manual

| #

87

ACT-R7 11-Jul-17

Description:

ACT-R Reference Manual

Eqg-chunks is used to determine if the chunks named by chunk-name-1 and chunk-name-2 are the

exact same chunk in the current model of the current meta-process. They will be the same chunk if

chunk-name-1 and chunk-name-2 are the same symbol or if the two named chunks have been

merged. If they are the same chunk, then a true value is returned. Otherwise nil will be returned.

If either name does not name a chunk or there is no current model or current meta-process, then a

warning is printed and nil is returned.

Examples:

1> (chunk-type testl slotl slot2)
TEST1

2> (chunk-type test2 slot2 slot3)
TEST2

3> (define-chunks (c1) (c2)
(c3 isa testl slot2 10)
(c4 isa test2 slot2 10))
(C1 c2 C3 c4)

4> (eqg-chunks c1 c1)
T

5> (eqg-chunks-fct 'cl 'c2)
NIL

6> (merge-chunks c1 c2)
Cc1

7> (eq-chunks c1 c2)
T

8> (eq-chunks c3 c4)
NIL

E> (eq-chunks c1 not-a-chunk)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model.

NIL

E> (eq-chunks c1 c2)

#|Warning: get-chunk called with no current model. |#
#|wWarning: get-chunk called with no current model. |#
NIL

E> (eq-chunks c1 c2)

#|wWarning: get-chunk called with no current meta-process. |#
#|Warning: get-chunk called with no current meta-process. |#
NIL

delete-chunk

88

ACT-R7 11-Jul-17 ACT-R Reference Manual
Syntax:

delete-chunk chunk-name -> [chunk-name | nil]
delete-chunk-fct chunk-name -> [chunk-name | nil]

Arguments and Values:
chunk-name ::= a symbol that should be the name of a chunk
Description:

Delete-chunk removes the chunk named chunk-name from the set of chunks in the current model of
the current meta-process. If chunk-name is the name of a chunk in the current model then after that

chunk is deleted chunk-name is returned.

If chunk-name has been marked as immutable then it cannot be deleted, a warning will be printed and

nil will be returned.

If chunk-name does not name a chunk in the current model or there is no current model or current

meta-process then a warning is printed and nil is returned.

Note: there is no additional clean-up done in conjunction with deleting the chunk. Thus, if it is used
as a slot value in other chunks or currently residing in a buffer the consequences of deleting it are
undefined and warnings or errors could result from later actions involving such chunks or buffers.
Delete-chunk should be used rarely and only when it is certain that the chunk being deleted is not

referenced elsewhere.

Examples:

These examples assume that chunks named a, b, and c exist.

> (delete-chunk a)
A

1> (delete-chunk-fct 'b)
B

2E> (delete-chunk b)
#|Warning: B does not name a chunk in the current model. |#
NIL

1> (make-chunk-immutable 'c)
T

2E> (delete-chunk c)

#|Warning: Cannot delete chunk C because it is marked as immutable. [#
NIL

89

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (delete-chunk c)

#|Warning: get-chunk called with no current model. |#
NIL

E> (delete-chunk c)

#|Warning: get-chunk called with no current meta-process. |#
NIL

purge-chunk

Syntax:

purge-chunk chunk-name -> [t | nil]
purge-chunk-fct chunk-name -> [t | nil]

Arguments and Values:
chunk-name ::= a symbol that should be the name of a chunk
Description:

Purge-chunk removes the chunk named chunk-name from the set of chunks in the current model of
the current meta-process using delete-chunk and releases the name of that chunk using the release-
name command as described under the naming module. If chunk-name is the name of a chunk in the

current model and its name was released then t is returned.

If chunk-name does not name a chunk in the current model or there is no current model or meta-

process then a warning is printed and nil is returned.
If the chunk is deleted, but the name is not released nil is returned without a warning being printed.

As with delete-chunk, there is no additional clean-up done in conjunction with purging the chunk.
Thus, if it is used as a slot value in another chunk or currently residing in a buffer undefined

consequences could arise.

Because purge-chunk also attempts to unintern the name of the chunk it should only be used for
chunks for which the name was automatically generated by ACT-R or explicitly generated with the
new-name command. This is not going to be a command used by most modelers. However, in
situations where (computer) memory usage is important in long running models or models which

generate a lot of temporary chunks explicitly freeing some of that space may be necessary.

Examples:

90

ACT-R7 11-Jul-17 ACT-R Reference Manual

These examples assume that there are chunks named a and b.
1> (copy-chunk b)
B-0

2> (purge-chunk-fct 'b-0)
T

3E> (purge-chunk b-0)
#|Warning: B-0 does not name a chunk in the current model. |#
NIL

> (purge-chunk a)
NIL

E> (purge-chunk a)

#|Warning: get-chunk called with no current model. |#
NIL

E> (purge-chunk a)

#|Warning: get-chunk called with no current meta-process. |#
NIL

merge-chunks

Syntax:

merge-chunks chunk-name-1 chunk-name-2 -> [chunk-name-1 | nil]
merge-chunks-fct chunk-name-1 chunk-name-2 -> [chunk-name-1 | nil]

Arguments and Values:

chunk-name-1 ::= a symbol that should be the name of a chunk
chunk-name-2 ::= a symbol that should be the name of a chunk

Description:

If the chunks named by chunk-name-1 and chunk-name-2 are equivalent chunks as determined by
equal-chunks then both chunks are replaced by a single chunk. Effectively, the two chunks are
merged into one chunk. The “true name” of the merged chunk will be chunk-name-1, but references

which use either name will still be valid and now refer to the single chunk resulting from the merge.

If the chunks are merged, then any additional chunk parameters that have been added to the chunks
will remain those that existed for chunk-name-1 unless there is a merge-function defined for the

parameter.

91

ACT-R7 11-Jul-17 ACT-R Reference Manual

If either chunk is later deleted, both of the chunks will become unavailable i.e. deleting any one of a

set of merged chunks deletes all of those merged chunks since there is only one underlying chunk.

If the chunks are equivalent as tested by eg-chunks then no actions are taken and chunk-name-1 is

returned.
If the chunks are successfully merged, then chunk-name-1 is returned.
If the chunks are not equal-chunks nil is returned.

If either name does not name a chunk in the current model of the current meta-process or there is no

current model or current meta-process then a warning is displayed and nil is returned.

The merge-chunks command is primarily for use by the declarative memory module, and it is not
expected to be used elsewhere but is available if one finds a need. As with delete-chunk, it should be
used carefully to avoid circumstances were chunks to which other modules already have references

are merged which could result in unexpected consequences.

Examples:

1> (chunk-type test slotl slot2)
TEST

2> (define-chunks (a slotl 10)

(b slot1 10)

(c slotl 10 slot2 t))
(A BC)

3> (merge-chunks a a)
A

4> (eqg-chunks a b)
NIL

5> (merge-chunks-fct 'a 'b)
A

6> (eq-chunks a b)
T

7> (merge-chunks a c)
NIL

E> (merge-chunks a not-a-chunk)
#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (merge-chunks a b)

#|Warning: get-chunk called with no current model. |[#
#|Warning: get-chunk called with no current model. |#
NIL

92

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (merge-chunks a b)

#|Warning: get-chunk called with no current meta-process. |#
#|Warning: get-chunk called with no current meta-process. |#
NIL

create-chunk-alias

Syntax:

create-chunk-alias chunk-name alias -> [alias | nil]
create-chunk-alias-fct chunk-name alias -> [alias | nil]

Arguments and Values:

chunk-name ::= a symbol that should be the name of a chunk
alias ::= a symbol that should not be the name of a chunk

Description:

If the chunk specified by chunk-name exists in the current model of the current meta-process and the

symbol provided as alias is not the name of a chunk in the current model of the current meta-process

then alias will be added as a reference to the chunk chunk-name. This works essentially the same as

if a chunk named alias had been merged with the chunk named chunk-name.

If the alias is successfully created, then alias is returned.

If chunk-name does not name a chunk in the current model, alias is not a symbol, alias is already the

name of a chunk in the model, or there is no current model or meta-process then a warning is

displayed and nil is returned.

This command is not likely to be used often, but it may be helpful if a chunk which has a long name

is generated automatically by the model and one needs to perform lots of actions or tests using that

chunk.

Examples:
1> (define-chunks (a) (b))
(A B)

2> (chunk-p alias)
NIL

3> (create-chunk-alias a alias)
ALIAS

4> (eqg-chunks a alias)

93

ACT-R7 11-Jul-17 ACT-R Reference Manual

T
5E> (create-chunk-alias-fct 'a 'b)

#|Warning: B is already the name of a chunk in the current model and cannot be used as an
alias. |#

NIL

E> (create-chunk-alias c new-chunk-name)

#|Warning: C is not the name of a chunk in the current model. [#

NIL

E> (create-chunk-alias a alias)

#|Warning: create-chunk-alias called with no current model. |#

NIL

E> (create-chunk-alias a alias)

#|Warning: create-chunk-alias called with no current meta-process. |#
NIL

true-chunk-name

Syntax:

true-chunk-name chunk-name -> [true-name | chunk-name]
true-chunk-name-fct chunk-name -> [true-name | chunk-name]

Arguments and Values:

chunk-name ::= any Lisp value
true-name ::= a symbol that is the name of a chunk in the current model

Description:

True-chunk-name is used to find the “true name” of a chunk in the current model of the current meta-
process. The true name of a chunk which has not been merged with another chunk is its own name.
The true name of a chunk that has been merged with another chunk is the true name of the chunk that
was returned from a merging of that chunk with another. The true name of a chunk alias is the true

name of the chunk to which it was aliased.

If chunk-name is the name of a chunk in the current model then its true name is returned. If chunk-

name is any other value, then chunk-name is returned.

If there is no current model or current meta-process then a warning is printed and chunk-name is

returned.

Examples:
1> (define-chunks (a) (b) (c))

94

ACT-R7 11-Jul-17 ACT-R Reference Manual

(A B C)

2> (merge-chunks a b)
A

3> (create-chunk-alias b alias)
ALIAS

4> (true-chunk-name a)
A

5> (true-chunk-name-fct 'c)
6> (true-chunk-name b)

7> (true-chunk-name alias)
8> (true-chunk-name d)

> (true-chunk-name 100)

100

E> (true-chunk-name t)

#|Warning: get-chunk called with no current model. |[#
T

E> (true-chunk-name "Name")

#|Warning: get-chunk called with no current meta-process. |#
"Name"

normalize-chunk-names
normalize-chunk-names { unintern } -> nil
Arguments and Values:

unintern ::= a generalized boolean indicating whether to delete the merged chunks and release the
names

Description:

The normalize-chunk-names command will iterate through all chunks in the current model and
replace all chunk references in slots with the true name of that chunk. That may be useful for

debugging purposes and the naming module has a parameter (:ncnar) which can trigger this call

automatically.

In addition, if the unintern parameter is true then all chunks which have been merged with other
chunks (those for which their name is not the chunk’s true name) will be deleted from the model and

the chunk name will be released using release-name.

95

ACT-R7 11-Jul-17 ACT-R Reference Manual

The command will always return nil. If there is no current model or current meta-process, then a

warning will be printed indicating that.

Notes: This command may take a long time to run if the model has a large number of chunks. Also,
the unintern option is generally not recommended because it may cause problems for modules which
have stored internal references to those temporary names. However, in some extreme circumstances
(a very long continuous run or a model which does a lot of buffer manipulations over a long run) a
model can generate so many chunk name symbols than it can become unable to continue running (the
Lisp heap or the physical memory of the machine is exhausted) thus calling normalize-chunk-names
periodically with the unintern option would be necessary to continue running. If you are
encountering such situations, please let me know about it because there may be other options or

changes that could be made.

Examples:

To show the command in use, there must be a chunk which has been merged with another and also
used in a slot value.

1> (chunk-type test slotl slot2)
TEST

2> (define-chunks (c1 slotl 10 slot2 t)
(c2 slotl 1 slot2 t)
(c3 slot1 c2))

(C1 Cc2 C3)
3> (pprint-chunks c3)
C3

SLOT1 C2
(C3)
4> (merge-chunks cl1 c2)
Cc1
5> (normalize-chunk-names)
NIL
6> (pprint-chunks c3)
C3

SLOT1 C1
(C3)
7> (pprint-chunks c2)
Cc2 (C1)

SLOT1 1

SLOT2 T
(C2)

8> (normalize-chunk-names t)

96

ACT-R7 11-Jul-17 ACT-R Reference Manual
NIL

9> (pprint-chunks c2)
(:ERROR)

E> (normalize-chunk-names)

#|Warning: No current model in which to normalize chunk names. |#
NIL

97

ACT-R7 11-Jul-17 ACT-R Reference Manual

General Parameters

General parameters are the primary means of configuring the operation of ACT-R both from a
usability standpoint and at the level of controlling the performance of a model. They can be used to
control how much output is shown when a model runs or to adjust how long it takes a model to
retrieve a chunk from its declarative memory as well as many other things. Each module in the
system can make available any number of general parameters that are relevant to its operation. The
specific parameters of each module will be described in that module’s section. In this section, the
common aspects of those parameters will be described along with the command that is used to set,

get, and show them.

The general parameters are each referenced by a name which is a Lisp keyword e.g. :v or :trace-
detail, and can be set to some value which is meaningful to the module that owns the parameter.
Each one has a default value specified by the owning module and often there are limits as to what
values can be given to a particular parameter. Attempting to set an invalid value will result in a
warning and no change in the parameter. In most cases the parameters are independent between
models i.e. two concurrent models could have different values for the same general parameter.
However, there can be exceptions to that. For example, a module that allows models to connect to
some external simulation might provide parameters to specify where to connect to that simulation,
but may require that all models connect to the same simulation. None of the provided modules
operate that way, but it is worth noting that modules could be added which have parameters that are

linked between models.

One final thing to note about general parameters is that it is possible for modules other than the

parameter’s owning module to monitor the parameter setting and possibly modify the parameter. The

details of doing that are covered in the module creation section. Because of that one should be aware
that it is possible for parameters to start with values other than their specified default after a model is
reset or to be set to a value different than one the user requests if a monitoring module changes it. An
example of the first situation (a starting value other than the default) exists in the main ACT-R
system with the :do-not-harvest parameter. The procedural module owns that parameter and specifies
a default value of nil, but the goal module will change that parameter at reset time to include the goal
buffer. It is also the case that if one starts the ACT-R Environment then several of the tracing and
hook parameters will be set automatically to values which allow the Environment to operate. There

are no modules in the provided set which modify the values a user specifies, but an example where

98

ACT-R7 11-Jul-17 ACT-R Reference Manual

such a situation could be used might be a module which provides support for modeling alertness or
sleepiness. It could automatically adjust the parameters that a user specifies for controlling other
modules to take into account the current alertness setting. Of course it does not have to work that

way, but it is a possibility which modelers and module writers should know about.

Commands

sgp
Syntax:

sgp {[param-name*| param-value-pair*]} -> [nil | ([param-value | :bad-parameter-name | :invalid-value]*)]
sgp-fct ({[param-name*| param-value-pair*]}) -> [nil | ([param-value | :bad-parameter-name |
:invalid-value]*)]

Arguments and Values:

param-name ::= a keyword which names a parameter

param-value-pair ::= param-name new-param-value

new-param-value ::= a Lisp value to which the preceding param-name is to be set
param-value ::= the current value of a param-name

Description:

Sgp is used to set or get the value of the parameters from the modules of the current model in the

current meta-process.

If no parameters are provided, all of the current model's parameters are printed to the model’s
command output stream. They are organized alphabetically by module name and then by parameter
name within a module, and nil is returned. For each parameter, its name and current value is printed
followed by the default value and any documentation provided by the module that owns the

parameter.

If all of the parameters passed to sgp are keywords, then it is a request for the current values of those
general parameters’ values in the current model. Those parameters are printed and a list of their
values in the order requested is returned. If any of the names are not of valid parameters then a
warning is displayed and the keyword :bad-parameter-name is returned for that position in the list.
Note: because the test to determine that a call to sgp is a request for parameter values is that all the
values passed to sgp are keywords, a module should never have a parameter accept a keyword as a

possible value because it will not be possible to set such a parameter value on its own.

99

ACT-R7 11-Jul-17 ACT-R Reference Manual

If there are any non-keyword parameters in the call to sgp and the total number of elements is even,
then they are assumed to be pairs of a parameter name and a parameter value. Each of those
parameter values will be passed to the corresponding parameter’s owning module and all monitoring
modules. The return value will be the current settings of those parameters in the order given (the
values may or may not be the same as the values passed in to set them depending on the module)
unless a parameter value was not of the appropriate type as required by the module. In that case, a

warning is printed and the value returned in that position will be the keyword :invalid-value.

If there are non-keywords passed to sgp and the number of items is odd, or if there is no current

model or current meta-process at the time of the call, then a warning is displayed and nil is returned.

Examples:

:DIGIT-DETECT-DELAY 0.3 default: 0.3 Lag between onset and detectability for digits
:DIGIT-DURATION 0.6 default: 0.6 : Default duration for digit sounds.
:DIGIT-RECODE-DELAY 0.5 default: 0.5 Recoding delay for digit sound content.
:HEAR-NEWEST-ONLY NIL default: NIL : Whether to stuff only the newest unattended

audio-event from the audicon into the aural-location buffer.

:SOUND-DECAY-TIME 3.0 default: 3.0 : The amount of time after a sound has finished
it takes for the sound to be deleted from the audicon

:TONE-DETECT-DELAY ©0.05 default: 0.05 : Lag between sound onset and detectability for
tones

:TONE-RECODE-DELAY 0.285 default: 0.285 : Recoding delay for tone sound content.

> (sgp :v :1f)

:V T (default T) : Verbose controls model output
:LF 1.0 (default 1.0) : Latency Factor

(T 1.0)

> (sgp-fct '(:v nil :1f 4.5))
(NIL 4.5)

E> (sgp-fct '(:v t :1f nil))
#|Warning: Parameter :LF cannot take value NIL because it must be a positive number. |#
(T :INVALID-VALUE)

E> (sgp :not-a-parameter 10)

#|Warning: Parameter :NOT-A-PARAMETER is not the name of an available parameter |#
(:BAD-PARAMETER-NAME)

E> (sgp :esc t :v)

#|Warning: 0dd number of parameters and values passed to sgp. |#
NIL

E> (sgp)

100

ACT-R7 11-Jul-17 ACT-R Reference Manual

#|Warning: sgp called with no current model. |#
NIL

E> (sgp) _
#|Warning: sgp called with no current meta-process. |#
NIL

get-parameter-default-value

Syntax:
get-parameter-default-value param-name -> [param-default | :bad-parameter-name]
Arguments and Values:

param-name ::= a keyword which should name a parameter
param-default ::= the default value specified for param-name when it was defined

Description:

The get-parameter-default-value command is used to get the default value that a parameter was given
when it was defined. If param-name is the name of a general parameter then the default value
specified for that parameter is returned. If param-name does not name a general parameter then a

warning is printed and :bad-parameter-name is returned.

Examples:

> (get-parameter-default-value :v)
T

E> (get-parameter-default-value :not-a-param)

#|Warning: Invalid parameter name :NOT-A-PARAM in call to get-parameter-default-value. |#
:BAD-PARAMETER-NAME

with-parameters

Syntax:

with-parameters parameter-list form* -> [result | nil]
with-parameters-fct parameter-list form* -> [result | nil]

Arguments and Values:

parameter-list ::= ({param-name value}*)

param-name ::= a keyword which should name a parameter

value ::= a Lisp value to which the preceding parameter should temporarily be set
form ::= a valid Lisp expression to evaluate

result ::= the value returned from the last form evaluated

101

ACT-R7 11-Jul-17 ACT-R Reference Manual

Description:

The with-parameters command is used to temporarily set some parameters in the current model of the
current meta-process and then execute some commands. If all of the param-name values provided
name valid parameters then each will be set to the corresponding value given before executing the
forms. After those forms have been evaluated each of those parameters will be set back to the value
it had previously and the result of the last form evaluated will be returned. The forms are evaluated

in an unwind-protect so that the restoring of the parameters occurs even if the forms result in an error.

If any of the param-name values do not name a valid parameter or there is no current model or
current meta-process then a warning will be printed, the forms will not be evaluated, and nil is

returned.

The difference between with-parameters and with-parameters-fct is not quite the same as it is for
other commands. In this case both are macros, but with-parameters-fct evaluates the items on the
parameter-list and with-parameters does not. Thus the parameter-list for with-parameters will look
similar to what one would provide to sgp whereas the parameter-list for with-parameters-fct may

contain expressions and variables which need to be evaluated.

Examples:

This example sequence assumes that the count model from unit 1 of the tutorial is loaded.

1> (reset)

DEFAULT

2> (run .05)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050 DECLARATIVE START-RETRIEVAL
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.050 ------ Stopped because time limit reached

0.05

13

NIL

3> (with-parameters (:v nil)
(run .05))

0.05

8

NIL

102

ACT-R7

11-Jul-17 ACT-R Reference Manual

4> (with-parameters-fct (:trace-detail 'low)

(run .05))
0.150 PROCEDURAL

2
0.150 ------

0.05

6

NIL

5> (run .05)
0.200 DECLARATIVE
0.200 DECLARATIVE
0.200 PROCEDURAL
0.200 PROCEDURAL
0.200 PROCEDURAL
0.200 PROCEDURAL
0.200 ------

0.05

7

NIL

E> (with-parameters (:not-valid 10)
(run .05))

#|Warning:

NIL

E> (with-parameters-fct (:v)

(run .05))

#|Warning: 0dd length parameters list in call to with-parameters. The body is ignored.

NIL

E> (with-parameters (:v t)
(run 1))

PRODUCTION-FIRED INCREMENT

Stopped because time limit reached

RETRIEVED-CHUNK D
SET-BUFFER-CHUNK RETRIEVAL D
CONFLICT-RESOLUTION
PRODUCTION-SELECTED INCREMENT
BUFFER-READ-ACTION GOAL
BUFFER-READ-ACTION RETRIEVAL
Stopped because time limit reached

:NOT-VALID is not the name of a parameter. with-parameters body ignored.

#|Warning: with-parameters called with no current model. |#

NIL

E> (with-parameters (:v t)
(run 1))

#|Warning: with-parameters called with no current meta-process. |#

NIL

| #

103

ACT-R7 11-Jul-17 ACT-R Reference Manual

System Parameters

System parameters are similar to general parameters, but they are only used for configuring the
operation of the ACT-R software itself. They do not have to be connected to any particular module
or model and changing one will affect all models. They also retain their settings across a reset or
clear-all therefore they will generally only need to be set once if one needs to use them and probably

will not be included in a model definition.

Commands

ssp

Syntax:

ssp {[param-name* | param-value-pair*]} -> [nil | ([param-value | :bad-parameter-name | :invalid-value]*)]
ssp-fct ({[param-name* | param-value-pair*]}) -> [nil | ([param-value | :bad-parameter-name |
:invalid-value]*)]

Arguments and Values:

param-name ::= a keyword which names a parameter

param-value-pair ::= param-name new-param-value

new-param-value ::= a Lisp value to which the preceding param-name is to be set
param-value ::= the current value of a param-name

Description:

The ssp command is used to set or get the value of the system parameters.

If no parameters are provided, all of the current system parameters are printed to *standard-output*
and nil is returned. For each parameter, its name and current value is printed followed by the default

value and any documentation it has.

If all of the parameters passed to ssp are keywords, then it is a request for the current values of those
parameters. Those parameters are printed and a list of their values in the order requested is returned.
If any of the names are not of valid parameters then a warning is displayed and the keyword :bad-

parameter-name is returned for that position in the list.

If there are any non-keyword parameters in the call to ssp and the total number of elements is even,

then they are assumed to be pairs of a parameter name and a parameter value. Each of those

104

ACT-R7 11-Jul-17 ACT-R Reference Manual

parameters will be set to the provided value. The return value will be the current settings of those
parameters in the order given unless a parameter value was not an appropriate value. In that case, a

warning is printed and the value returned in that position will be the keyword :invalid-value.

If there are non-keywords passed to ssp and the number of items is odd then a warning is displayed

and nil is returned.

Examples:

> (ssp)

:DEFAULT-ENVIRONMENT-PORT 2621 default: 2621 : Default port
:STARTING-PARAMETERS NIL default: NIL : Parameter
:SAFE-PERCEPTUAL -BUFFERS (TEMPORAL ...) default: (TEMPORAL ...) : Perceptual ...
:MCTRT NIL default: NIL : rehash-threshold
:DEFAULT-ENVIRONMENT-HOST "127.0.0.1" default: "127.0.0.1" : Default address
:MCTS NIL default: NIL : initial size of ...
:CLOSE-EXP-WINDOWS-ON-RESET NIL default: NIL : Whether the AGI

> (ssp :default-environment-port)
(2621)

> (ssp :default-environment-port 242)
(242)

E> (ssp :default-environment-port 'x)

#|Warning: System parameter :DEFAULT-ENVIRONMENT-PORT cannot take value (QUOTE X) because
it must be positive number. |#

(:INVALID-VALUE)

E> (ssp :bad-name)
(:BAD-PARAMETER-NAME)

E> (ssp :default-environment-port 100 :mctrt)

#|Warning: 0dd number of parameters and values passed to ssp. |#
NIL

105

ACT-R7 11-Jul-17 ACT-R Reference Manual

Printing and Output

Many of the commands in ACT-R result in output being printed. There is a printing module which
can be used to control where and when certain things are printed, and that is described in detail in a
separate section. For now the general aspects of the output will be described as well as the

commands that are used to generate the output.

There are three basic types of output that ACT-R generates: model output, command output, and
warnings. They are generated by different output functions described below and it is up to module
writers to use the appropriate ones for any output which they create so as to conform to what is

expected.

Model Output

Model output is essentially all the things that are printed by a running model. The trace of the model
is considered model output as are various internal module specific traces and notices. The default is

to send the model output to the Lisp stream *standard-output*, but the printing module has a

parameter named :v which allows one to send the output elsewhere or disable it.

Command Output

Command output is what gets printed when one calls one of the ACT-R commands, for example the
parameter listing when one calls sgp. By default this is also sent to the *standard-output* stream. It

is controlled by a separate printing module parameter named :cmdt. Thus, one could have model

output going one place and command output going elsewhere if desired. Often, one does not need or
want the printed output from an ACT-R command because only the returned value is important. In
those situations, there is a command called no-output that can be used to temporarily disable

command output.

Warnings

Warnings from ACT-R are always enclosed inside of a Lisp comment block (between the characters
#| and |[#) and start with “Warning:”. The reason they are inside a comment block is so they do not
create a problem if someone is using Lisp to read an output file generated by a model trace which
might contain warnings. It also distinguishes them from any other warnings that may occur within

the Lisp. There are two general classes of warnings and they are created with different commands.

106

ACT-R7 11-Jul-17 ACT-R Reference Manual

The first is referred to as model warnings. These are things like “undefined chunk FOO being
created with no slots.” They inform the modeler of something that was assumed or may be unusual
within a model. They are generally just hints or suggestions and can often be ignored. In fact, there is
a parameter switch to actually suppress such warnings if desired (though if the model is not working
as one would expect turning the model warnings back on and reading them carefully is probably a
good first thing to look at). The other type is just referred to as a warning, and they are generated
when an ACT-R command receives invalid parameters or a more serious issue has occurred e.g. the
“... called with no current model” warning. These are usually more important issues and cannot be
turned off with a simple switch. Warnings are sent to the Lisp stream *error-output*. Model
warnings are sent to both the stream *error-output* as well as to the current model’s model output

stream if it differs from *error-output*.

Below are the commands that are used by the system for outputting information and which are
available for use if one wants their model or experiments using ACT-R to print in the ways described
above. Those adding new modules to the system should use the appropriate commands for any

output that their module generates.
Commands

model-output

Syntax:

model-output control-string {args*} -> nil

Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

Description:

Model-output is used to print output to the current model’s model output stream, which defaults to

standard-output and is controlled by the printing module. It passes the provided control-string and

args to format for output followed by a new line if model output is enabled for the current model. It
does not test the control-string or args for correctness, so any problems will likely trigger an error or

warning from the format function.

If there is no current model a warning is printed.

107

ACT-R7 11-Jul-17 ACT-R Reference Manual

It always returns nil.

Examples:

> (model-output "This is ~A the ACT-R ~d model-output command" "output from" 6)
This is output from the ACT-R 6 model-output command

NIL

E> (model-output "This is ~A the ACT-R ~d model-output command" "output from" 6)

#|Warning: get-module called with no current model. |#
NIL

meta-p-output

Syntax:

meta-p-output control-string {args*} -> nil
Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

Description:

Meta-p-output is used to print output to all of the models in the current meta-process. It uses each
model’s model output stream as if model-output were used, but only prints once to a given stream in
the event that more than one model is using the same stream for model output. It does not test the
control-string or args for correctness, so any problems will likely trigger an error or warning from the

format function.
If there is no current meta-process a warning is printed.
It always returns nil.

Meta-p-output is currently used for actually printing the trace because there can be multiple models
running concurrently. It is not likely that users or module writers will have need for meta-p-output
because it is above the level of a model or module, but it is described because its results are seen

when using simultaneous multiple models.

One thing to note about meta-p-output is that it will evaluate the args separately for each stream to

which the output is written. If there are no output streams (all models have :v set to nil for example)

108

ACT-R7 11-Jul-17 ACT-R Reference Manual

then the args are not evaluated. Thus, if there are any actions with side effects in the args the results

could differ when the number of streams to which output is written changes.

Examples:

> (meta-p-output "This is from ~s" "meta-p-output")
This is from "meta-p-output"
NIL

E> (meta-p-output "This is from ~s" "meta-p-output")
#|Warning: No current meta-process in call to meta-p-output |#
NIL

command-output

Syntax:
command-output control-string {args*} -> nil
Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

Description:

Command-output is used to print output to the current model’s command output stream, which
defaults to *standard-output* and is controlled by the printing module. It passes the provided control-
string and args to format for output followed by a new line if command output is enabled for the
current model. It does not test the control-string or args for correctness, so any problems will likely

trigger an error or warning from the format function.
If there is no current model a warning is printed.
It always returns nil.

Command-output is intended for use by things that print in response to being called outside of a
model run, like the display of parameters from sgp or the chunk printing from pprint-chunks and can

be turned off by the modeler using a parameter or the no-output command.

Examples:

> (command-output "A command-output ~s" 'example)
A command-output EXAMPLE
NIL

109

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (command-output "A command-output ~s" 'example)
#|Warning: get-module called with no current model. |#
NIL

no-output

Syntax:
no-output {forms*} -> [result | nil]
Arguments and Values:

forms ::= a Lisp form to evaluate
result ::= the return value from the last form evaluated

Description:
No-output is used to disable the command output stream of the current model while evaluating the
forms provided. It returns the value returned by the last form evaluated.

If there is no current model a warning is printed and nil is returned.

No-output can be useful if one wants to get the results from some other ACT-R command without
having to see any of its output and without needing to explicitly disable and then possibly re-enable

the command output parameter.

Examples:

> (no-output (pprint-chunks))
(EXTERNAL LIGHT-GRAY INTERNAL DIGIT CURRENT FULL FREE BLACK ...)

> (no-output (sgp-fct '(:v :1f)))
(T 1.0)

E> (no-output (sgp-fct '(:v :1f)))
#|Warning: get-module called with no current model. |#
NIL

capture-model-output

Syntax:

capture-model-output {forms*} -> [output-string | nil]
Arguments and Values:

110

ACT-R7 11-Jul-17 ACT-R Reference Manual

forms ::= a Lisp form to evaluate
result ::= a string containing all the model output generated by the forms

Description:

Capture-model-output is used to save a model’s output to a string and return it. It sets both the model
output and command output streams to a string-output stream before evaluating the forms provided.
After evaluating the forms the output streams are returned to the values they had when the command

started. It returns the string generated by the string-output stream.
If there is no current model a warning is printed and nil is returned.

Examples:

> (capture-model-output (pprint-chunks free busy))
"FREE
ISA CHUNK

BUSY
ISA CHUNK

> (capture-model-output (model-output "Model...") (command-output "Command..."))
"Model. ..
Command. . .

E> (capture-model-output (pprint-chunks))
#|Warning: get-module called with no current model. |#
NIL

print-warning

Syntax:

print-warning control-string {args*} -> [result | nil]

Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

result ::= a string containing the output

Description:

Print-warning is used to print a warning message to *error-output®. It passes the provided control-

string and args to format for output after printing “#| Warning:” and followed by “[#” and a new line.

111

ACT-R7 11-Jul-17 ACT-R Reference Manual

It does not test the control-string or args for correctness, so any problems will likely trigger an error

or warning from the format function.

If *error-output* is nil then the output string from the call to format is returned, otherwise it returns

nil.

Print-warning is intended for use in printing important notices of problems or errors that occurred

within a module or command.

Examples:

> (print-warning "This is a warning from ACT-R ~a" "!I")
#|Warning: This is a warning from ACT-R !! |#

NIL

model-warning

Syntax:
model-warning control-string {args*} -> nil
Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

Description:

Model-warning is used to print a warning to the current model’s model output stream and to
standard-error if it is a different stream. It passes the provided control-string and args to format for
output after printing “#| Warning:” and followed by “[#” and a new line if model output is enabled for
the current model and model-warnings are not disabled. It does not test the control-string or args for

correctness, so any problems will likely trigger an error or warning from the format function.

If there is more than one model currently defined then the warning will also include the name of the
model in which the warning was generated. If there is no current model or meta-process then a

warning about that situation is printed instead of the specified warning.

It always returns nil.

112

ACT-R7 11-Jul-17 ACT-R Reference Manual

Model-warning is intended for use when the model causes a problem within a module or a less
serious situation has occurred which the modeler might want to be informed about but which may

often be safely ignore.

Examples:

> (model-warning "This may not be what you wanted: ~s" 'bad-value)
#|Warning: This may not be what you wanted: BAD-VALUE |#

NIL

> (with-model bar (model-warning "There is more than one model defined."))
#|Warning (in model BAR): There is more than one model defined. |#

NIL

E> (model-warning "This may not be what you wanted: ~s" 'bad-value)
#|Warning: get-module called with no current model. |#

NIL

E> (model-warning "Too many meta-processes")

#|Warning: get-module called with no current meta-process. |#
NIL

one-time-model-warning

Syntax:
one-time-model-warning tag control-string {args*} -> nil
Arguments and Values:

tag ::= any Lisp value
control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

Description:

One-time-model-warning is used to print a warning to the current model’s model output stream and
to *standard-error* if it is a different stream like model-warning does. It passes the provided control-
string and args to format for output after printing “# Warning:” and followed by “[#” and a new line
if model output is enabled for the current model, model-warnings are not disabled, and this is the first
time since that model has been reset that a warning with the specified tag has been issued as tested
using the Lisp equal function. It does not test the control-string or args for correctness, so any

problems will likely trigger an error or warning from the Lisp format function.

113

ACT-R7 11-Jul-17 ACT-R Reference Manual

If there is more than one model currently defined then the warning will also include the name of the
model in which the warning was generated. If there is no current model or meta-process then a

warning about that situation is printed instead of the specified warning.
It always returns nil.

Like model-warning, one-time-model-warning is intended for use when the model causes a problem
within a module or a less serious situation has occurred which the modeler might need to be informed
about but which may often be safely ignore. One-time-model-warning can be used if that situation

may occur repeatedly to avoid a new warning being printed each time.

Examples:

1> (one-time-model-warning :demo "This is a warning")
#|Warning: This is a warning |#
NIL

2> (one-time-model-warning :demo "This is a warning")
NIL

3> (one-time-model-warning "different tag" "Another warning")

#|Warning: Another warning |#

NIL

> (with-model bar (one-time-model-warning :other "the ~s warning" 'first))
#|Warning (in model BAR): the FIRST warning |#

NIL

E> (one-time-model-warning :demo "This is a warning")

#|Warning: get-module called with no current model. |#

NIL

E> (one-time-model-warning :demo "This is a warning")

#|Warning: get-module called with no current meta-process. |#
NIL

suppress-warnings

Syntax:

suppress-warnings {form*} -> result
Arguments and Values:

form ::= a Lisp form to evaluate
result ::= the return value from the last form evaluated

Description:

114

ACT-R7 11-Jul-17 ACT-R Reference Manual

Suppress-warnings is used to turn off all ACT-R warnings which would normally be shown while

evaluating the forms provided. It returns the value returned by the last form evaluated.

Note: suppress-warnings may also stop the output of Lisp warnings and errors because it binds
error-output to a null stream during the evaluation of the forms. Because of that, suppress-
warnings is only recommended for use in situations where one is certain that the code is correct and

the warnings can be ignored.

Examples:

1> (progn (add-dm (a isa visual-object value b)) (sgp :1f .5))

#|wWarning: Creating chunk B of default type chunk |#

#|Warning: Changing declarative parameters with chunks in dm not supported. |#
#|wWarning: Results may not be what one expects. [#

(0.5)

2> (reset)
DEFAULT

3> (suppress-warnings (add-dm (a isa visual-object value b)) (sgp :1f .5))
(0.5)

115

ACT-R7 11-Jul-17 ACT-R Reference Manual

Running the system

Running the system means executing the events that are on the queue of the current meta-process.
Those events may lead to other events being scheduled and that will continue until the condition
specified for the command used to run the system is met. There are several commands for running
the system which specify various stopping conditions as well as allowing users to specify arbitrary

end conditions.

The system can run in either a simulated time frame where the events are processed as fast as
possible or in “real time” where the execution of the events is synchronized with the passing of time
from some other source. Generally, running in real time is associated with the actual passage of time
(with a scale factor which can be specified by the modeler) and the model is constrained to that, but it

is possible to synchronize it with other time sources. For now, we will focus mostly on the simulated

time operation.

When running in simulated time the time stamps on the events control the advancement of the clock
in the meta-process. When a meta-process is created or whenever it is reset the current time is set to
0.0. The event with the lowest time stamp is always the next one executed and if that time is greater
than the current time the clock is updated. This allows the system to run much faster than real time
for most models. The important thing to remember is that the timing of the events is produced by the
modules which instantiate the ACT-R theory and thus the predictions do not depend on how the

model is run or the source of the clock.

An important thing to note is that it is a meta-process which is run. All of the models that are
included in that meta-process will be running simultaneously. The same commands are used to run

the system regardless of how many models or meta-processes are defined.

Commands
run

Syntax:

run run-time {:real-time real-time?} -> [nil | time-passed event-count break?]
Arguments and Values:

run-time ::= a number greater than 0 indicating the number of seconds to run

116

ACT-R7 11-Jul-17 ACT-R Reference Manual

real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for
the real time clock (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run

event-count ::= a number indicating how many events were executed during this run

break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

Run will run the current meta-process until there are either no events remaining to execute, run-time
seconds have passed, or a break event is executed. If the real-time? keyword parameter is provided
with a non-nil value then the model will be run in real time mode. If real-time? is a positive number
that will be used as a scale for the real time clock (a number greater than one would cause the meta-
process to run faster than real time and a number less than one would cause it to run slower than real

time).

If run-time is not a number greater than 0, or there is no current meta-process then a warning is

printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run will output a

line in the trace to indicate which condition terminated the run and it will return three values.

The first value is the number of seconds that passed for the model during this run. The second is a
count of the number of events that were executed (which could be greater than the number of lines
shown in the trace because some events may have no output), and the last indicates whether or not the

run was terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

This is the primary function used for running the system and the one you are most likely to encounter

when looking at model files.

Examples:

For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

> (run 10)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.300 PROCEDURAL CLEAR-BUFFER GOAL
0.300 PROCEDURAL CONFLICT-RESOLUTION
0.300 ------ Stopped because no events left to process
0.3
50

117

ACT-R7 11-Jul-17 ACT-R Reference Manual

NIL
> (run .1 :real-time t)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050 DECLARATIVE START-RETRIEVAL
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.100 DECLARATIVE RETRIEVED-CHUNK C
0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL C
0.100 PROCEDURAL CONFLICT-RESOLUTION
0.100 PROCEDURAL PRODUCTION-SELECTED INCREMENT
0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
0.100 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
0.160 ------ Stopped because time limit reached
0.1
19
NIL

1> (schedule-break .075)
#S(ACT-R-BREAK-EVENT ...)

2> (run 10)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050 DECLARATIVE START-RETRIEVAL
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.075 ------ BREAK-EVENT

0.075

14

T

E> (run 0)

#|Warning: run-time must be a number greater than zero. |#

NIL

E> (run 'foo)
#|Warning: run-time must be a number greater than zero. |#
NIL

E> (run 10)
#|Warning: run called with no current meta-process. |#
NIL

run-full-time

Syntax:

run-full-time run-time {:real-time real-time?} -> [nil | time-passed event-count break?]

118

ACT-R7 11-Jul-17 ACT-R Reference Manual
Arguments and Values:

run-time ::= a number greater than 0 indicating the number of seconds to run

real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for
the real time clock (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run

event-count ::= a number indicating how many events were executed during this run

break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

Run-full-time will run the current meta-process until either run-time seconds have passed or a break
event is executed. This differs from the run command because unless there is a break event run-full-
time will always run for the full run-time specified. If the real-time? keyword parameter is provided
with a non-nil value then the model will be run in real time mode. If real-time? is a positive number
that will be used as a scale for the real time clock (a number greater than one would cause the meta-
process to run faster than real time and a number less than one would cause it to run slower than real

time).

If run-time is not a number greater than 0, or there is no current meta-process then a warning is

printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run-full-time will

output a line in the trace to indicate which condition terminated the run and it will return three values.

The first value is the number of seconds that passed for the model. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the trial was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

This is also a commonly used function for running models and it is useful when fixed time sequences

are desired.

Examples:

For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

> (run-full-time 1.0)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000 PROCEDURAL PRODUCTION-SELECTED START

0.000 PROCEDURAL BUFFER-READ-ACTION GOAL

119

ACT-R7 11-Jul-17 ACT-R Reference Manual

0.300 PROCEDURAL CONFLICT-RESOLUTION

1.000 ------ Stopped because time limit reached
1.0
51
NIL

1> (schedule-break .55)
#S(ACT-R-BREAK-EVENT ...)

2> (run-full-time 2.0 :real-time t)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.300 PROCEDURAL CONFLICT-RESOLUTION
0.550 ------ BREAK-EVENT
0.55
51
T

E> (run-full-time -1)

#|Warning: run-time must be a number greater than zero. |#
NIL

E> (run-full-time "2.0")

#|Warning: run-time must be a number greater than zero. |#
NIL

E> (run-full-time 1.0)

#|Warning: run-full-time called with no current meta-process. |#
NIL

run-until-time

Syntax:
run-until-time end-time {:real-time real-time?} -> [nil | time-passed event-count break?]
Arguments and Values:

end-time ::= a number greater than 0 indicating the explicit time at which the run should stop

real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for
the real time clock (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run

event-count ::= a number indicating how many events were executed during this run

break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

Run-until-time will run the current meta-process until either the specified end-time is reached
(including if the current time is greater than the specified time) or a break event is executed. This

differs from the run and run-full-time commands because an explicit time is specified instead of a

120

ACT-R7 11-Jul-17 ACT-R Reference Manual

duration. If the real-time? keyword parameter is provided with a non-nil value then the model will be
run in real time. If real-time? is a positive number that will be used as a scale for the real time clock
(a number greater than one would cause the meta-process to run faster than real time and a number

less than one would cause it to run slower than real time).

If end-time is not a number greater than O, or there is no current meta-process then a warning is

printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run-until-time
will output a line in the trace to indicate which condition terminated the run and it will return three

values.

The first value is the number of seconds that passed for the model. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the

trace because some events may have no output), and the last indicates whether or not the trial was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Examples:

For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

1> (run-until-time .125)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050 DECLARATIVE START-RETRIEVAL
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.100 DECLARATIVE RETRIEVED-CHUNK C
0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL C
0.100 PROCEDURAL CONFLICT-RESOLUTION
0.100 PROCEDURAL PRODUCTION-SELECTED INCREMENT
0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
0.100 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
0.125 ------ Stopped because time limit reached
0.125
21
NIL

2> (run-until-time .100)

0.125
0]
0]
NIL

3> (run-until-time 10.0)

Stopped because end time already passed

121

ACT-R7 11-Jul-17 ACT-R Reference Manual

0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT
2
0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.150 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.150 DECLARATIVE START-RETRIEVAL
0.300 PROCEDURAL CONFLICT-RESOLUTION
10.000 ------ Stopped because time limit reached
9.875
31
NIL

1> (schedule-break .4)
#S(ACT-R-BREAK-EVENT ...)

2> (run-until-time .5)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.300 PROCEDURAL CONFLICT-RESOLUTION
0.400 ------ BREAK-EVENT

0.4

51

T

E> (run-until-time -10)
#|Warning: end-time must be a number greater than zero. |#
NIL

E> (run-until-time 1)
#|Warning: run-until-time called with no current meta-process. |#
NIL

run-until-condition

Syntax:
run-until-condition condition {:real-time real-time?} -> [nil | time-passed event-count break?]

Arguments and Values:

condition ::= a function or the name of a function that takes no parameters

real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for
the real time clock (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run

event-count ::= a number indicating how many events were executed during this run

break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

122

ACT-R7 11-Jul-17 ACT-R Reference Manual

Run-until-condition will run the current meta-process until either the provided condition function
returns non-nil, there are no events left to process, or a break event is executed. The condition
function will be called before every event is executed and as soon as it returns non-nil the run is
terminated. If the real-time? keyword parameter is provided with a non-nil value then the model will
be run in real time mode. If real-time? is a positive number that will be used as a scale for the real
time clock (a number greater than one would cause the meta-process to run faster than real time and a

number less than one would cause it to run slower than real time).

If condition is not a function or the name of a function, or there is no current meta-process then a

warning is printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run-until-
condition will output a line in the trace to indicate which condition terminated the run and it will

return three values.

The first value is the number of seconds that passed for the model. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the trial was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Examples:

For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

> (run-until-condition (lambda () nil))

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.300 PROCEDURAL CONFLICT-RESOLUTION
0.300 ------ Stopped because no events to process
0.3
50
NIL

1> (schedule-break .275)
#S(ACT-R-BREAK-EVENT ...)

2> (run-until-condition (lambda () nil))

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000 PROCEDURAL PRODUCTION-SELECTED START

0.000 PROCEDURAL BUFFER-READ-ACTION GOAL

0.050 PROCEDURAL PRODUCTION-FIRED START

123

ACT-R7 11-Jul-17 ACT-R Reference Manual

0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.250 PROCEDURAL BUFFER-READ-ACTION GOAL
0.275 ------ BREAK-EVENT

0.275

45

T

1> (defvar *count* 0)
*COUNT™

2> (defun stop-at-10 ()
(> (incf *count*) 10))

STOP-AT-10
3> (run-until-condition 'stop-at-10)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD -BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 ------ Stopped because condition is true
0.05
10
NIL

E> (run-until-condition "not-a-function")
#|Warning: condition must be a function. |[#
NIL

E> (run-until-condition (lambda () nil))

#|Warning: run-until-condition called with no current meta-process. |#
NIL

run-n-events

Syntax:
run-n-events num-events {:real-time real-time?} -> [nil | time-passed event-count break?]

Arguments and Values:

num-events ::= a number greater than 0 indicating the number of events to run

real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for
the real time clock (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run

event-count ::= a number indicating how many events were executed during this run

break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

Run-n-events will run the current meta-process until either num-events events have been processed,

there are no events remaining, or a break event is executed. If the real-time? keyword parameter is

124

ACT-R7 11-Jul-17 ACT-R Reference Manual

provided with a non-nil value then the model will be run in real time mode. If real-time? is a positive
number that will be used as a scale for the real time clock (a number greater than one would cause the
meta-process to run faster than real time and a number less than one would cause it to run slower than

real time).

If num-events is not a number greater than 0, or there is no current meta-process then a warning is

printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run-n-events will

output a line in the trace to indicate which condition terminated the run and it will return three values.

The first value is the number of seconds that passed for the model. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the trial was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Examples:

For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

> (run-n-events 10)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050 ------ Stopped because event limit reached
0.05
10
NIL
> (run-n-events 100)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.300 PROCEDURAL CONFLICT-RESOLUTION
0.300 ------ Stopped because no events to process
0.3
50
NIL

1> (schedule-break .225)
#S(ACT-R-BREAK-EVENT ...)

125

ACT-R7 11-Jul-17 ACT-R Reference Manual

2> (run-n-events 50)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.200 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
0.225 ------ BREAK-EVENT
0.225
35
T

E> (run-n-events 'a)

#|Warning: event-count must be a number greater than zero. |#
NIL

E> (run-n-events 10)

#|Warning: run-n-events called with no current meta-process. |#
NIL

run-step

Syntax:
run-step -> [nil | time-passed event-count break?]

Arguments and Values:

time-passed ::= a number indicating the number of seconds in model time which passed during the run
event-count ::= a number indicating how many events were executed during this run
break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

Run-step will run the current meta-process one event at a time. For each event a summary of the
event is printed to *standard-output* and the user is prompted to respond as to whether that event
should be executed, deleted, or the run terminated. This will stop for all events, even those which do
not get displayed in the trace. The user can also show various debugging information before deciding
what to do with the current event. The response is read from *standard-input* and should be one of
the characters indicated in the prompt. It will continue to run the model until the user requests it to
stop, there are no events remaining, or a break event is executed. Using run-step cannot run the

model in real time mode.
If there is no current meta-process then a warning is printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run-step will

output a line in the trace to indicate which condition terminated the run and it will return three values.

126

ACT-R7 11-Jul-17 ACT-R Reference Manual

The first value is the number of seconds that passed for the model. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the trial was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Run-step can be a useful function for debugging a model because it allows one to walk through the

events one at a time and stop to inspect the state of the system before or after any one.

Examples:
For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

> (run-step)

Next Event: 0.000 NONE CHECK-FOR-ESC-NIL #S(CENTRAL-PARAMETERS :ESC T :0L T :ER NIL)
[Albort (or [q]uit)
[D]elete

[S]how event queue
[W]aiting events
[B]Juffer contents
[V]isicon

[R]eport buffer status
[E]xecute

S

Events in the queue:

0.000 NONE CHECK-FOR-ESC-NIL #S(CENTRAL-PARAMETERS :ESC T :0L T :ER NIL)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 GOAL CLEAR-DELAYED-GOAL
Next Event: 0.000 NONE CHECK-FOR-ESC-NIL #S(CENTRAL-PARAMETERS :ESC T :0L T :ER NIL)
[Albort (or [q]uit)
[D]elete

[S]how event queue
[W]aiting events
[B]uffer contents

[V]isicon

[R]eport buffer status

[E]lxecute

e

Next Event: 0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
[Albort (or [q]uit)

[D]elete

[S]how event queue
[W]aiting events
[B]uffer contents
[V]isicon
[R]eport buffer status
[E]lxecute
e
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
Next Event: 0.000 PROCEDURAL CONFLICT-RESOLUTION
[Albort (or [q]uit)
[D]elete
[S]how event queue
[W]aiting events
[B]Juffer contents
[V]isicon

127

ACT-R7

[R]eport buffer status
[E]xecute
e
0.000 PROCEDURAL

Next Event: 0.000
[Albort (or [q]uit)
[D]elete
[S]how event queue
[W]aiting events
[B]uffer contents
[V]isicon
[R]eport buffer status
[E]lxecute
b
RETRIEVAL: empty
IMAGINAL: empty
MANUAL: empty
GOAL:
FIRST-GOAL-0

START 2

END 4

IMAGINAL-ACTION: empty
VOCAL: empty
AURAL: empty
PRODUCTION: empty
VISUAL-LOCATION: empty
AURAL-LOCATION: empty
TEMPORAL: empty
VISUAL: empty
Next Event: 0.000
[Albort (or [q]uit)
[D]elete
[S]how event queue
[W]aiting events
[B]uffer contents
[V]isicon
[R]eport buffer status
[E]lxecute
e

0.000 PROCEDURAL
Next Event: 0.000
[Albort (or [q]uit)
[D]elete
[S]how event queue
[W]aiting events
[BJuffer contents

[V]isicon
[R]eport buffer status
[E]lxecute
q
0.000 ------
0.0
4
NIL

E> (run-step)
#|Warning:
NIL

PROCEDURAL

PROCEDURAL

PROCEDURAL

11-Jul-17

CONFLICT-RESOLUTION

ACT-R Reference Manual

PRODUCTION-SELECTED START

PRODUCTION-SELECTED START

PRODUCTION-SELECTED START

START

Stepping stopped

run-step called with no current meta-process.

| #

128

ACT-R7 11-Jul-17 ACT-R Reference Manual

Scheduling Events

The event system that drives ACT-R models is also available to the modeler for use in writing
experiments or other interactive actions for the models. In fact, because ACT-R relies on the events
to trigger actions such as conflict-resolution, this is the preferred mechanism for creating experiments
or making other run-time changes. It is also essential when adding new modules because for proper
integration with other components of the system any changes which a module has on buffers as well
as when changing its internal state or affecting outside actions should occur through scheduled

events.

When writing experiments for a model, one useful approach is to have the model’s actions trigger the
events that make changes in such a way that one only needs to call one of the ACT-R “run” functions
to execute both the model and the task. That has the benefit of not introducing any discrepancies into
the model timing relative to the task and also allows for the task to be run using the provided stepping
tools or continued after a break in the model. That is not always practical for a simple model/task
and often one may want to use a “run, stop, change, run again” style (also referred to as run-stop
style). Even when using the run-stop style, it is still important to schedule any direct effects that one

makes to buffers or chunks so that the model properly notes the changes.

In general, most of the module commands will schedule some event as a response, but many of the
general commands which perform similar actions may not. For example, mod-chunk (a general
command) does not generate an event, but mod-focus (a similar command specific to the goal

module) does.

Details of events

Each event has several attributes associated with it that are specified when the event is created with
one of the scheduling functions provided. Most of the time the user will not need to work with the
events directly, but there are some situations where access to the details of an event may be useful
(for instance the event hooks allow one to add functions which see each event before or after it is

executed). Here are the attributes which an event has.
time

The simulation time at which the event will occur. All times are rounded to the millisecond when the

event is created.

129

ACT-R7 11-Jul-17 ACT-R Reference Manual
priority

When multiple events are scheduled to occur at the same time they are ordered by their priorities.
The priority is either a number or one of the keywords :max or :min. An event with a priority of
:max will occur before any event at the same time which has a priority other than :max. An event
with a priority of :min will occur after any event at the same time which has a priority other than
:min. An event with a numeric priority will be executed before any other events at the same time
which have a lower numeric priority i.e. numeric priorities are ordered from highest to lowest with no
bounds on the numbers given. Events which have both the same time and same priority will occur in
the order which they were scheduled -- the earlier scheduled item will occur before the later

scheduled one.

action

The function that will be called when this event is executed.

parameters

The list of values which will be passed to the action function when the event is executed.

model

The name of the model in which the event was generated.

module

The name of the module which generated the event or the keyword :none if no module was specified

when the event was created.

destination

If this action is to be sent to a specific module, then that module’s name can be given as the
destination and the instance of that module will be passed as the first parameter to the action. Using
this is can be simpler and more informative than just making the instance of the module the first

element in the parameters list.

details

130

ACT-R7 11-Jul-17 ACT-R Reference Manual

The details can be a string which will be output in the trace for the event. If details are specified that
is all that is printed after the time, model and module. If the details are not specified then the action

and parameters are printed in the trace.

output

Output controls under which trace-detail levels the event will be displayed. It can have a value of t,
high, medium, low, or nil. A value of t or high means it will be displayed only for the high trace
detail setting. Nil means not to show it at all. Medium means that it should be shown under both
medium and high trace details, and a value of low means it will be shown for any trace detail setting.

The output value effectively specifies the lowest detail setting for which the output will be displayed.

Event Accessors

The specific implementation of an event is not part of the API for ACT-R. One should not assume
anything about the structure or object that is returned as an event nor attempt to make any
modifications to it. To be able to read the information from an event a set of accessors are provided.
Because all of the accessors operate the same way they are all presented in one description. Note that
the accessors are not intended to be used to change a value of an event only to read the value that it
has - even though the specific implementation may allow one to use them with setf to change a value

that is not recommended and could result in unexpected consequences within the model.

Syntax:

evt-time event -> time

evt-priority event -> priority
evt-action event -> action
evt-params event -> parameters
evt-model event -> model
evt-module event -> module
evt-destination event -> destination
evt-details event -> details
evt-output event -> output

Arguments and Values:
event ::= an ACT-R event
time, priority, action, parameters, model, module, destination, details, output ::= the corresponding attribute

of event

Description:

131

ACT-R7 11-Jul-17 ACT-R Reference Manual

Each of the event accessors returns the corresponding attribute from the event provided. There is no
error checking to make sure that event is a valid ACT-R event. If it is not a valid event, then a Lisp

error is likely to occur with the current implementation of events.

Examples:

> (let ((event (schedule-event 20 'pprint :params '("some text"))))
(format t "~S~%" (evt-time event))
(format t "~S~%" (evt-action event))
(format t "~S~%" (evt-module event))
(format t "~S~%" (evt-params event)))
20.0
PPRINT
:NONE
("some text")
NIL
E> (evt-time 'not-an-event)
Error: Non-structure argument NOT-AN-EVENT passed to ref of structure slot 1
[condition type: SIMPLE-ERROR]

General Event Commands

These commands allow for getting additional information about events related to whether they will
be displayed in the trace and how their output will look.

event-displayed-p

Syntax:

event-displayed-p event -> [t | nil]

Arguments and Values:

event ::= an ACT-R event

Description:

Event-displayed-p can be used to determine whether or not an event will be printed in the trace given
the current setting of the :trace-detail and :trace-filter parameters for the model in which it was
generated. If the event will be printed with the current settings of that model’s parameters, then t is

returned and if not then nil is returned. If event is not an ACT-R event then nil is returned.

This command might be useful when working with the event hooks or for developing an interactive

stepper or tracing tool.

Examples:

132

ACT-R7 11-Jul-17 ACT-R Reference Manual

> (let ((event (schedule-event 30 'model-output :params '("some text") :output 'medium)))
(no-output (sgp :trace-detail high))
(format t "trace-detail high output medium: ~S~%" (event-displayed-p event))
(no-output (sgp :trace-detail medium))
(format t "trace-detail medium output medium: ~S~%" (event-displayed-p event))
(no-output (sgp :trace-detail low))
(format t "trace-detail low output medium: ~S~%" (event-displayed-p event)))
trace-detail high output medium: T
trace-detail medium output medium: T
trace-detail low output medium: NIL
NIL

E> (event-displayed-p 'not-an-event)
NIL

format-event

Syntax:
format-event event -> [event-string | nil]
Arguments and Values:

event ::= an ACT-R event
event-string ::= a string that contains the text that would be printed for this event in the trace

Description:
Format-event can be used to get a string with the representation of what the provided event will look

like in the trace when it is executed. If event is not a valid ACT-R event then nil is returned.

This would likely be used with the development of additional stepping tools or a data logger which

was tied into the event hooks to be able to record and/or display an event independently of the trace.

Examples:

> (let ((event (schedule-event 30 'model-output :params '("some text"))))
(format-event event))
" 30.000 NONE MODEL-OUTPUT some text "

E> (format-event 'not-an-event)
NIL

Scheduling Commands

Events can be generated using a variety of scheduling functions described here, as well as

automatically by certain module commands. There are three different types of events that can be

133

ACT-R7 11-Jul-17 ACT-R Reference Manual

generated: normal (or model) events, maintenance events, and break events. Model events are things
that are generated by the cognitive modules or outside actions which the model may need to detect (in
particular, the conflict resolution mechanism of the procedural module is sensitive only to model
events). Maintenance events are generated by the non-theory parts of the system or things which are
not of importance to the model (for instance an event which signals the time at what a particular run
is going to stop). There are effectively two differences between model and maintenance events. The
first is whether events that are waiting to be scheduled consider any event or only model events (they
are generated with the same functions). Typically, events which are waiting will only consider model
events because those are the actions which are meaningful to the model(s) being run. The other
difference is that a maintenance event may specify a function as a precondition to determine whether
or not it will occur. When a maintenance event with a precondition is the next event in the queue its
precondition function is called with the parameters for the event. If the precondition function returns
a value other than nil then the event is executed as normal. If the precondition function returns nil
then the event is removed from the queue and not executed. That is another reason why waiting
events should only check model events — if a waiting event is scheduled after a maintenance event
with an unsatisfied precondition it will still be executed at that time because the scheduler does not
currently retest waiting events once they’ve been added to the queue. Break events are a special type
of maintenance event in that whenever a break event is executed the current run is terminated. Break

events are generated with a separate set of functions because they do not perform any actions.

When an event’s action is executed the current model will be set to the model which generated the
event (if there was one). When working with a single model that does not make a difference, but in
the context of multiple models it means that the action function does not need to use with-model or

make any explicit checks to ensure that it is working in the proper context.

schedule-event

Syntax:
schedule-event time action {event-descriptors} -> [actr-event | nil]

Arguments and Values:

time ::= a number representing an absolute time for the event in seconds or milliseconds
action ::= a function name or function which specifies the action to be evaluated
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:module module-value |

:destination destination-value |

:priority priority-value |

134

ACT-R7 11-Jul-17 ACT-R Reference Manual

:params params-value |

:time-in-ms time-units |

:maintenance maintenance-value |

:precondition precondition-value |

:details details-value |

:output output-value]
module-value ::= a symbol which names the module which is scheduling the event (default :none)
destination-value ::= a symbol which names a module (default nil)
priority-value ::= [:max | :min | a number] (default 0)
params-value ::= a list of values to pass to the action (default nil)
time-units ::= a generalized boolean indicating whether the time is set in milliseconds

(default is nil)

maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)
precondition-value ::= [nil | precondition] (default nil)
precondition ::= a function name or function which specifies a pretest to evaluate before the action
details-value ::= a string to output in the trace or nil (default nil)
output-value ::= [t | high | medium | low | nil] (default t)
actr-event ::= the actual event which was generated and recorded by the meta-process event queue

Description:

Schedule-event creates a new event using the supplied parameters for its corresponding attributes and
the current model for its model. It will be added to the event queue of the current meta-process to

occur at the specific time provided and the event will be returned.

If there are any events waiting to be scheduled they are checked to see if this new event allows them

to be scheduled.

If any of the parameters are invalid or there is no current model or current meta-process then a

warning is printed, no event is scheduled, and nil is returned.

Examples:

>(schedule-event 10 'goal-focus-fct :priority :min :params '(new-goal-chunk) :output nil)
#S(ACT-R-EVENT ...)

> (schedule-event 45 (lambda (module) (do-something module)) :maintenance t
:destination :some-module :details "Do Something")
#S(ACT-R-MAINTENANCE-EVENT ...)

> (mp-show-queue)

Events in the queue:
10.000 NONE GOAL-FOCUS NEW-GOAL-CHUNK
45.000 NONE Do Something

E> (schedule-event 'bad-time (lambda ()))
#|Warning: Time must be non-negative number. |#
NIL

E> (schedule-event 0 'bad-function-name)

135

ACT-R7 11-Jul-17 ACT-R Reference Manual

#|Warning: Can't schedule BAD-FUNCTION-NAME not a function or function name. |#
NIL

E> (schedule-event 10 'goal-focus :priority :min :params '(new-goal-chunk) :output nil)
#|Warning: Can't schedule GOAL-FOCUS because it is a macro and not a function. |#
NIL

E> (schedule-event 0 (lambda ()) :priority 'value)
#|Warning: Priority must be a number or :min or :max. |#
NIL

E> (schedule-event 0 (lambda (x)) :params 10)
#|Warning: params must be a list. |#
NIL

E> (schedule-event 0 'pprint)
#|Warning: schedule-event called with no current model. |#
NIL

E> (schedule-event 30 (lambda ()))
#|Warning: schedule-event called with no current meta-process. |#
NIL

schedule-event-relative

Syntax:
schedule-event-relative delta-time action {event-descriptors} -> [actr-event | nil]
Arguments and Values:

delta-time ::= a number in seconds or milliseconds indicating the delay before executing the event
action ::= a function name or function which specifies the action to be evaluated
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:module module-value |

:destination destination-value |

:priority priority-value |

:params params-value |

:time-in-ms time-units |

:maintenance maintenance-value |

:precondition precondition-value |

:details details-value |

:output output-value]
module-value ::= a symbol which names the module which is scheduling the event (default :none)
destination-value ::= a symbol which names a module (default nil)
priority-value ::= [:max | :min | a number] (default 0)
params-value ::= a list of values to pass to the action (default nil)
time-units ::= a generalized boolean indicating whether the time is set in milliseconds

(default is nil)

maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)
precondition-value ::= [nil | precondition] (default nil)
precondition ::= a function name or function which specifies a pretest to evaluate before the action
details-value ::= a string to output in the trace or nil (default nil)

136

ACT-R7 11-Jul-17 ACT-R Reference Manual

output-value ::= [t | high | medium | low | nil] (default t)
actr-event ::= the actual event which was generated and recorded by the meta-process event queue

Description:

Schedule-event-relative creates a new event using the supplied parameters for its corresponding
attributes and the current model for its model. It will then be added to the event queue of the current
meta-process to occur delta-time seconds (or milliseconds if :time-in-ms is specified as true) from the

current time and the event will be returned.

If there are any events waiting to be scheduled they are checked to see if this new event allows them
to be scheduled.

If any of the parameters are invalid or there is no current model or current meta-process then a

warning is printed, no event is scheduled, and nil is returned.

Examples:

see schedule-event for related examples

schedule-event-now

Syntax:

schedule-event-relative action {event-descriptors} -> [actr-event | nil]
Arguments and Values:

action ::= a function name or function which specifies the action to be evaluated
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:module module-value |
:destination destination-value |
:priority priority-value |
:params params-value |
:maintenance maintenance-value |
:precondition precondition-value |
:details details-value |
:output output-value]
module-value ::= a symbol which names the module which is scheduling the event (default :none)
destination-value ::= a symbol which names a module (default nil)
priority-value ::= [:max | :min | a number] (default 0)
params-value ::= a list of values to pass to the action (default nil)
maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)

137

ACT-R7 11-Jul-17 ACT-R Reference Manual

precondition-value ::= [nil | precondition] (default nil)

precondition ::= a function name or function which specifies a pretest to evaluate before the action
details-value ::= a string to output in the trace or nil (default nil)

output-value ::= [t | high | medium | low | nil] (default t)

actr-event ::= the actual event which was generated and recorded by the meta-process event queue

Description:

Schedule-event-now creates a new event using the supplied parameters for its corresponding
attributes and the current model for its model. It will then be added to the event queue of the current

meta-process to occur at the current time and the event will be returned.

If there are any events waiting to be scheduled they are checked to see if this new event allows them
to be scheduled.

If any of the parameters are invalid or there is no current model or current meta-process then a

warning is printed, no event is scheduled, and nil is returned.

Examples:

see schedule-event for related examples

schedule-event-after-module

Syntax:
schedule-event-after-module after-module action {event-descriptors} -> [actr-event | nil] [t | nil | :abort]
Arguments and Values:

after-module ::= a symbol which names a module
action ::= a function name or function which specifies the action to be evaluated
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:module module-value |

:destination destination-value |

:params params-value |

:maintenance maintenance-value |

:precondition precondition-value |

:details details-value |

:output output-value |

:delay delay-value |

:include-maintenance include-maintenance-value |

:dynamic dynamic-value]

138

ACT-R7 11-Jul-17 ACT-R Reference Manual

module-value ::= a symbol which names the module which is scheduling the event (default :none)

destination-value ::= a symbol which names a module (default nil)

params-value ::= a list of values to pass to the action (default nil)

maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)

precondition-value ::= [nil | precondition] (default nil)

precondition ::= a function name or function which specifies a pretest to evaluate before the action

details-value ::= a string to output in the trace or nil (default nil)

output-value ::= [t | high | medium | low | nil] (default t)

delay-value ::= [t | nil | :abort] (default t)

include-maintenance-value ::= a generalized boolean indicating whether to consider maintenance events

when determining when to schedule this event (default nil)

dynamic-value ::= generalized boolean indicating whether to allow rescheduling under real time mode
(default nil)

actr-event ::= the actual event which was generated and recorded by the meta-process event queue

Description:

Schedule-event-after-module creates a new event using the supplied parameters for its corresponding

attributes and the current model for its model.

If there is an event currently in the event queue with the module name of after-module and the same
model as the current model and either include-maintenance-value is t or the event is not a
maintenance event, then this new event is placed into the event queue at the time of the next such
matching event (lowest time) with a priority of :min. If there are any events waiting to be scheduled

they are checked to see if this new event allows them to be scheduled.

If there is no event in the event queue that matches on model, module and of the appropriate event
type (model or maintenance), then the value of delay-value determines what happens to the new

event.

If delay-value is t then the new event is placed into the set of waiting events to be scheduled after an

event which matches the conditions necessary to schedule this new event.

If delay-value is nil then the new event is added to the event queue for immediate execution. Its time

will be set to the current time and its priority will be :max.

If delay-value is :abort then the new event is discarded without being scheduled or placed onto the

waiting queue.

139

ACT-R7 11-Jul-17 ACT-R Reference Manual

The setting of dynamic-value does not matter under normal circumstances, but may be useful if a
custom clock is provided for real time operations. See the Configuring Real Time Operations section

for details of how it works.

Schedule-event-after-module returns two values. If there is no current model or current meta-process

or any of the parameters are invalid, then no event is scheduled and both values are nil.

If an event is scheduled then the first value will be the event and the second value will be t if the

event is in the waiting queue or nil if it is in the event queue.
If the event is aborted, the first value will be nil and the second value will be :abort.

Examples:

1> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION
1

2> (schedule-event-after-module 'procedural (lambda ()) :details "has a matching event")
#S(ACT-R-EVENT ..)
NIL

3> (mp-show-queue)
Events in the queue:
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 NONE has a matching event
2

4> (schedule-event-after-module :vision (lambda ()) :details "no event so wait" :delay t)
#S(ACT-R-EVENT ..)
T

5> (mp-show-queue)
Events in the queue:
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 NONE has a matching event
2

6> (mp-show-waiting)
Events waiting to be scheduled:

NIL NONE no event so wait Waiting for: (MODULE VISION NIL)
1

7> (schedule-event-after-module :motor (lambda ()) :details "no event so go now" :delay
nil)

#S(ACT-R-EVENT ..)

NIL

> (mp-show-queue)

Events in the queue:

0.000 NONE no event so go now
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 NONE has a matching event

3

8> (schedule-event-after-module :audio (lambda ()) :details "aborted" :delay :abort)

140

ACT-R7 11-Jul-17 ACT-R Reference Manual

NIL
:ABORT

E> (schedule-event-after-module 'bad-module-name (lambda ()))
#|Warning: after-module must name a module. |#

NIL

NIL

schedule-event-after-change

Syntax:
schedule-event-after-change action {event-descriptors} -> [actr-event | nil] [t | nil | :abort]
Arguments and Values:

action ::= a function name or function which specifies the action to be evaluated
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:module module-value |
:destination destination-value |
:params params-value |
:maintenance maintenance-value |
:precondition precondition-value |
:details details-value |
:output output-value|
:delay delay-value |
:include-maintenance include-maintenance-value |
:dynamic dynamic-value]
module-value ::= a symbol which names the module which is scheduling the event (default :none)
destination-value ::= a symbol which names a module (default nil)
params-value ::= a list of values to pass to the action (default nil)
maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)
precondition-value ::= [nil | precondition] (default nil)
precondition ::= a function name or function which specifies a pretest to evaluate before the action
details-value ::= a string to output in the trace or nil (default nil)
output-value ::= [t | high | medium | low | nil] (default t)
delay-value ::= [t | nil | :abort] (default t)
include-maintenance-value ::= a generalized boolean indicating whether to consider maintenance events
when determining when to schedule this event (default nil)
dynamic-value ::= generalized boolean indicating whether to allow rescheduling under real time mode
(default nil)
actr-event ::= the actual event which was generated and recorded by the meta-process event queue

Description:

141

ACT-R7 11-Jul-17 ACT-R Reference Manual

Schedule-event-after-change creates a new event using the supplied parameters for its corresponding

attributes and the current model for its model.

If there is any event currently in the event queue with the same model as the current model and either
include-maintenance-value is t or the event is not a maintenance event, then this new event is placed
into the event queue at the time of the next such matching event (lowest time) with a priority of :min.
If there are any events waiting to be scheduled they are checked to see if this new event allows them
to be scheduled.

If there is no event in the event queue that matches on model and is of the appropriate event type

(model or maintenance), then the value of delay-value determines what happens to the new event.

If delay-value is t then the new event is placed into the set of waiting events to be scheduled after an

event which matches the conditions necessary to schedule this new event.

If delay-value is nil then the new event is added to the event queue for immediate execution. Its time

will be set to the current time and its priority will be :max.

If delay-value is :abort then the new event is discarded without being scheduled or placed onto the

waiting queue.

The setting of dynamic-value does not matter under normal circumstances, but may be useful if a
custom clock is provided for real time operations. See the Configuring Real Time Operations section

for details of how it works.

Schedule-event-after-change returns two values. If there is no current model or current meta-process
or any of the parameters are invalid, then no event is scheduled and both values are nil. If an event is
scheduled then the first value will be the event and the second value will be t if the event is in the
waiting queue or nil if it is in the event queue. If the event is aborted, the first value will be nil and

the second value will be :abort.

Examples:

see schedule-even-after-module for related examples

142

ACT-R7 11-Jul-17 ACT-R Reference Manual

schedule-periodic-event

Syntax:
schedule-periodic-event period action {event-descriptors} -> [actr-event | nil]
Arguments and Values:

period ::= a number indicating how many seconds or milliseconds after which this action should be
evaluated again
action ::= a function name or function which specifies the action to be evaluated
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:module module-value |
:destination destination-value |
:priority priority-value |
:params params-value |
:time-in-ms time-units |
:maintenance maintenance-value |
:details details-value |
:output output-value|
:initial-delay initial-delay-value]
module-value ::= a symbol which names the module which is scheduling the event (default :none)
destination-value ::= a symbol which names a module (default nil)
priority-value ::= [:max | :min | a number] (default 0)
params-value ::= a list of values to pass to the action (default nil)
time-units ::= a generalized boolean indicating whether the time is set in milliseconds
(default is nil)
maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)
details-value ::= a string to output in the trace or nil (default nil)
output-value ::= [t | high | medium | low | nil] (default t)
initial-delay-value ::= a number indicating how many seconds or milliseconds before the first such
event (default 0)
actr-event ::= the actual event which was generated and recorded by the meta-process event queue

Description:

Schedule-periodic-event creates a new event with a time that is equal to the current time plus initial-
delay and using the other supplied parameters for its corresponding attributes and the current model
for its model which is then added to the event queue of the current meta-process. After that event
occurs a new event will automatically be scheduled to occur period seconds (or milliseconds if :time-
in-ms is specified as true) after that time with the same parameters as the initial one. That
rescheduling will continue every period seconds (or milliseconds) until the event this function

returned is deleted.

143

ACT-R7 11-Jul-17 ACT-R Reference Manual

If there are any events waiting to be scheduled they are checked to see if this new event allows them

to be scheduled, and every time that it is rescheduled there will be a check of the waiting events.

If any of the parameters are invalid or there is no current model or current meta-process then a

warning is printed, no event is scheduled, and nil is returned.
The scheduled event is returned when successfully created and scheduled.

Note that there are actually two events generated for each occurrence of the event described. The
first is a maintenance event with the priority provided. It schedules the actual event described with
the parameters specified with a priority of :max (so that it should be the next event to execute) and

also schedules the next periodic event at the appropriate delay.

Examples:

1> (schedule-periodic-event 1 (lambda ()
(model-output "Periodic event"))
:initial-delay .5)
#S(ACT-R-PERIODIC-EVENT :TIME 0.5 ..)

2> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION
0.500 NONE Periodic-Action Unnamed function 1
2
3> (run 3)
0.000 PROCEDURAL CONFLICT-RESOLUTION
Periodic event
0.500 PROCEDURAL CONFLICT-RESOLUTION
Periodic event
1.500 PROCEDURAL CONFLICT-RESOLUTION
Periodic event
2.500 PROCEDURAL CONFLICT-RESOLUTION
3.000 ------ Stopped because time limit reached
3
10
NIL

E> (schedule-periodic-event 'a (lambda ()))
#|Warning: period must be greater than 0. |#
NIL

schedule-break

Syntax:
schedule-break time {event-descriptors} -> [actr-event | nil]

Arguments and Values:

144

ACT-R7 11-Jul-17 ACT-R Reference Manual

time ::= a number representing an absolute time for the event in seconds or milliseconds
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:details details-value | :priority priority-value | :time-in-ms time-units]
details-value ::= a string to output in the trace or nil (defaults to nil)
priority-value ::= [:max | :min | a number] (defaults to :max)
time-units ::= a generalized boolean indicating whether the time is set in milliseconds
(default is nil)
actr-event ::= the actual event which was generated and recorded by the meta-process event queue

Description:

Schedule-break creates a new break event at the specified time with the priority-value and details-
value provided. The model of the event will be nil (a break event does not need to exist within a
specific model), the module is set to :none, and the output for that event is set to low. A break event
does not have an action and is only used to stop the scheduler. That new event is then added to the

event queue of the current meta-process.

If any of the parameters are invalid or there is no current meta-process then a warning is printed, no

event is scheduled, and nil is returned.

The scheduled event is returned when successfully created and scheduled.

Examples:

1> (schedule-break 12.5 :details "Stop the system now")
#S(ACT-R-BREAK-EVENT ..)

2> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION

12.500 ------ BREAK-EVENT Stop the system now
2

E> (schedule-break 'bad-time)

#|Warning: Time must be non-negative number. |#

NIL

E> (schedule-break 10 :priority 'bad-priority)
#|Warning: Priority must be a number or :min or :max. [|#
NIL

E> (schedule-break 10)

#|wWarning: schedule-break called with no current meta-process. |#
NIL

schedule-break-relative

Syntax:

145

ACT-R7 11-Jul-17 ACT-R Reference Manual

schedule-break-relative delta-time {event-descriptors} -> [actr-event | nil]
Arguments and Values:

delta-time ::= a number representing a delay in seconds or milliseconds before executing the event
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:details details-value | :priority priority-value | :time-in-ms time-units |
details-value ::= a string to output in the trace or nil (defaults to nil)
priority-value ::= [:max | :min | a number] (defaults to :max)
time-units ::= a generalized boolean indicating whether the time is set in milliseconds
(default is nil)
actr-event ::= the actual event which was generated and recorded by the meta-process event queue

Description:

Schedule-break-relative creates a new break event delta-time seconds or milliseconds from the

current time with the priority-value and details-value provided. The model of the event will be nil (a

break event does not need to exist within a specific model), the module is set to :none, and the output

for that event is set to low. A break event does not have an action and is only used to stop the

scheduler. That new event is then added to the event queue of the current meta-process.

If any of the parameters are invalid or there is no current meta-process then a warning is printed, no

event is scheduled, and nil is returned.

The scheduled event is returned when successfully created and scheduled.

Examples:

see schedule-break for related examples

schedule-break-after-module

Syntax:
schedule-break-after-module after-module {event-descriptors} -> [actr-event | nil]
Arguments and Values:

after-module ::= a symbol which names a module

event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair

event-key-value-pair ::= [:details details-value | :delay delay-value | :dynamic dynamic-value]
details-value ::= a string to output in the trace or nil (defaults to nil)

146

ACT-R7 11-Jul-17 ACT-R Reference Manual

delay-value ::= [t | mil | :abort] (defaults to t)

dynamic-value ::= generalized boolean indicating whether to allow rescheduling under real time mode
(defaults to nil)

actr-event ::= the actual event which was generated and recorded by the meta-process event queue

Description:

Schedule-break-after-module creates a new event using the supplied parameters for its corresponding
attributes and the current model as its model. That event will be scheduled to occur after the next

event of the specified module in the same model as the current one.

If there is an event currently in the event queue with the module name of after-module for the current
model then this new break event is placed into the event queue at the time of the next such matching
event (lowest time) with a priority of :min. If there are any events waiting to be scheduled they are

checked to see if this new event allows them to be scheduled.

If there is no event in the event queue that matches the model and module, then the value of delay-

value determines what happens to the new break event.

If delay-value is t then the new break event is placed into the set of waiting events to be scheduled

after an event which matches the conditions necessary to schedule this new event.

If delay-value is nil then the new break event is added to the event queue for immediate execution.

Its time will be set to the current time and its priority will be :max.

If delay-value is :abort then the new break event is discarded without being scheduled or placed onto

the waiting queue.

The setting of dynamic-value does not matter under normal circumstances, but may be useful if a
custom clock is provided for real time operations. See the Configuring Real Time Operations section

for details of how it works.

Schedule-break-after-module returns two values. If there is no current meta-process, no current
model, or any of the parameters are invalid, then no event is scheduled and both values are nil. If an
event is scheduled then the first value will be the event and the second value will be t if the event is
in the waiting queue or nil if it is in the event queue. If the event is aborted, the first value will be nil

and the second value will be :abort.

Examples:

147

ACT-R7 11-Jul-17 ACT-R Reference Manual

1> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION
1

2> (schedule-break-after-module 'procedural :details "after procedural")
#S(ACT-R-BREAK-EVENT ..)
NIL

3> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000 ------ BREAK-EVENT after procedural
2

4> (schedule-break-after-module :vision :details "waiting for vision")
#S(ACT-R-BREAK-EVENT ..)
T

5> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000 ------ BREAK-EVENT after procedural
2
6> (mp-show-waiting)
Events waiting to be scheduled:

NIL ------ BREAK-EVENT waiting for vision Waiting for: (MODULE VISION T)

1

7> (schedule-break-after-module :vision :details "not waiting for vision" :delay nil)
#S(ACT-R-BREAK-EVENT ..)
NIL

8> (mp-show-queue)
Events in the queue:

0.000 ------ BREAK-EVENT not waiting for vision
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 ------ BREAK-EVENT after procedural

3

9> (mp-show-waiting)
Events waiting to be scheduled:
NIL ------ BREAK-EVENT waiting for vision Waiting for: (MODULE VISION T)
1
10> (schedule-break-after-module :vision :delay :abort :details "aborted")
NIL
:ABORT

11> (mp-show-queue)
Events in the queue:

0.000 ------ BREAK-EVENT not waiting for vision
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 ------ BREAK-EVENT after procedural

3
12> (mp-show-waiting)
Events waiting to be scheduled:
NIL ------ BREAK-EVENT waiting for vision Waiting for: (MODULE VISION T)
1

13> (schedule-event 3 (lambda ()) :module :vision)
#S(ACT-R-EVENT ..)

14> (mp-show-queue)

148

ACT-R7 11-Jul-17 ACT-R Reference Manual

Events in the queue:

0.000 ------ BREAK-EVENT not waiting for vision
0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000 ------ BREAK-EVENT after procedural

3.000 VISION RUN

3.000 ------ BREAK-EVENT waiting for vision

5
15> (mp-show-waiting)

Events waiting to be scheduled:
0

schedule-break-after-all

Syntax:
schedule-break-after-all {:details details-value} -> [actr-event | nil]
Arguments and Values:

details-value ::= a string to output in the trace or nil (defaults to nil)
actr-event ::= the actual event which was generated and recorded by the meta-process event queue

Description:

Schedule-break-after-all creates a new break event with the provided details. The time for this new
event is the greatest time of any event currently in the event queue of the current meta-process and its
priority is :min. It will be inserted into the event queue such that it will occur after all of the events

currently scheduled.

If there is no current meta-process then a warning is printed, no event is scheduled, and nil is

returned.
The scheduled event is returned when successfully created and scheduled.

Examples:

1> (mp-show-queue)

Events in the queue:
0.000 PROCEDURAL CONFLICT-RESOLUTION
12.000 NONE a future action

2

2> (schedule-break-after-all :details "at the end")
#S(ACT-R-BREAK-EVENT ..)

3> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION
12.000 NONE a future action
12.000 ------ BREAK-EVENT at the end

149

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (schedule-break-after-all)
#|Warning: schedule-break called with no current meta-process. |#
NIL

delete-event

Syntax:

delete-event actr-event -> [t | nil]

Arguments and Values:

actr-event ::= an actual ACT-R event as returned by one of the scheduling functions
Description:

If actr-event is an event which is currently in either the main event queue or the waiting queue of the

current meta-process then delete-event removes that event from the queue that it is in and returns t.

If there is no current meta-process or the item is not in either event queue no action is taken and nil is

returned.

Examples:

1> (schedule-break 10)
#S(ACT-R-BREAK-EVENT ..)

2> (defvar *event* *)
EVENT

3> (mp-show-queue)

Events in the queue:
0.000 PROCEDURAL CONFLICT-RESOLUTION
10.000 ------ BREAK-EVENT

2

4> (delete-event *event*)
T

5> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION
1

6> (delete-event *event*)
NIL

E> (delete-event 'not-an-event)

#|Warning: NOT-AN-EVENT is not a valid event. |#
NIL

150

ACT-R7 11-Jul-17 ACT-R Reference Manual
Event Hooks

In addition to being able to schedule events it is possible to add functions which can monitor the
events as they are executed. One can add what is called an “event hook” function which will be
passed each event either before or after it is executed. The event hook can be used for recording
information about what has happened in the model (for instance if one wanted to add an alternate
tracing mechanism) or for checking for particular events to occur for data collection or other
purposes. The hook function should not modify the event that is passed to it, and as noted above, the
API does not provide any mechanism for doing so. When created, the hook functions are added to
the current meta-process and persist across a reset. They are only removed if they are explicitly

deleted with the delete-event-hook command, the meta-process in which they were created is itself

deleted, or when a call to clear-all happens.

add-pre-event-hook

Syntax:
add-pre-event-hook hook-fn {warn-for-duplicate} -> [hook-id | nil]
Arguments and Values:

hook-fn ::= a function or the name of a function which takes one parameter

hook-id ::= a number which is the reference for the hook function that was added

warn-for-duplicate ::= a generalized boolean which indicates whether or not to show a warning if
the same function is attempted to be put on the event hook again

Description:

If hook-fn is a function or the name of a function which is not already in the set of pre-event hooks
for the current meta-process then it will be added to that set. That function will be called before each
event is evaluated and it will be passed that event as its only parameter. The hook function will
remain in the pre-event hook set for that meta-process until it is explicitly removed or until a clear-all

occurs.

If the hook function is added to the set, then a unique hook-id is returned which can be used to

explicitly remove that function from the set of pre-event hook functions.

If hook-fn is invalid or there is no current meta-process then a warning is printed and nil is returned.
If hook-fn is already in the set of pre-event hook functions then nil is also returned and a warning is

printed unless warn-for-duplicate is provided as nil.

151

ACT-R7 11-Jul-17 ACT-R Reference Manual
Examples:

This example assumes that the count model from unit 1 of the tutorial is loaded.

1> (defun show-event (event)
(format t "Hook sees event with module: ~S~%" (evt-module event)))
SHOW-EVENT

2> (add-pre-event-hook 'show-event)
0

3> (run .05)
Hook sees event with module: GOAL

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
Hook sees event with module: PROCEDURAL

0.000 PROCEDURAL CONFLICT-RESOLUTION
Hook sees event with module: PROCEDURAL

0.000 PROCEDURAL PRODUCTION-SELECTED START

Hook sees event with module: PROCEDURAL
Hook sees event with module: PROCEDURAL
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
Hook sees event with module: GOAL
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL PRODUCTION-FIRED START
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL MOD -BUFFER-CHUNK GOAL
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
Hook sees event with module: DECLARATIVE

0.050 DECLARATIVE START-RETRIEVAL
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL CONFLICT-RESOLUTION
Hook sees event with module: NIL

0.050 ------ Stopped because time limit reached
0.05
12
NIL

4E> (add-pre-event-hook 'show-event)
#|Warning: SHOW-EVENT is already on the pre-event-hook list not added again |#
NIL

5> (add-pre-event-hook 'show-event nil)
NIL

E> (add-pre-event-hook 'show-event)

#|Warning: add-pre-event-hook called with no current meta-process |#
NIL

E> (add-pre-event-hook 'bad-function-name)

#|Warning: parameter BAD-FUNCTION-NAME to add-pre-event-hook is not a function |#
NIL

add-post-event-hook

Syntax:
add-post-event-hook hook-fn {warn-for-duplicate} -> [hook-id | nil]

152

ACT-R7 11-Jul-17 ACT-R Reference Manual

Arguments and Values:

hook-fn ::= a function or the name of a function which takes one parameter

hook-id ::= a number which is the reference for the hook function that was added

warn-for-duplicate ::= a generalized boolean which indicates whether or not to show a warning if
the same function is attempted to be put on the event hook again

Description:

If hook-fn is a function or the name of a function which is not already in the set of post-event hooks
for the current meta-process then it will be added to that set. That function will be called after each
event is evaluated and it will be passed that event as its only parameter. The hook function will
remain in the post-event hook set for that meta-process until it is either explicitly removed or until a

clear-all occurs.

If the hook function is added to the set, then a unique hook-id is returned which can be used to

explicitly remove that function from the set of post-event hook functions.

If hook-fn is invalid or there is no current meta-process then a warning is printed and nil is returned.
If hook-fn is already in the set of post-event hook functions then nil is also returned and a warning is

printed unless warn-for-duplicate is provided as nil.

Examples:

This example assumes that the count model from unit 1 of the tutorial is loaded.

1> (defun show-event (event)
(format t "Hook sees event with module: ~S~%" (evt-module event)))
SHOW-EVENT

2> (add-post-event-hook 'show-event)

1
3> (run .05)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
Hook sees event with module: GOAL
0.000 PROCEDURAL CONFLICT-RESOLUTION
Hook sees event with module: PROCEDURAL
0.000 PROCEDURAL PRODUCTION-SELECTED START

Hook sees event with module: PROCEDURAL
Hook sees event with module: PROCEDURAL
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
Hook sees event with module: PROCEDURAL
Hook sees event with module: GOAL

0.050 PROCEDURAL PRODUCTION-FIRED START
Hook sees event with module: PROCEDURAL
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL

153

ACT-R7 11-Jul-17 ACT-R Reference Manual

Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
Hook sees event with module: PROCEDURAL

0.050 DECLARATIVE START-RETRIEVAL
Hook sees event with module: DECLARATIVE

0.050 PROCEDURAL CONFLICT-RESOLUTION

Hook sees event with module: PROCEDURAL
Hook sees event with module: NIL
0.050 ------ Stopped because time limit reached
0.05
12
NIL
4E> (add-post-event-hook 'show-event)
#|Warning: SHOW-EVENT is already on the post-event-hook list not added again |#
NIL

5> (add-post-event-hook 'show-event nil)
NIL

E> (add-post-event-hook 'not-a-function)
#|Warning: parameter NOT-A-FUNCTION to add-post-event-hook is not a function |#
NIL

E> (add-post-event-hook 'show-event)
#|Warning: add-post-event-hook called with no current meta-process |#
NIL

delete-event-hook

Syntax:

delete-event-hook hook-id -> [hook-fn | nil]
Arguments and Values:

hook-id ::= a hook function id returned by one of the add event hook functions
hook-fn ::= the function or function name that was removed from the event hook

Description:

If the event hook function associated with hook-id is still a member of the set of event hooks in the
current meta-process then it is removed from the set of hook functions and the function or function

name that was used to create the event hook is returned.

If hook-id does not correspond to the id of an event hook or the event has already been removed from
the set of event hooks then nil is returned. If there is no current meta-process, then a warning is

printed and nil is returned.

Examples:

154

ACT-R7 11-Jul-17 ACT-R Reference Manual

This example assumes that the event hook shown in the example for add-pre-event-hook exists.

1> (delete-event-hook 0)
SHOW-EVENT

2> (delete-event-hook 0)
NIL

E> (delete-event-hook 'hook)
NIL

E> (delete-event-hook 0)

#|Warning: delete-event-hook called with no current meta-process |#
NIL

155

ACT-R7 11-Jul-17 ACT-R Reference Manual

About the Included Modules

The modules that are included with ACT-R fall into three general categories. The first is system or
control modules which are not based on the theory and only serve to provide functionality to the
software. The second and third categories are the cognitive modules which represent the theory of
ACT-R, and those are subdivided into modules which provide the perceptual and motor actions
which allow models to interact with an environment and modules which represent cognitive
capabilities completely within the model. The only reason for distinguishing between the two types
of cognitive modules is that the perceptual and motor modules have an additional interface for

interacting with the world whereas the purely cognitive modules do not.

The following sections will describe the details of the modules that are included with the current
system. For each module the operation of the module will be described, any parameters that the
module has will be shown, if the module has any buffers their uses will be covered, and any

commands which the module provides will be documented.

The basic system modules will be described first. Then the “internal” cognitive modules will be
described, and after some description of the interface to the world the perceptual and motor modules
will be described.

156

ACT-R7 11-Jul-17 ACT-R Reference Manual

Printing module

The printing module controls what the system prints and where it goes. This module provides several
parameters to configure the output. The commands available for outputting information are
described in the Printing and Output section. Because it is a system module it has no buffer or impact

on modeling results.

Parameters

:cbct

The copy buffer chunk trace parameter. This parameter controls whether or not an event will be

shown in the trace indicating that a buffer has made a copy of a chunk. It can take a value of t or nil.
The default is nil.

If it is set to t then an event like this will be shown in the trace each time a buffer makes a copy of a
chunk:

0.135 BUFFER Buffer VISUAL copied chunk TEXTO to TEXTO-0

It indicates which buffer made the copy along with the name of the original chunk and the name of

the copy. Those events will be shown with the high and medium trace detail settings.

:cmdt

The command trace parameter controls where the command output is displayed.

The possible values for :cmdt are:

nil — this turns off all command output for this model

* t-send command output to the *standard-output* stream

* astream — command output is sent to that stream

* apathname — the specified file is opened and output is appended to it

* astring — if the string denotes a valid pathname, then it is used as a pathname above

157

ACT-R7 11-Jul-17 ACT-R Reference Manual

The default value is t.

If a file is used, it will be opened when the parameter is set and closed when either the parameter is
changed or the model is deleted. Note that for file output the actual output to the file may be buffered
in Lisp before being written. Thus, that output file should not be opened or read until the model is
done with its output. Resetting or deleting the model will signal that it is done as will setting the

:cmdt parameter to some other value.

:model-warnings

The model-warnings parameter controls whether or not model warnings are displayed. It can be set

to t or nil.
The default value is t.
If it is set to t, then the model warnings are shown and if it is set to nil then they are not.

:save-trace

The save-trace parameter controls whether the event trace information is saved as the model runs. If

it is set to t then the trace information is saved and the show-saved-trace command may be used to

output and return that information. If it is set to nil no trace information is saved while the model

runs. The default value is nil.

:trace-detail

The trace-detail parameter controls which events are shown in the model’s trace. It can be set to one

of the values: high, medium, or low. The default value is medium.

If it is set to high, then all events which have a non-nil output setting are displayed. If it is set to
medium then only those events with a medium or low output setting are shown, and if it is set to

low, then only those events with a low output setting are shown.

:trace-filter

The trace-filter parameter allows one more detailed control over which events are displayed in the

trace. It can be set to a function, function name, or nil.

158

ACT-R7 11-Jul-17 ACT-R Reference Manual

The default is nil.

If it is set to a function, then that function should take one parameter. For each event that occurs that
function will be called with the event as its parameter. If the function returns nil then that event will
not be displayed in the trace. Otherwise, the trace-detail level will be used to determine whether or

not to display the event.

There is one filter function available with the system called production-firing-only. If that is set as the

value of :trace-filter it will restrict the printed trace to only the production-fired events.
v
The verbose parameter. The :v parameter controls where the model output is displayed. The trace of

the model is included in model output.

The possible values for :v are:

* nil - this turns off all model output for this model

* t—send model output to the *standard-output* stream

e astream — model output is sent to that stream

* a pathname — the specified file is opened and output is appended to it

* astring — if the string denotes a valid pathname, then it is used as a pathname above

The default value is t.

If a file is used, it will be opened when the parameter is set and closed when either the parameter is
changed or the model is deleted. Note that for file output the actual output to the file may be buffered
in Lisp before being written. Thus, that output file should not be opened or read until the model is
done with its output. Resetting or deleting the model will signal that it is done as will setting the :v

parameter to some other value.

Commands

show-saved-trace / get-saved-trace

Syntax:

show-saved-trace {:detail level} {:start start-time} {:end end-time} -> [t | nil]
get-saved-trace {:detail /evel} {:start start-time} {:end end-time} -> (trace-list*)

Arguments and Values:

159

ACT-R7 11-Jul-17 ACT-R Reference Manual

level ::=[t| low | medium | high]

start-time ::= a time in seconds indicating the time of the first event to show in the output
end-time ::= a time in seconds indicating the time of the last event to show in the output
event-string ::= a string containing the text from a line of the trace output

trace-list ::= (event-time output-level event-string)

event-time ::= a time in milliseconds at which the event occurred

output-level ::= [t | low | medium | high | nil]

Description:

Show-saved-trace can be used to display trace information from the current model in the current

meta-process in the command trace stream after a model runs when the :save-trace parameter is set to

t. It takes three keyword parameters indicating the level of detail to show in the the displayed trace, a
start time, and an end time to bound the output. If no level is specified then the default is medium.
If no start time is provided the default is time 0, and if no end time is provided the default is the
current time. The level parameter sets the amount of detail in the trace the same way the :trace-detail
parameter does, along with an additional setting of t. If it is set to high, then all events which have a
non-nil output setting are displayed. If it is set to medium then only those events with a medium or
low output setting are shown, and if it is set to low, then only those events with a low output setting
are shown. If it is set to t then all events are output even if they have a null output setting. The return

value will be t if there is a saved trace to output and the provided parameters are valid.

The get-saved-trace command is similar to show-saved-trace except that it does not print out the trace
information. It returns a list of lists where each sublist has three elements. The first is the time in
milliseconds at which the event occurred. The second is the output level of that event which could
also be t (which is equivalent to the high detail level) or nil which means that it was not meant to be

output in the trace. The third is the string of the event text from that line of the trace.

For both commands, if there is no current model or current meta-process, one of the provided
parameters is invalid, or there is no saved trace information then a warning is printed and nil is

returned.

Examples:

This example uses the count model from unit 1 of the tutorial.

1> (actr-load "ACT-R:tutorial;unitil;count.lisp")
T

160

ACT-R7
2> (with-parameters (:save-trace t
(run 1))

0.3

50

NIL

3> (show-saved-trace :detail 'low)
0.000 GOAL
0.050 PROCEDURAL
0.100 DECLARATIVE
0.150 PROCEDURAL
0.200 DECLARATIVE
0.250 PROCEDURAL
0.300 DECLARATIVE
0.300 PROCEDURAL

T

4> (show-saved-trace)
0.000 GOAL
0.000 PROCEDURAL
0.050 PROCEDURAL
0.050 PROCEDURAL
0.050 DECLARATIVE
0.050 PROCEDURAL
0.100 DECLARATIVE
0.100 DECLARATIVE
0.100 PROCEDURAL
0.150 PROCEDURAL
0.150 PROCEDURAL
0.150 DECLARATIVE
0.150 PROCEDURAL
0.200 DECLARATIVE
0.200 DECLARATIVE
0.200 PROCEDURAL
0.250 PROCEDURAL
0.250 PROCEDURAL
0.250 DECLARATIVE
0.250 PROCEDURAL
0.300 DECLARATIVE
0.300 DECLARATIVE
0.300 PROCEDURAL
0.300 PROCEDURAL
0.300 PROCEDURAL

T

5> (get-saved-trace)

11-Jul-17

:v nil)

SET-BUFFER-CHUNK
PRODUCTION-FIRED
SET-BUFFER-CHUNK
PRODUCTION-FIRED
SET-BUFFER-CHUNK
PRODUCTION-FIRED
SET-BUFFER-CHUNK
PRODUCTION-FIRED

START
RETRIEVAL
INCREMENT
RETRIEVAL
INCREMENT
RETRIEVAL
STOP

SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL

CONFLICT-RESOLUTION
PRODUCTION-FIRED START
CLEAR-BUFFER RETRIEVAL
START-RETRIEVAL
CONFLICT-RESOLUTION
RETRIEVED-CHUNK C
SET-BUFFER-CHUNK RETRIEVAL
CONFLICT-RESOLUTION
PRODUCTION-FIRED INCREMENT
CLEAR-BUFFER RETRIEVAL
START-RETRIEVAL
CONFLICT-RESOLUTION
RETRIEVED-CHUNK D
SET-BUFFER-CHUNK RETRIEVAL
CONFLICT-RESOLUTION
PRODUCTION-FIRED INCREMENT
CLEAR-BUFFER RETRIEVAL
START-RETRIEVAL
CONFLICT-RESOLUTION
RETRIEVED-CHUNK E
SET-BUFFER-CHUNK RETRIEVAL
PRODUCTION-FIRED STOP
CLEAR-BUFFER GOAL
CONFLICT-RESOLUTION

ACT-R Reference Manual

GOAL FIRST-GOAL REQUESTED NIL

c

D

E

((6 LOW " 0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL")
(0 MEDIUM " 0.000 PROCEDURAL CONFLICT-RESOLUTION")
(50 LOW " ©0.050 PROCEDURAL PRODUCTION-FIRED START") ...)

5> (show-saved-trace :start .1 :end .275)

0.100 DECLARATIVE RETRIEVED-CHUNK C

0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL C
0.100 PROCEDURAL CONFLICT-RESOLUTION

0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT
0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL

0.150 DECLARATIVE START-RETRIEVAL

0.150 PROCEDURAL CONFLICT-RESOLUTION

0.200 DECLARATIVE RETRIEVED-CHUNK D

0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL D
0.200 PROCEDURAL CONFLICT-RESOLUTION

0.250 PROCEDURAL PRODUCTION-FIRED INCREMENT
0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL

0.250 DECLARATIVE START-RETRIEVAL

0.250 PROCEDURAL CONFLICT-RESOLUTION

161

ACT-R7 11-Jul-17 ACT-R Reference Manual

T

E> (show-saved-trace :detail 10)

#|Warning: Invalid detail level for show-saved-trace 10. Possible values are: t, low,
medium, and high. |#

NIL

E> (show-saved-trace :start t)

#|Warning: Invalid start for show-saved-trace T. Must be a number indicating a time in
seconds. |#

NIL

E> (show-saved-trace :end t)

#|Warning: Invalid end for show-saved-trace T. Must be a number indicating a time in
seconds. |#

NIL

E> (show-saved-trace)
#|Warning: No current model when calling show-saved-trace |#
NIL

E> (show-saved-trace)
#|Warning: No current meta-process when calling show-saved-trace |#
NIL

E> (show-saved-trace)
#|Warning: No saved trace information to display. |#
NIL

162

ACT-R7 11-Jul-17 ACT-R Reference Manual

Naming Module

The naming module provides the system with all of the symbols that it generates for the names of
things. It guarantees that the system does not duplicate names within a model and that the name
returned does not already name a chunk (chunks are the predominant item for which names are
created by the system). It also allows for the uninterning of those symbols that were generated when
the model is reset or deleted if they are not also in use in other models. Having a module to handle
this is done instead of just using gentemp or gensym because those do not have a means of

automatically cleaning up the symbol once it is no longer needed.

The names are generated by appending an increasing counter to the end of the provided name prefix
(each prefix has its own counter). An additional benefit of the naming module is that the counters are
reset to 0 when the model is reset. Thus, a deterministic model will always result in the same
sequence of names being created when it is run after being reset, which can be very useful for

debugging a model. Because the random module allows one to set the seed for the pseudo-random

numbers the model generates, one can also temporarily make a stochastic model deterministic for

debugging.

Parameters
:ncnar

The normalize chunk names after run parameter. The :ncnar parameter controls whether the model
will call normalize-chunk-names after every call to one of the model running functions. If it is set to t
then normalize-chunk-names will be called (without specifying the unintern parameter). If it is set to
the value delete then normalize-chunk-names will be called with the unintern parameter true. If it is

set to nil then normalize-chunk-names will not be called.

Having normalize-chunk-names called can be useful for debugging, but if the model generates a lot
of chunks it may take a significant amount of time to complete. Thus for models that generate a lot
of chunks, or for which there are several calls to model running functions setting this parameter to nil

may improve performance.

The value of delete is provided as an option for extreme cases where the model is exhausting the
computer memory and unable to run. Setting it to delete is not recommended for general use because

some modules may have internal references to the chunk names which will be made invalid when the

163

ACT-R7 11-Jul-17 ACT-R Reference Manual

uninterning option is used. Extra caution should therefore be used when specifying a value of delete

for :ncnar.
The default value is t.

:dcnn

The dynamic chunk name normalizing parameter. The :dcnn parameter works in conjunction with
the :ncnar parameter to normalize chunk names. If :ncnar is set to t or delete then :dcnn controls
whether the model will normalize the chunk names while the model runs in addition to normalizing at
the end of the run. If :dcnn is set to t then the chunk names stored in slots of chunks will be
automatically updated whenever chunks are merged such that all chunks hold only the true chunk
names of chunks in their slots. It essentially spreads the normalizing out during the run instead of
performing it all at the end, but it will not delete any chunks until the end of the run if :ncnar is set to
do so. This may be more efficient for some models and may also make debugging easier when a
model breaks or while stepping through a run. If :ncnar is set to nil then the setting of the :dcnn

parameter has no effect on the system.
The default value is t.

:dcsc-hook

The dynamic chunk slot change hook parameter. The :dcsc-hook parameter provides a way for
modules or other code to be notified if a chunk is dynamically changed as a result of chunk
normalizing. This parameter can be set with a function which takes one parameter and any number
of such functions may be set. The reported value of this parameter is a list of all functions which
have been set. Whenever a chunk is modified by normalizing, after the normalizing has changed a
slot value, each of the functions set for this parameter will be called with the name of the chunk that
had a slot modified through normalizing. The hook functions will be called every time a chunk

changes due to normalizing regardless of how the normalizing occurred.
If the parameter is set to nil then all functions are removed from the dcsc-hook.
The default value is nil.

:short-copy-names

164

ACT-R7 11-Jul-17 ACT-R Reference Manual

The :short-copy-names parameter controls how chunk names are created when a chunk is copied.
The most common place for this to occur is when a chunk is placed into a buffer and it gets copied
automatically. If the parameter is set to nil then the copy will have a hyphen and a number appended
to it. The number is typically 0, but if that would conflict with another name it will be incremented
until it is “safe” (see the new-name command). If this parameter is set to t then instead of adding a
new hyphen and number when copying a chunk which is itself a copy only the number will be

incremented as needed.

Assuming there are no conflicts, with this parameter set to nil if a chunk named “chunk” is copied it
will be named chunk-0 and if chunk-0 is copied that new chunk will be named chunk-0-0. If this
parameter is set to t then copying chunk will still result in chunk-0, but copying chunk-0 will result in
the name chunk-1. In either case, if a chunk named chunk-0 is created explicitly by the model (it is

not a copy of a chunk named chunk) then a copy of that chunk will be named chunk-0-0.

This parameter only really matters if copies of chunks are being made from copies — either directly or
through the actions of modules like declarative or vision which may reuse copies of chunks. Its
setting should not affect how the model operates with the standard modules because they do not rely

on specific chunk names.

The default value is nil.

Commands
new-name

Syntax:

new-name {prefix} -> [name-symbol | nil]
new-name-fct {prefix} -> [name-symbol | nil]

Arguments and Values:

prefix ::= if provided should be a string or symbol (defaults to “CHUNK?” if not given)
name-symbol ::= a symbol created by appending a number onto the prefix

Description:

New-name is used to generate unique name symbols (which have been interned) within a model,

similar to the Lisp function gentemp. Unlike gentemp, it does not guarantee that the symbol does not

165

ACT-R7 11-Jul-17 ACT-R Reference Manual

already exist. What it does guarantee is that it was not previously returned by new-name within the

current run of the model and that it is not currently used to name a chunk in the current model.

When the module is deleted or reset it clears its name space and uninterns any symbols it has
generated which are no longer "necessary". By necessary, it means that no instance of the naming
module has generated such a name, nor was that symbol interned prior to new-name generating it for

the first time.

If there is no current model or current meta-process or a parameter other than a symbol or string is

provided then a warning is printed and nil is returned.

Anywhere a modeler would consider using gentemp, new-name should probably be used instead to
guarantee the automatic cleanup upon reset or model deletion. Note that it is typically not necessary
to generate a name for a new chunk because omitting a name in the call to define-chunks results in

the chunk getting a name generated by new-name automatically.

Examples:

> (new-name)
CHUNKO

> (new-name temp)
TEMPO

1> (new-name-fct 'fact)
FACTO

2> (new-name-fct "FACT")
FACT1

1> (new-name "temp")
TEMP1

2> (define-chunks (temp2 isa chunk))
(TEMP2)

3> (new-name "temp")
TEMP3

E> (new-name 10)
#|Warning: Invalid parameter passed to new-name. Must be a string or symbol. |#
NIL

E> (new-name)

#|Warning: get-module called with no current model. |#
#|Warning: No naming module available cannot create new name. |#
NIL

E> (new-name "A")

#|Warning: get-module called with no current meta-process. |#
#|Warning: No naming module available cannot create new name. |[#
NIL

166

ACT-R7 11-Jul-17 ACT-R Reference Manual

release-name

Syntax:

release-name name -> [t | nil]
release-name-fct name -> [t | nil]

Arguments and Values:
name ::= a symbol which was generated by new-name
Description:

Release-name can be used to possibly unintern symbols which have been generated by new-name.
This is the same process which occurs on a reset or deletion of the naming module for symbols
generated by new-name, but in some circumstances one may want to perform such a cleanup without
resetting. Thus, if the symbol given in name was generated by the new-name command and no
instance of the naming module other than the one in the current model has generated such a name and

that symbol was not interned prior to new-name generating it for the first time then it is uninterned.
If the symbol is uninterned, then t is returned otherwise nil is returned.
If there is no current model or meta-process then a warning is printed and nil is returned.

Generally, this command is not necessary because a reset or clear-all will automatically clear out the
symbols. However, if one is generating an extremely large number of temporary names with new-
name it can lead to issues with the size of the symbol table in Lisp and explicitly removing names

prior to a reset may be useful.

Examples:

1> (find-symbol "CHUNKO")
NIL
NIL

2> (new-name)
CHUNKO

3> 'chunk1
CHUNK1

4> (find-symbol "CHUNK1")

CHUNK1
INTERNAL

167

ACT-R7 11-Jul-17 ACT-R Reference Manual

5> (new-name)
CHUNK1

6> (release-name-fct 'chunko)
T

7> (release-name chunk1)
NIL

8> (release-name-fct 'chunko)
NIL

E> (release-name chunko)

#|Warning: get-module called with no current model. |#

#|Warning: No naming module available cannot release name CHUNKO. |#
NIL

E> (release-name chunk@)

#|Warning: get-module called with no current meta-process. |#

#|Warning: No naming module available cannot release name CHUNKO. |#
NIL

new-symbol

Syntax:

new-symbol {prefix} -> [new-symbol | nil]
new-symbol-fct {prefix} -> [new-symbol | nil]

Arguments and Values:

prefix ::= if provided should be a string or symbol (defaults to “CHUNK” if not given)
new-symbol ::= a newly interned symbol created by appending a number onto the prefix

Description:

New-symbol is used to generate and intern a unique symbol, similar to the Lisp function gentemp and
the new-name command. Like gentemp, it guarantees that the symbol does not already exist. Unlike

the command new-name, it does not guarantee that the numbering is reset with the model.
When the module is deleted or reset all new-symbols created are uninterned.
If there is no current model or meta-process then a warning is printed and nil is returned.

New-symbol should only be used when one needs a completely new symbol and the name of that
symbol is not meaningful to the model (for instance something that might show up in the trace should

use new-name).

Examples:

168

ACT-R7 11-Jul-17

> (new-symbol)
CHUNK-0

1> (new-symbol "temp")
TEMP-0

2> (new-symbol-fct 'temp)
TEMP-1

3> (let (temp-2 temp-3))
NIL

4> (new-symbol temp)
TEMP-4

E> (new-symbol)

#|Warning: get-module called with no current
#|Warning: No naming module available cannot
NIL

E> (new-symbol)

#|Warning: get-module called with no current
#|Warning: No naming module available cannot
NIL

ACT-R Reference Manual

create new symbol. |#

meta-process. |#
create new symbol. |#

169

ACT-R7 11-Jul-17 ACT-R Reference Manual

Random module

The random module provides a consistent pseudorandom number generator for the system. It is not
dependent on the Lisp random function or the Lisp *random-state* global variable. This makes it
consistent across all instances of ACT-R regardless of the Lisp application or OS being used. This is
very useful for teaching because it guarantees the output of the tutorial material will be the same for
all users. It also makes models and modules easier to debug and verify because the random state can
be set with an ACT-R parameter for testing. It also serves to protect the model from any potential

weaknesses in the random function of a particular Lisp.

The particular pseudorandom number generator chosen is the Mersenne Twister (as implemented by

the mt19937ar.c code) because it is designed for Monte-Carlo simulations. Details can be found at:

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

That algorithm is used by some Lisps for the random function already. However, because the internal
representations of state differ among Lisps it is still necessary to use the ACT-R random module

implementation for consistency of ACT-R across systems.

Parameters

:randomize-time

This parameter can be set to t, nil, or an integer. It is used by the randomize-time command to

determine the range in which a specified time will be randomized. The randomize-time command is

used mainly by the perceptual and motor modules to add noise to the action times.

The default value is nil which means not to randomize the times. A value of t is the same as setting

the value to 3.

:seed

This is the current seed for the pseudorandom number generator. It must be a list of two numbers.
The first is used to initialize the array used by the Mersenne Twister algorithm and the second is an
offset from that starting point where the model should start (or where it currently is if the value is

read after the model has been run). Thus, if one is specifying a seed explicitly, the second number

170

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

ACT-R7 11-Jul-17 ACT-R Reference Manual

should probably be kept “small” because that many pseudorandom numbers will be generated when

the parameter is set to get to the offset point.

There is no default value for the seed parameter. When the module is created in a model it generates
a new seed based on the current result of get-internal-real-time. Resetting the model does not return
the seed to that point — the random module will continue generating new pseudorandom numbers

from the point where it last left off.

Commands

act-r-random

Syntax:
act-r-random /imit -> [value | nil]
Arguments and Values:

limit ::= a positive number (either an integer or floating point)
value ::= a pseudorandom number which is non-negative and less than limit

Description:

Act-r-random will operate like random as defined in the ANSI Lisp specification, except without the
optional parameter for a random-state. It uses the seed value from the current model to generate the
next random number. Thus unless models explicitly set the same seed value each model will have a

different sequence of pseudorandom numbers returned by act-r-random.

It returns a pseudorandom number that is a non-negative number less than limit and of the same type
as limit. An approximately uniform choice distribution is used. If limit is an integer, then each of the

possible results occurs with (approximate) probability 1/limit.
If an invalid value is passed to act-r-random then a warning is printed and nil is returned.

If there is no current model a warning will be printed and a pseudorandom number generated from a

special instance of the random module will be returned.

Examples:

1> (sgp :seed)
:SEED (94875970549 0) (default NO-DEFAULT) : Current seed of the random number generator
((94875970549 0))

171

ACT-R7 11-Jul-17 ACT-R Reference Manual

2> (act-r-random 100)
46

3> (act-r-random 34.5)
11.947622

4> (act-r-random 1000)
679

5> (act-r-random 0.5)
0.31684825

6> (sgp :seed (94875970549 1))
((94875970549 1))

7> (act-r-random 34.5)
11.947622

8> (act-r-random 1000)
679

9> (act-r-random 0.5)
0.31684825

E> (act-r-random 'a)
#|Warning: Act-r-random called with an invalid value A |#
NIL

E> (act-r-random 2)
#|Warning: get-module called with no current model. |#
(0]

act-r-noise

Syntax:

act-r-noise s -> [value | nil]
Arguments and Values:

s = a non-negative number
value ::= a pseudorandom number generated as described below

Description:

Act-r-noise generates a value from a logistic distribution (approximation of a normal distribution)

with a mean of 0 and an s value as given. It does this using the act-r-random function. The s value is

related to the variance of the distribution, 02, by this equation:

172

ACT-R7 11-Jul-17 ACT-R Reference Manual

If s is invalid a warning is printed and nil is returned.

If there is no current model or meta-process a warning will be printed and the noise will be based on
a pseudorandom number generated from a special instance of the random module (as indicated by

act-r-random).

Examples:

\%

(act-r-noise 0)
0.0

\

(act-r-noise .5)
.15807568

(o}

\%

(act-r-noise .5)
.4271247

[y

E> (act-r-noise 'a)
#|Warning: Act-r-noise called with an invalid s A |#
NIL

E> (act-r-noise .5)
#|Warning: get-module called with no current model. |#
-1.131652

randomize-time

Syntax:
randomize-time time -> [time | rand-time]
Arguments and Values:

time ::= should be a number
rand-time ::= a randomized time value

Description:

Randomize-time is used to return a number randomly chosen from a uniform distribution around the

provided time. It depends on the setting of the :randomize-time parameter in the current model. If

the parameter is set to nil then no randomization is done by the randomize-time command and time is

returned.

If the :randomize-time parameter is a number or t (which means use the default number 3) then a

number randomly chosen from the uniform distribution in the range of:

173

ACT-R7 11-Jul-17 ACT-R Reference Manual

n—1 . n—+1
%me * ,time * E

n n [

where n is the value of :randomize-time, will be returned.

If time is not a number or there is no current model or meta-process, then a warning is printed and

time is returned.

Examples:

1> (sgp :randomize-time nil)
(NIL)

2> (randomize-time 10)
10

1> (sgp :randomize-time t)
(T)

2> (randomize-time 50)
65.277435

3> (randomize-time 50.0)
58.443718

1> (sgp :randomize-time 100)
(100)

2> (randomize-time 100)
100.1965

3> (randomize-time 100)
99.349

E> (randomize-time 'a)

#|Warning: Invalid value passed to randomize-time: A |#
A

E> (randomize-time 10)

#|Warning: get-module called with no current model. |#
10

E> (randomize-time 10)

#|Warning: get-module called with no current meta-process. |#
10

randomize-time-ms

Syntax:

randomize-time-ms time -> [time | rand-time]
Arguments and Values:

time ::= should be an integer

174

ACT-R7 11-Jul-17 ACT-R Reference Manual
rand-time ::= a randomized time value
Description:

Randomize-time-ms is used to return a number randomly chosen from a uniform distribution around

the provided time. The difference between randomize-time-ms and randomize-time is that

randomize-time-ms returns integer results because it is for use with times in milliseconds instead of
seconds and the precision of the scheduling is in milliseconds (an attempt to schedule a time specified

in milliseconds which is not an integer will result in a warning and failure to schedule the event). It

depends on the setting of the :randomize-time parameter in the current model. If the parameter is set

to nil then no randomization is done by the randomize-time command and time is returned.

If the :randomize-time parameter is a number or t (which means use the default number 3) then a

number randomly chosen from the uniform distribution in the range of:

et {1

where n is the value of :randomize-time, will be returned.

1
n

If time is not an integer or there is no current model or meta-process, then a warning is printed and

time is returned.

Examples:

1> (sgp :randomize-time nil)
(NIL)

2> (randomize-time-ms 10)
10

3> (sgp :randomize-time t)

(T)

4> (randomize-time-ms 50)
37

1> (sgp :randomize-time 100)
(1600)

2> (randomize-time-ms 100)
99

3> (randomize-time-ms 100)
101

4> (randomize-time-ms 100)
101

175

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (randomize-time-ms 'a)
#|Warning: Invalid value passed to randomize-time-ms: A. Value must be an integer. |[#
A

E> (randomize-time-ms 1.0)

#|Warning: Invalid value passed to randomize-time-ms: 1.0. Value must be an integer. |#
1.0

E> (randomize-time-ms 1)
#|Warning: get-module called with no current model. |#
1

E> (randomize-time-ms 1)
#|Warning: get-module called with no current meta-process. |#
1

176

ACT-R7

Buffer trace module

The buffer trace module records the actions which occur through the buffers while a model runs and

can report that information in a text display (an alternative to the standard trace) or return a list of

11-Jul-17

Lisp structures which encode the actions that took place.

The module has no buffer of its own. It has five parameters that control the tracing and a command

for retrieving the trace information.

ACT-R Reference Manual

Here is an example of the buffer trace using the demo2 model from the tutorial:

> (do-demo2)

myn

SN N oNo]

.000
.025
.050
.075
.100
.125
.150
.175
.185
.210
.235
.260
.285
.310
.335
.360
.385
.410
.435
.460
.485
.510
.535
.560
.585
.610
.635
.660
.685
.710
.735
.760
. 785
.810
.835
.860
.885
.910
.935
.960
.970
.995

020

.035

060

.060

PRODUCTION
+FIND-UNATTEN+
Kok ok ok ok ok ok Kk Kk k kK ok
+ATTEND-LETTE+
Kok kok ok ok ok kK ok ok ok Kk
Kok ok ok ok ok ok KKk k ok Kk

+ENCODE-LETTE+

khkkhkhkhkkhkkhkkhkkx

khkkhkhkhkkhkkhkhkxk

+ RESPOND +

khkkkhkkhkhkkhk*k*

khkkhkhkhkkhkkhkkhkkx

VISUAL-LOCATION
.VISUAL-LOCATIO

.VISUAL-LOCATIO

mmmm

|E

VISUAL

+CMD MOVE-ATT+

khkkkhkkkkhkkkkKk*
khkkkhkkhkkkkkkk*

kkkkkkkhkkhkkhkkhkkkk*x

TEXTO

kkkkkkkkkkkkk*k
khkkhkhkhkkkhkhkkk
kkkkkhkkhkkhkkhkkhkkkkk*x
kkkkkkkkkkkkk*k

Stopped because no events left to process

MANUAL

+CMD PRESS-KE+

kkkkkkkhkkhkkkkkk*x
kkkkkkhkkhkkkkkkk*kx
khkkhkhkhkkkkhkhkkx
khkkhkhkhkkhkkhkhkkk
kkkkkkkkkkkkk*k
kkkkkkkhkkkkkkk*k
kkkkkhkkhkkhkkhkkkkkk*x
kkkkkkhkkhkkhkkhkkkkk*x
khkkkhkkkkhkkkKk*
khkkkhkkkkkhkhkk*
kkkkkkkhkkkkkkk*x
kkkkkkkkkkkkk*kx
khkkkhkhkkkkhkhkkx
khkkhkhkhkhkkhkhkxx
kkkkkkhkkkhkkkkkk*x
kkkkkkkkkkkkk*kx
khkhkhkhkkkhkhkkk
kkkkkhkkhkkhkkhkkhkkkkk*x
kkkkkkkkkkkkk*k
khkkkkkkkhkhkKk*
kkkkkkhkkhkkhkkhkkkkk*x
kkkkkkkkhkkkkkk*x

177

ACT-R7 11-Jul-17 ACT-R Reference Manual

These are the parameters that were set to achieve that:

(sgp :buffer-trace t :buffer-trace-step .025 :traced-buffers (production goal visual-
location visual manual))

The parameters are described below as are the details about what is shown in that trace.

The following information is recorded at each event of the model and then aggregated over all events

at a given time on a buffer by buffer basis:

» Whether the buffer’s module is busy

= Whether the buffer’s module is in an error state
= Whether the buffer is full

= If the buffer is cleared

= [f the chunk in the buffer is modified

= [If arequest is sent to the module

» If a new chunk is set in the buffer

For the first 5, if the stated condition is true during any event at the current time the buffer record will
indicate it as t. For requests, only the last request at the given time is recorded and the information
that is recorded is either the slots and values of the request or the details string of the event if it has
one. If a chunk is set in the buffer, then the name of that chunk is recorded, and as with requests,

only the last setting at a specific time is recorded.

The buffer trace attempts to show all of that information in a textual format. At each time step of the
model i.e. each time that would be shown in the regular trace, and at extra time steps if needed to
meet the :buffer-trace-step setting, there will be one line of trace printed. At the start of the line will
be the time of the summary and for each buffer traced there will be a column of information in the
trace (the columns are separated by the vertical bar character ‘|’). In a column for a buffer, the first
character will be "E" if the module is in an error state or a space otherwise. The second character will

be a "." if there is currently a chunk in the buffer or a space if it is empty. The rest of the column will

show one of the following things in their order of priority (truncated to maintain the column width):

If there is a new chunk set in the buffer the name of that chunk

* If there is a request the request is shown between two "+" characters
* If the buffer is modified it will show a series of "=" characters

* If the buffer is cleared it will show a series of "-" characters

* If the module is busy it will show a series of "*" characters

178

ACT-R7 11-Jul-17 ACT-R Reference Manual

* Otherwise it will be filled with spaces

The graphic tracing tools of the ACT-R Environment rely on the buffer trace module to generate the

data it uses as does the BOLD computation module.

Parameters

:buffer-trace

If the :buffer-trace parameter is set to t, then the normal event trace is disabled and the buffer trace is

printed instead. The default value for this parameter is nil.

:buffer-trace-hook

This parameter allows the modeler to have access to the buffer trace summaries “on the fly”. It
defaults to nil, but if it is set to a function which takes one parameter then that function will be called

with every buffer-record structure (as described in the get-current-buffer-trace command) at the time

they are available. They are made available when the clock changes, when an extra time step is

inserted because of the :buffer-trace-step setting, or when the run terminates.

:buffer-trace-step

If :buffer-trace-step is set to a number it specifies the maximum amount of time that is allowed to
elapse before creating a new buffer summary. Note however that there may be smaller time steps
that correspond to model actions. The default value is nil which means to only create the records
when there are events i.e. there is no minimum or maximum time guaranteed between the buffer

summaries.

:save-buffer-trace

This parameter controls whether the buffer trace information is recorded for later recovery by the get-

current-buffer-trace command. It defaults to nil, which means do not record the information. If it is

set to t, then the buffer trace module will record the summary data so that it can be retrieved for later
use. This parameter does not alter the printed trace i.e. if :buffer-trace is nil and :save-buffer-trace is

t then the standard event trace will be printed even though the buffer trace data is being recorded.

:traced-buffers

179

ACT-R7 11-Jul-17 ACT-R Reference Manual

This can be set to a list of buffers which are to be traced. It has a default value of t, which means to
trace all buffers. Only those buffers specified on this list will have their data recorded. The order of
the buffers in this list is the order they will be printed in the output when the buffer-trace is displayed.
If it is set to t all buffers will be displayed in alphabetical order.

Commands

get-current-buffer-trace

Syntax:
get-current-buffer-trace {clear} -> (buffer-record*)
Arguments and Values:

clear ::= a generalized boolean indicating whether or not to clear the recorded trace information
buffer-record ::= a structure which is defined like this:

(defstruct buffer-record ms-time buffers)

In the buffer-record structure the ms-time slot is a number indicating the model time at which the

summary was recorded in milliseconds and the buffers slot is a list of buffer-summary structures.

buffer-summary ::= a structure which is defined like this:

(defstruct buffer-summary name cleared busy busy->free error
error->clear full modified request chunk-name notes)

In the buffer-summary structure the name slot holds the name of the buffer for which this is a record.
The cleared, busy, busy->free, error, error->clear, full, and modified slots are flags which will be
either t or nil to indicate if the named condition was true during that time. The request slot will hold
either a string of the slot-value pairs in the request or the document string of the event (if it had one)
for the last request made at the recorded time or nil if there was no request made through the buffer at
that time. The chunk-name slot will hold a string of the name of the last chunk which was placed into
the buffer at the specified time, or nil if there was no chunk placed into the buffer at that time. The

notes slot will contain the last note added to the buffer using the add-buffer-trace-notes command, or

nil if no notes have been added to the buffer.

Description:

180

ACT-R7 11-Jul-17 ACT-R Reference Manual

The get-current-buffer-trace command has one optional parameter. It returns a list of the buffer-
record structures which have been collected since the :save-buffer-trace parameter was set to t in the
current model. If the :save-buffer-trace parameter was not set it will return nil. If there is no current

model or current meta-process then the command will print a warning and return nil.

If the optional parameter is provided with a true value then the buffer record stored in the module will
be deleted after generating the summary which is returned. If it is nil or not provided then the record

will be retained.

This command, along with the :buffer-trace-hook parameter, are provided as a mechanism for
modelers to collect buffer/module activity without needing to engineer special purpose hooks or
make any module modifications for such purpose. This data is used by the graphic tracing tools in

the ACT-R Environment as well by the code which produces BOLD predictions from model runs. It

is also used by the “module demand” functions which summarize the results and may be more useful

than parsing the raw data.

Examples:

This example uses the demo2 model as was shown in the buffer trace above with the :save-buffer-

frace parameter also set to t.

> (pprint (get-current-buffer-trace))

(#S(BUFFER-RECORD :MS-TIME 0

:BUFFERS (#S(BUFFER-SUMMARY :NAME PRODUCTION
:CLEARED NIL
:BUSY T
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
!FULL NIL
:MODIFIED NIL
:REQUEST "FIND-UNATTENDED-LETTER"
: CHUNK-NAME NIL
:NOTES NIL)

#S(BUFFER-SUMMARY :NAME GOAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
'FULL T
:MODIFIED NIL
REQUEST NIL
: CHUNK-NAME "GOAL"
:NOTES NIL)
#S(BUFFER-SUMMARY :NAME VISUAL-LOCATION

:CLEARED NIL

181

ACT-R7 11-Jul-17 ACT-R Reference Manual

:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
'FULL T
:MODIFIED NIL
:REQUEST NIL
: CHUNK-NAME "LOCO"
:NOTES NIL)
#S(BUFFER-SUMMARY :NAME VISUAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
!FULL NIL
:MODIFIED NIL
:REQUEST NIL
: CHUNK-NAME NIL
:NOTES NIL)
#S(BUFFER-SUMMARY :NAME MANUAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
!FULL NIL
:MODIFIED NIL
:REQUEST NIL
: CHUNK-NAME NIL
:NOTES NIL)))
#S(BUFFER-RECORD :MS-TIME 25
:BUFFERS (#S(BUFFER-SUMMARY :NAME PRODUCTION
:CLEARED NIL
:BUSY T
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
!FULL NIL
:MODIFIED NIL
:REQUEST NIL
: CHUNK-NAME NIL
:NOTES NIL)
#S(BUFFER-SUMMARY :NAME GOAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
'FULL T
:MODIFIED NIL
:REQUEST NIL
: CHUNK-NAME NIL
:NOTES NIL)
#S(BUFFER-SUMMARY :NAME VISUAL-LOCATION
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
'FULL T
:MODIFIED NIL
:REQUEST NIL
: CHUNK-NAME NIL
:NOTES NIL)

182

ACT-R7 11-Jul-17 ACT-R Reference Manual

#S(BUFFER-SUMMARY :NAME VISUAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
!FULL NIL
:MODIFIED NIL
:REQUEST NIL
: CHUNK-NAME NIL
:NOTES NIL)

#S(BUFFER-SUMMARY :NAME MANUAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
!FULL NIL
:MODIFIED NIL
:REQUEST NIL
: CHUNK-NAME NIL
:NOTES NIL)))

E> (get-current-buffer-trace)

#|Warning: get-module called with no current model. |#
NIL

E> (get-current-buffer-trace)

#|Warning: get-module called with no current meta-process. |#
NIL

add-buffer-trace-notes

Syntax:

add-buffer-trace-notes buffer notes -> [notes | nil]
Arguments and Values:

buffer ::= a symbol which should be the name of a buffer
notes ::= any data which one wants to have stored in the buffer trace record

Description:

The add-buffer-trace-notes command takes two parameters. The first is a symbol which should name
a buffer and the second is some data to store in the buffer trace of the current model in the current
meta-process at the current time. If buffer is the name of a buffer in the current model then notes will
be recorded in the buffer-summary for the named buffer at the current time and notes will be
returned. If there is no current model or buffer does not name a valid buffer then the command will

print a warning and return nil.

183

ACT-R7 11-Jul-17 ACT-R Reference Manual

Any notes which are added will also be displayed in the graphic tracing tools of the ACT-R

Environment when one places the cursor over an event box in the image.

Examples:

> (add-buffer-trace-notes 'goal "save this string")
"save this string"

E> (add-buffer-trace-notes 'not-a-buffer 10)

#|Warning: NOT-A-BUFFER does not name a buffer in the current model no notes added. |#
NIL

E> (add-buffer-trace-notes 'goal "no model")
#|Warning: No current model so cannot add notes. |#
NIL

184

ACT-R7 11-Jul-17 ACT-R Reference Manual

Central Parameters Module

This module maintains three parameters of the system and provides no other model relevant
components. These parameters are used by more than one of the cognitive modules to control how
they operate. Thus, they need to exist outside of any one of them in particular, and may also be
referred to by new modules as well. It also provides a system parameter which can be used to

effectively overwrite the default value for any parameter.

Technically, this module is not automatically loaded by ACT-R because it is provided in the support
directory of the distribution and thus only loaded when needed. Therefore, any module or other file
which uses the parameters in this module should ensure that it is available by making a require-

compiled call to be safe:

(require-compiled "CENTRAL-PARAMETERS" "ACT-R-support:central-parameters")

Since the declarative and procedural modules also currently require it that is not actually necessary,

but still recommended if one is using these parameters when defining a new module.

This module provides a way for other modules to register that they are using the :esc parameter and
note which of their parameters rely on :esc being set to t. It will output a warning if :esc is nil at the
start of a model run when any of those registered parameters have been changed from their default
values — the assumption is that for a parameter whch uses :esc that parameter’s default value is valid

when :esc is set to nil and any other setting would require :esc to be t.

This section will provide the basic details of these parameters. The specific modules which use them

will describe the details of how these parameters modify their operations.
This module has no buffer.

Parameters

er

This is the enable randomness parameter. It specifies how deterministically modules should operate.
It can be set to t which means act non-deterministically or nil which means act deterministically. The

default value is nil. Generally, the setting of this parameter is used to determine how to break “ties”

185

ACT-R7 11-Jul-17 ACT-R Reference Manual

in a module’s processing and it has more impact when :esc is nil because when the subsymbolic
parameters are enables there are not often ties that need to be broken because of noise in the

computations.

.esc

This is the enable subsymbolic computations parameter. It specifies whether modules should work in
a purely symbolic fashion or whether they should use their full subsymbolic processing. The default
value is nil which means that modules should be purely symbolic. If it is set to t, then modules

should use whatever subsymbolic computations they provide.
:ol

This is the optimized learning parameter. It specifies whether modules should use their full
computational forms of subsymbolic quantities or use some simplified approximation. Currently, it is
only used by the declarative system to control the base-level learning equation, but other modules
could also check it as a guide. It can be set to t, which means use the optimized (or simplified) form
of the computation, nil, which means use the full computation, or a positive number, which can be

used as a parameter specifying how much optimization to apply. The default value is t.

System Parameters
:starting-parameters

The :starting-parameters parameter allows one to set parameters which will be applied at the start of
all models that are defined. It can be set to a list of parameter values which are valid for passing to
sgp-fct and those parameter values will be set before the code in a model definition is evaluated. If
this parameter is set in a .lisp file that is placed into the user-loads directory then those settings will

always be made, and that is the recommended use for this parameter.

To be completely safe, one should also make sure that the central-parameters module is loaded using

this call before setting the parameter:

(require-compiled "CENTRAL-PARAMETERS" "ACT-R-support:central-parameters")

particularly if it is being done within the context of a module or extension that is loaded prior to the

user-loads directory being processed. However, since the declarative and procedural modules

186

ACT-R7 11-Jul-17 ACT-R Reference Manual
currently also use the central-parameters module it should always be available even without explicitly

requiring it.

Commands

register-subsymbolic-parameters

Syntax:

register-subsymbolic-parameters { param*} -> nil
Arguments and Values:

param ::= a keyword which should name a valid parameter
Description:

The register-subsymbolic-parameters command is used to indicate when a module’s parameters
depend on the :esc parameter being set to t. When a model first starts running (time 0) if :esc is set
to nil and any of the parameters which have been registered in this way have a value other than their

default value a warning will be printed like this:

#|Warning: Subsymbolic parameters have been set but :esc is currently nil. |#

This command only needs to be called once for a given parameter. It does not need to go into the

creation or reset functions of a module, and should be called directly after the module definition.
It always returns nil.
Examples:

> (register-subsymbolic-parameters :ul :alpha)
NIL

187

ACT-R7 11-Jul-17 ACT-R Reference Manual

The Procedural System

The procedural system implements the procedural cognitive module of the theory. The procedural
system is implemented as three separate modules in the code. Those three modules are the
procedural module, the utility module, and the production-compilation module. The procedural
module handles the productions’ specification and matching at the symbolic level and the conflict
resolution among productions which relies on the utility module. The utility module handles the
computation of the subsymbolic quantity Utility for the productions and maintains the parameters and
history information necessary to do so. Finally, the production-compilation module is responsible for

the learning of new productions by the model when it is enabled.

188

ACT-R7 11-Jul-17 ACT-R Reference Manual

Procedural Module

The procedural module implements the procedural memory system. It provides the commands for
specifying productions, a pattern matcher that works in conjunction with the utility module to choose
which production to fire, and tools for inspecting and debugging the productions of a model. This
module holds a central role in the system because the productions coordinate the interaction between

all of the other modules of the theory.

A production specifies a set of conditions to match against the current contents of the buffers and the
states of the buffers and modules along with a set of actions to perform. When the conditions of a
production are satisfied it may be selected to fire, and when it fires its actions are executed. See the

ACT-R tutorial for more details on specifying and using productions.

Conflict Resolution

Only one production can be selected and fired at any time. The process by which the next production
to fire is chosen is called conflict resolution. When conflict resolution occurs all productions have
their conditions checked to determine which ones match the current state. The conditions specify a
conjunction of tests which must all be true for the production to match (see the p command and ACT-
R tutorial unit 1 for more information on how the matches occur). Among those that match, the one
that has the highest utility value will be chosen (see the utility module for details on the utility
calculations). If there is a tie for the highest utility value then the setting of the :er parameter
determines how that tie is broken. If :er is t then the tie is broken randomly. If :er is nil then a
deterministic process is used such that the same production will be chosen for that model each time
the same tie condition occurs. However, that deterministic process is not specified as part of the
procedural module’s definition because it is not intended to be a process which one relies on for

production ordering or model control.

The procedural module will automatically schedule conflict-resolution events to perform the conflict
resolution process. The first one is scheduled at time O and a new one is scheduled after each
production fires. If no production is selected during a conflict-resolution event then a new conflict-
resolution event is scheduled to occur after the next change occurs. A change in this context is any
other non-maintenance event. The module also schedules production-selected and production-fired
events as a result of conflict resolution. Those events will indicate the specific production which was

selected and fired and will look like this in the trace:

189

ACT-R7 11-Jul-17 ACT-R Reference Manual

0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.050 PROCEDURAL PRODUCTION-FIRED START

There is also a procedural module request event scheduled after the production-selected event. That
event will not be shown in the trace and serves to indicate that the procedural module has started an
action for purposes of the buffer trace module (the event itself performs no actions). Several other
events are scheduled as a result of the production selection and production firing processes. Those

will be described under the production creation command p.

The production-fired event is scheduled based on the production’s specified action time. That
defaults to 50ms, but is controlled by parameters (see the utility module). In addition, if one sets the

:vpft parameter to t then that time has noise added to it using the randomize-time command.

Parameters
:conflict-set-hook

This parameter allows one to specify functions which can intervene in the production selection
process. This parameter can be set with a function which takes one parameter and any number of
such functions may be set (the reported value of this parameter is a list of all functions which have
been set). During conflict-resolution, after all productions have been matched and have had their
utilities calculated, a list of the productions which matched in order of utility (highest first — thus the
first production on the list is the one which will be selected unless something intervenes) will be
passed to each of the functions on the conflict-set-hook list. The return value of the functions on the

conflict-set-hook list is used as follows:

* If it is the name of a production in the conflict set then that production will be the one selected

regardless of the normal conflict resolution mechanism.

* If it is a string, no production will be selected and a warning will be output to the trace
indicating that conflict resolution was canceled and the string returned will be provided as a
reason in that warning. The next conflict resolution event will be scheduled to occur after the
default action time (see the :dat parameter).

= TIf it is nil then the normal conflict resolution mechanism is used.

» If it is anything else, a warning will be output and the normal mechanism will be used.

190

ACT-R7 11-Jul-17 ACT-R Reference Manual

If multiple hook functions are set and more than one returns a non-nil value a warning will be
displayed and the result of one of those non-nil values will be used. Which one gets used is picked
by an unspecified mechanism. No assumptions should be made as to which will be applied and it
may vary from run to run. In general one should not have more than one conflict-set-hook function

returning non-nil.
If the parameter is set to nil then all functions are removed from the conflict-set-hook list.
crt

The conflict resolution trace parameter can be used to include the details of the conflict resolution
process in the trace. If it is set to t then after each conflict-resolution event, for each production, it
will print out either that the production matches the current state or that it fails to match along with

the first condition which failed to match as would be shown by the whynot command.
:cst

The conflict set trace parameter can be used to print the details of the productions in the conflict set
during conflict resolution. If it is set to t then after each conflict-resolution event the current
instantiation of each production that matches is printed in the command trace. The instantiation of a
production is the production text with the variables replaced by the specific values they have based

on the current buffer contents.
:cycle-hook

This parameter allows one to specify functions to be called automatically when productions fire.
This parameter can be set with a function which takes one parameter and any number of such
functions may be set (the reported value of this parameter is a list of all functions which have been
set). During the production-fired event each of the functions on the cycle-hook list will be called
with the name of the production that is firing as the parameter. The return values of those functions
are ignored. If the parameter is set to nil then all functions are removed from the cycle-hook list. A
function should only be set once. If a specific function is specified more than once as a value for
the :cycle-hook parameter a warning will be displayed and a value of nil will be returned as the

current value in that call to sgp.

:dat

191

ACT-R7 11-Jul-17 ACT-R Reference Manual

The default action time parameter specifies the default time that it takes to fire a production in
seconds. That is the amount of time that passes between the production’s selection and fired events.

The default value is .05 (50ms) and generally that value is not changed.

:do-not-harvest

This parameter controls the strict harvesting mechanism of the productions. By default all buffers are
subjected to the strict harvesting practice, but buffers can be exempted from that by specifying them
with the :do-not-harvest parameter. The parameter is set one buffer at a time. The reported value for
the parameter is a list of all the buffers which have been set using the parameter. If it is set to nil then
all buffers will be subjected to strict harvesting. A particular buffer should only be set once and if it

is specified again a warning will be displayed and nil will be returned as the current value.

:lhst

The left hand side trace parameter controls whether the matching conditions from the selected
production are shown in the trace. If this parameter is set to t (which is the default) and the :trace-

detail parameter is set to high then the matching conditions are displayed. If this parameter is set to

nil or the :trace-detail is medium or low, then such events are not shown.

‘pPpm

The procedural partial matching parameter controls whether productions are allowed to be selected
and fired even if they are not a perfect match to the buffers’ current contents. If this parameter is set
to a number then production matching is allowed to occur for buffer tests which are not a perfect
match to the chunk in the buffer. The default value is nil which means productions will only match

when the buffer tests are exact matches.

If the procedural partial matching is enabled, then slots tested for equality (slots without a modifier
and those with an explicit = modifier) in buffer tests of productions may be considered a match even

if the value is not chunk-slot-equal to the current value in the slot of the chunk in the buffer. The

partial match will occur if there is a similarity value between the value specified for the slot in the
production and the value currently in that slot of the buffer and that similarity is greater than the

maximum similarity difference as returned from the declarative module’s similarity command.

192

ACT-R7 11-Jul-17 ACT-R Reference Manual

A production which is not a perfect match will have its utility value decremented for purposes of
determining which production to fire, but the production’s utility parameters and the learning of
utility are not affected by that decrementing. The default decrement will be that for each slot which
is not a perfect match, the matching utility of the production will be adjusted by adding the similarity
difference (a negative value) between the specification and the current buffer chunk's slot value
multiplied by the value of the :ppm parameter. Thus, when the procedural partial matching is
enabled the utility used to determine whether production i should be selected among those that match

would be:
U’ (t) =U; (t) +&+ Z ppm*similarity(s;,v;)
7

Ui(t) is the production’s current true utility value

€ is the noise which may be added to the utility

j is the set of slots for which production i had a partial match
s;is the specification for the slot j in production i

v;is the value in the slot j of the chunk in the buffer

Alternatively, one can use the :ppm-hook parameter to specify a function for computing a custom
penalty for mismatched production tests. In that case the expression used in the summation above is

overridden by a user specified function.
:ppm-hook

The procedural partial matching hook parameter allows one to specify a function that will compute
the utility offset added to a production which does not match the current state exactly when
procedural partial matching is enabled. The default value for the parameter is nil which results in
the offset being computed as described for the :ppm parameter. However, if the parameter is set to a
function then that function will be passed a production name and a list of mismatch lists, one for each
mismatch which occurred while testing the named production. A mismatch list will be a 5 element
list consisting of: a buffer name, a slot name, the specified slot value, the actual value in the slot of
the chunk in the buffer, and the reported similarity between those two items. If the hook function
returns a number that will be added to the production's utility, any other return value will result in the

default calculation being added.

:rhst

193

ACT-R7 11-Jul-17 ACT-R Reference Manual

The right hand side trace parameter controls whether the actions from the fired production are shown

in the trace. If this parameter is set to t (which is the default) and the :trace-detail parameter is set to

high then the production’s actions are displayed. If this parameter is set to nil or the :trace-detail is
medium or low, then such events are not shown. Note that this only controls the direct actions made
by the procedural module. Whether any events generated by other modules as a result of those

actions are displayed is controlled by those modules.
:style-warnings

The style warnings parameter controls whether the procedural module reports warnings about
possible production issues which do not prevent the production from being created, like requests to a
buffer without querying it in the conditions or multiple requests to the same buffer. Style warnings
also indicate possible issues among the productions, like requests to a buffer which is not tested in the
conditions of other productions or setting/modifying slots which are never tested in any production.
If the parameter is t (the default value) then additional warnings may be displayed when a model is
defined and reset (they will be output using the model-warning command). If it is set to nil then

those additional warnings will not be displayed.

:use-tree

The use tree parameter controls whether a decision tree is created to use during production matching.
If the parameter is nil (the default value) then each production is tested individually to determine if it
matches. If :use-tree is set to t, then when the model is loaded a decision tree is created based on the
conditions among the productions and that tree is consulted first in production matching to potentially
reduce the set of productions that need to be tested further. This should result in a faster model run
time, but does have an initial tree creation cost and requires additional memory to store the tree. That
additional time and space used are typically insignificant relative to what it takes to run a model, but

in some situations may become a factor.
:vpft

The variable production firing time parameter controls whether the time of a production’s firing is
constant or variable. If the parameter is nil (the default value) then each production takes its
specified action time exactly each time it fires. If :vpft is t, then the randomize-time command is
used to randomize the production’s action time. Note that randomize-time depends on the setting of

the :randomize-time parameter and if it is nil then there will be no randomization.

194

ACT-R7 11-Jul-17 ACT-R Reference Manual

Production buffer

The procedural module has a buffer called production. It exists for the purpose of allowing the
module to have its state tracked. It never has any chunks placed into it and practically speaking it
does not accept any requests. There is no reason to use the production buffer other than for tracking

the state of the procedural module (typically through the buffer trace module).

Activation spread parameter: :production-activation
Default value: 0.0

Queries

The production buffer only responds to the default queries.

‘State busy’ will be t when a production is firing (the time between the production-selected and

production-fired events). It will be nil at all other times.
‘State free’ will be nil when a production is firing and t at all other times.

‘State error’ will always be nil.

Requests
{slot value}*

The production buffer will accept any request without a warning or error, but the request is

completely ignored — no actions are performed regardless of the slots specified.

Commands
p/define-p/p*/define-p*

Syntax:

p production-definition -> [p-name | nil]

p-fct (production-definition) -> [p-name | nil]
define-p production-definition -> [p-name | nil]
define-p-fct (production-definition) -> [p-name | nil]
p* production-definition -> [p-name | nil]

p*-fct (production-definition) -> [p-name | nil]
define-p* production-definition -> [p-name | nil]

195

ACT-R7 11-Jul-17 ACT-R Reference Manual

define-p*-fct (production-definition) -> [p-name | nil]

Arguments and Values:

production-definition ::= p-name {doc-string} condition* ==> action*
p-name ::= a symbol that serves as the name of the production for reference
doc-string ::= a string which can be used to document the production
condition ::= [buffer-test | query | eval | binding | multiple-value-binding]
action ::= [buffer-modification | request | buffer-clearing | modification-request | buffer-overwrite | eval |
binding | multiple-value-binding | output | Istop!]
buffer-test ::= =buffer-name> {isa chunk-type} slot-test*
buffer-name ::= a symbol which is the name of a buffer
chunk-type ::= a symbol which is the name of a chunk-type in the model
slot-test ::= {slot-modifier} [slot-name | strict-bound-variable] slot-value
slot-modifier ::=[=] -] <| >]| <=]| >7]
slot-name ::= a symbol which names a slot
slot-value ::= [variable | value]
value ::= any Lisp value
query ::= ?buffer-name> query-test*
query-test ::= {-} queried-item query-value
queried-item ::= a symbol which names a valid query for the specified buffer
query-value ::= [bound-variable | value]
buffer-modification ::= =buffer-name> [direct-value | {isa chunk-type} slot-value-pair*]
direct-value ::= [variable | Lisp symbol]
slot-value-pair ::= [slot-name | strict-bound-variable] bound-slot-value
bound-slot-value ::= [bound-variable | value]
request ::= +buffer-name> [direct-value | (direct-value request-spec*) | {isa chunk-type} request-spec*]
request-spec ::= {slot-modifier} [slot-name | strict-bound-variable | request-parameter] slot-value
request-parameter ::= a Lisp keyword naming a request parameter provided by the specified buffer
buffer-clearing ::= -buffer-name>
modification-request ::= *buffer-name> [direct-value | {isa chunk-type} slot-value-pair*]
buffer-overwrite ::= @buffer-name> [direct-value | {isa chunk-type} slot-value-pair*]
eval ::= [leval! | Isafe-eval!] form
binding ::= [!bind! | !safe-bind!] variable form
multiple-value-binding ::= !mv-bind! (variable®) form
output ::= loutput! [output-value | (format-string format-arg*) | (output-value*)]
output-value ::= [bound-variable | value]
format-string ::= a Lisp string which may contain format processing characters
format-arg ::= an output-value which will be processed by the format-string
variable ::= a symbol which starts with the character =
strict-bound-variable ::= [a variable which is used in the slot-value position of a slot-test which has
either no slot-modifier or the = slot-modifier |
the variable naming a buffer at the head of a buffer-test]
bound-variable ::= [strict-bound-variable | a variable bound through binding or multiple-value-binding]
form ::= a valid Lisp form

196

ACT-R7 11-Jul-17 ACT-R Reference Manual

Here is an example production that assumes there are buffers named goal, retrieval, imaginal, visual,
and visual-location, that the retrieval buffer has a request parameter called :recently-retrieved, that

these chunk-types have been defined:

(chunk-type goal-type slotl value test buffer state step)
(chunk-type visual-location screen-x screen-y color)

and that there are functions defined called check-value, get-a-state, and record-results.

This production uses most of the available syntax and is purely for demonstration — it does not

represent any particular usage from a real model.

(p example-production "a production showing most syntactic elements"
=goal>

isa goal-type
state start
test =test
< value 4
value =value
- slotl =test
slotl =last-loc
buffer =check

?visual>
state =check
buffer empty

=visual-location>
isa visual-location
>= screen-x =value
<= screen-x 100
> screen-y =value
< screen-y =max-value
=value =current-value

=imaginal>

leval! (check-value =value)

Ibind! =max-value (+ =value 100)

Imv-bind! (=quotient =remainder) (floor =max-value)
==>

Isafe-bind! =new-state (get-a-state)

=goal>
=check =new-state
value =quotient
step continue

*visual-location>
isa visual-location
screen-x =max-value

+retrieval>
:recently-retrieved nil
< screen-x =max-value
- value =current-value
color blue

197

ACT-R7 11-Jul-17 ACT-R Reference Manual

+visual-location> =last-loc
+imaginal>

isa goal-type

state done

@visual> =imaginal
loutput! (Moving to state =new-state with max-value of =max-value)
Isafe-eval! (record-results =check 75 =quotient =remainder)
Istop!

)

Description:

The p family of commands is used to create the productions for a model. The p* commands exist to
provide some backward compatibility with older versions of ACT-R and should not be used since the
corresponding p command has the same functionality now. The “define-” commands are provided as
a convenience for those using Lisp editors which provide special operations for use with Lisp forms
that start with “define-”, and do the same as the corresponding command without the “define-” on the

front.

A production must be given a name and can be given an optional documentation string. Then it
contains a set of conditions to be tested and a set of actions to be executed when the production is
fired. If the specification of the production is syntactically correct, then that production is entered
into the procedural memory of the current model, as maintained by the procedural module, and the

production’s name is returned.

If the name given for a production is already used by a production in the procedural memory of the
current model then a warning is printed, the old production is removed, and it is replaced with the

newly defined production.

If there is an error in parsing the production then one or more warnings will be output indicating what

was wrong, no new production is entered into the procedural memory, and nil is returned.
Within a production there are many possible components and each will be described in detail below.
Variables

Productions contain variables to allow for more general matching and actions. The variables are
symbols which start with an “=" character e.g. =slot, =answer, =goal. The variables are only relevant

within the context of a single production and essentially serve three purposes. The first is to compare

198

ACT-R7 11-Jul-17 ACT-R Reference Manual

two or more values. The second is to copy a value from a condition into an action or specific query.
The last is a process referred to as dynamic pattern matching and it allows a variable to be used in the
specification of a slot for a buffer test, modification, modification request, or request. A single
variable may be used for any/all of those purposes within a production i.e. it could compare two slots
to determine that they are the same, copy that value into a request action, and modify a slot using that

variable in a different action.

With respect to the dynamic pattern matching there are some restrictions on how the variables can be
used. First, there is no search performed in the matching and all variable slot names must be
“grounded” by being used as a slot value in an explicitly named slot condition. This means the

dynamic pattern matching cannot be used to “find a slot which has a specific value” like this:

(p invalid
=buffer>
=slot 150
==>

)

Also, there is only one level of indirection allowed in the use of variablized slot names. Thus it is not

possible to do something like this:

(p also-invalid
=buffer>
slotl =val
=val =val2
=val2 300
==>

)

However, one may go one level deep across multiple buffers:

(p valid
=bufferi>
slotl =s1
=s2 =value
=buffer2>
slot2 =s2
=s1 =value
==>

)

Constants

199

ACT-R7 11-Jul-17 ACT-R Reference Manual

Any symbols used in the production for values which are not variables are assumed to be the names
of chunks. If there is not a chunk with such a name at the time the production is created then a new
chunk with no slots will automatically be created with that name. Other non-symbol values (strings,

numbers, etc) are treated as the corresponding Lisp value.
Modifiers

When testing slot values in conditions and checking queries in a production there are several
modifiers which can be used: =, -, <, >, <=, and >=. The = modifier is used to check that the value in
the buffer chunk’s slot and the value given in the production are equal as determined by the chunk-
slot-equal command. If no modifier is provided, then the = modifier is assumed (one usually never
sees the = modifier in a production). The — modifier means to negate the test. In a buffer test that
means that the buffer chunk’s slot does not equal the value specified in the production and for a query
it means that the match should succeed if the specified query returns false. The inequality tests (<, >,
<=, and =>) can only be used when the values are numbers (the test fails if either of the elements
being tested is not a number). If the values are numbers then the test is true if the inequality holds
between the value in the specified slot of the chunk in the buffer and the value specified in the
production in that order i.e. if the test is < slot1 10 then the condition matches if the value in the slot1

chunk of the buffer is less than 10.
isa

In many of the conditions and actions of a production it is possible to specify an optional chunk-type
using the symbol isa. That chunk-type specification is only used during the definition of the
production and does not directly affect the condition or action in which it occurs. It is effectively a
declaration for the slots to be used, and unless the chunk-type has default slot-value pairs the same

production would result without the chunk-type being specified.

When a chunk-type is specified in that way it allows the production to perform additional syntax
checking to determine if the slots specified for that condition or action conform to the slots available
for the chunk-type indicated. It also adds any default slot-value pairs specified for that chunk-type
into the corresponding condition or action if such a slot is not specified explicitly within the condition
or action. If a slot which is not valid for a specified chunk-type is used in a condition or action that

will result in a warning being output, but it does not prevent the production from being specified.

Conditions

200

ACT-R7 11-Jul-17 ACT-R Reference Manual

The conditions of the production are also referred to as the production’s left hand side (LHS). They
are a conjunction of tests which must all be true for the production to be selected. The order in which
the conditions are specified does not matter — there are no ordering constraints and the order in which
the tests are performed will not necessarily be the same as they are specified in the production. The
only ordering which will be maintained is that eval and binding conditions will be performed in the
order specified if possible, and if they have to be reordered a warning will be displayed when the

production is defined.

Here is the general description of the conditions that can be tested in a production. When a
production is selected during conflict resolution it will generate an event to indicate each buffer
match and buffer query condition that it contains and are shown in the trace under the conditions

indicated with the :lhst parameter.
buffer test

The buffer-test is the primary condition used in productions. It is comparing the chunk currently in a
specific buffer to a pattern provided in the production. Each buffer may have one test specified per
production. The slot values in the buffer’s chunk are compared to the values specified in the

condition using the chunk-slot-equal command, and all of the slots must satisfy the conditions

specified for the production to match (except when the :ppm parameter is set which allows imperfect
matches). If a value of nil is specified for a slot in a buffer test that indicates a test for the absence of

the slot — a slot cannot actually have a value of nil.

In a production which is selected, a buffer test is also referred to as “harvesting” the chunk in the
buffer. Here is an example of a buffer-test:
=goal>

slotl =value

state start
- slot2 =value

Every buffer test starts with a variable that names the buffer followed by the ‘>’ character. Thus, this
is testing the chunk in the model’s goal buffer. That variable will be bound to the chunk currently in
the buffer and can be used like any other variable in the production. This condition requires that the

chunk have slots named slot1 and state. The state slot must have the chunk start as its value and the

201

ACT-R7 11-Jul-17 ACT-R Reference Manual

slot1 slot can hold any value which will be bound to the =value variable. The other constraint here is

that if the chunk has a slot named slot2 it must not have the same value as the slot1 slot.

In the trace a buffer test will show up as a buffer-read-action event like this:

0.000 PROCEDURAL BUFFER-READ-ACTION GOAL

indicating which buffer was tested by the production.

query

A query is one or more tests of a buffer and/or its owning module. There are several default queries
which may be made for every buffer and a module may provide many more queries to which it will
respond. Each query will produce either a true or false result. The production will only match if the
result of each query is true, or if the result is false and the negative test modifier, ‘-’, is used. The
queries that can be specified for every buffer are:

buffer empty

buffer full

buffer failure

buffer requested

buffer unrequested

state free

state busy

state error

error t
error nil

The first five are tests of the buffer itself and the module is not contacted to determine the status. The
rest, and any others which a module provides, are tests which are relayed to the module to get its
response. For the first five, the semantics of the queries are the same for all buffers and are as

follows:

- buffer full: is true if there is currently a chunk in the buffer

- buffer failure: is true if the failure flag has been set for the buffer and it does not hold a chunk

- buffer empty: is true if there is not a chunk currently in the buffer and the failure flag is clear

- buffer requested: is true only if there currently is a chunk in the buffer and the module has
indicated that it was put there as a result of a request to the module

- buffer unrequested: is true only if there currently is a chunk in the buffer and it has been

marked as not having been put there as a result of a request to the module

202

ACT-R7 11-Jul-17 ACT-R Reference Manual

The other queries are dependent on the how the module responds to them and thus one needs to check
the particular module description to determine how they are used. Generally, they have the following

semantics, but some modules may not follow this convention:

- state free: is true if the module is ready for new requests

- state busy: is true if the module is currently handling a request

- state error: is true if the last request resulted in some sort of error

- error t: this is the same as a test of state error (which is the query which will actually be sent
to the module) and is provided as a shorthand notation for production syntax

- error nil: this is the same as a query for “— state error” thus checking that the module is not
currently reporting that “state error” is true and again is a shorthand notation in the production

syntax

Here is an example query to the goal buffer:

?goal>
state free
buffer full
- state error

A query starts with a symbol composed of a ‘?’, the name of the buffer being queried, and the symbol
>’. This query is testing that the goal module is currently reporting that its state is free, there is

currently a chunk in the goal buffer, and that the goal module is not currently reporting an error.

In the trace each buffer queried by the selected production will show up as a query-buffer-action:

0.450 PROCEDURAL QUERY-BUFFER-ACTION GOAL

eval

The !eval! condition is provided to allow the modeler to add any arbitrary conditions to the LHS of a
production or to perform some side effects (like data collection or model tracking information). In
the testing of the production’s conditions the form provided to evaluate will be called during conflict
resolution. If the result of the evaluation is nil, then the production cannot be selected, but any other
return value will allow the production to continue with the pattern matching of the LHS. Using !eval!

is something that should be considered carefully when modeling. Generally, they should be used for

203

ACT-R7 11-Jul-17 ACT-R Reference Manual

abstracting away components of the model or task which are unnecessary for the current modeling or

for performing non-model related actions.

Here is an example of a call to !eval!:

leval! (special-test =varl =var2 start)

This would pass three parameters to the function called special-test. Those parameters will be the
current bindings for the =varl and =var2 variables in the production and the symbol start. If that
function returns a non-nil value then this production can continue in conflict resolution, but if it

returns nil then it will be removed from the current conflict set.

There are actually two forms of the eval condition !eval! and !safe-eval!. Both do the same thing, and

the difference is only meaningful for the production compilation mechanism.

One note about using !eval! in conditions is that their evaluation may or may not occur during every
conflict-resolution event. They will only be evaluated as needed to determine if a production
matches. Thus not every !eval! within a production may be evaluated during a given conflict-
resolution event and possibly none of the !eval! actions in any of the productions may be evaluated
during a conflict-resolution event. Of the !eval! actions which are evaluated the only guarantee on
the order of their evaluation is that those provided within a production will be evaluated in the order
specified, but there is no guarantee on the order in which the !eval! actions from different productions
will be evaluated. Because of the uncertainty in when and whether or not !eval! conditions will be

evaluated it is recommended that the functions called have no side effects.
binding

The !bind! condition is very similar to the !eval! condition. However, with !bind! the return value of
the evaluation is saved in a variable of the production which can then be used like other variables in
the production with the excpetion of not being able to use it in a slot name position. As with !eval!
the return value must be non-nil for the production to successfully match. Here is an example of a !
bind!:

Ibind! =test-value (convert-value =var)

204

ACT-R7 11-Jul-17 ACT-R Reference Manual

This will pass the current binding of the =var variable to the function convert-value and then bind the

result to the =test-value variable in the production if it is non-nil.

Just like !eval!, there is also a second binding condition !safe-bind! which operates exactly like the !

bind! condition for conflict resolution purposes, but has a difference with respect to how production

compilation occurs.

It is also possible to bind multiple return values in a single test with the !mv-bind! condition. This
works the same as 'bind! except a list of variables is specified and each is bound to the corresponding
return value from the evaluation. If there are fewer return values than variables to be bound the
production will not match, and if any of the return values which are to be bound to a variable is nil

then the production will also not match. Here is an example of !mv-bind!:

Imv-bind! (=valuel =value2) (split-values =var)

The same constraints on ordering and evaluation as described for eval conditions generally apply to
binding conditions as well, and again the recommendation is to not have any side effects in the
functions used. However, because the variables bound by a binding condition may be used in other
eval or binding conditions, the ordering of binding conditions may be performed in an order other
than specified in the production if that is necessary to create the appropriate bindings e.g. these
conditions in a production would have to be reordered as indicated to get the bindings necessary but
the relative ordering of the !eval! conditions would be maintained:
(p bind-ordering

leval! (+ =y =x) ; 3rd

Ibind! =x (1+ =y) ; 2nd

Ibind! =y 3 ; 1st

leval! (= =x =y) ; 4th
::>)

Actions

When a production fires it executes all of its actions, which are also referred to as its right hand side
(RHS). Those actions are executed in a specific order regardless of how they are specified within the
production definition. Except for the eval, output, and bind actions, the actions are processed through
individual events scheduled to occur at the same time as the production’s firing. The ordering of

those events is determined using the priority of the scheduling of the events. Whether those events

205

ACT-R7 11-Jul-17 ACT-R Reference Manual

will be shown in the trace is determined by the :rhst parameter. Those actions may result in other

events being scheduled by the modules or otherwise with output not controlled by :rhst.
The ordering of the actions, along with their specific priorities, is as follows:

All eval, output, and bind calls occur during the production-fired event
The production-fired event schedules all of the other events

buffer modification actions [priority 100]

buffer overwrite actions [priority 90]

modification requests [priority 60]

module requests [priority 50]

buffer clearings [priority 10]

©® N ok WD

a !stop! action generates a break event [priority :min]

In general the production actions fall into three categories: cognitive actions performed directly by
the production (those which begin with an =, @, or -), actions that are passed off to a module to
handle (those that begin with a + or *), and debugging/modeler extension actions (those that begin

with an !). The different actions possible are described in the following sections.
buffer modification

A buffer modification action is used to change the slot values of a chunk in a buffer. This is done
directly by the production and works the same for every buffer (the buffer’s module is not involved in
the process). It is essentially the same as using the mod-chunk command on the chunk in the buffer.
Here is an example of a buffer modification:

=goal>

state next-step
slotl =value

The buffer modification must first name the buffer to be modified by using a symbol composed of the
‘=" character, the name of the buffer and the ‘>’ character. That is followed by pairs of slot names
and values. Thus, this example will change the state slot of the chunk in the goal buffer to now
contain the chunk next-step and the slotl slot will now hold whatever the variable =value is bound to

in the production.

206

ACT-R7 11-Jul-17 ACT-R Reference Manual

Alternatively, one can also specify what is referred to as an indirect modification. Instead of
specifying the slots and values to modify, a chunk can be specified instead (either as a constant or
through a variable). Specifying a chunk is equivalent to specifying all the slots and values of that
chunk in the modification. Thus, if one has a chunk defined like this:

(define-chunks (test-chunk slotl 10 state finish))

then this modification action:

=goal> test-chunk

will do the same thing as this one:

=goal>
slotl 10
state finish

It is also possible to specify a modification with no slots and values:

=goal>

That will not change the chunk in the buffer, but may be useful to prevent the strict harvesting

mechanism from automatically clearing the buffer.

In order to perform a buffer modification action that buffer must have also been tested with a buffer-

test in the conditions of the production to guarantee that it contains a chunk to be modified.

The buffer modification actions will show up in the trace as mod-buffer-chunk events indicating the

buffer that is modified:

0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL

buffer clearing

A buffer clearing action is used to remove a chunk from a buffer. As with buffer modification
actions, this is done directly by the production without consulting the buffer’s module. However,
modules may be monitoring for buffer clearing events and perform some action whenever a buffer is
cleared (their own buffer or any other). Once the action completes the buffer will be empty. Here is

an example that would clear the goal buffer:

-goal>

207

ACT-R7 11-Jul-17 ACT-R Reference Manual

The action shows up in the trace as a clear-buffer event indicating which buffer was cleared:
0.150 PROCEDURAL CLEAR-BUFFER GOAL
A buffer can be cleared regardless of whether or not it was tested on the production’s LHS. Note that

often one does not need to explicitly clear a buffer because there are two situations which result in

buffers being cleared implicitly as described below in Implicit Production Actions.

buffer overwrite

A buffer overwrite action is used to replace the contents of a buffer without clearing it first. As with
the buffer modification and buffer clearing actions, this is performed directly by the production
without notifying the buffer’s module. The chunk which was in the buffer is essentially lost when

this action occurs. Here is an example of an indirect buffer overwrite action:
@goal> =value
This will replace the chunk in the goal buffer with the chunk that is bound to the =value variable (a

constant chunk name could also be used in place of the variable). It will show up in the trace as an

overwrite-buffer-chunk event indicating the buffer and the chunk being copied into it:

0.600 PROCEDURAL OVERWRITE-BUFFER-CHUNK GOAL CHUNK-10 REQUESTED NIL

Even though the overwrite action was generated by a production, the resulting chunk in the buffer is

still marked as being unrequested.

If the item provided is not a valid chunk name then a warning will be printed at run time and no

change will be made to the buffer:

#|Warning: overwrite-buffer-chunk called with an invalid chunk name BAD-NAME |#

If slot and value pairs are provided for an overwrite action like this:

@goal>
slotl 10
state finish

208

ACT-R7 11-Jul-17 ACT-R Reference Manual

Then a new chunk is created with only the slots and values specified and that chunk is used to

overwrite the buffer in the same way as an indirect action does.

If an overwrite action does not have any components provided:

@goal>

then it performs a slightly different operation. In that case it will erase the buffer instead of
overwritting it with a chunk that has no slots (which would be the consistent extension from
providing slots and values). The difference is that when the buffer is erased it will be empty. That

will show up in the trace like this:

0.150 PROCEDURAL ERASE-BUFFER GOAL

module request

A module request (usually just referred to as a request) is how the production asks a module to
perform some action. It is indicated by specifying a buffer name with a “+” on the front and a “>” on
the end. Syntactically, a request can be specified using any slots and values for any buffer.
Semantically, what a request actually does is specific to the module. Some modules may not even
accept requests through their buffers, or may have a more restrictive syntax than the general syntax
available in the production (for example only allowing a slot to be specified once in the request).
Thus, to know what can be requested, how it needs to be specified, and how that will then be
processed one needs to know the details of the modules. A syntactically correct production may
make semantically invalid requests which would typically generate warnings at run time from the

module receiving the request.

In the production, a module request can be specified in the same ways as a modification action. It
may directly include all of the details of the request (which may include modifiers unlike the
modification actions) or create the request indirectly by specifying a chunk. As far as the module
which receives the request is concerned, there is no difference between the different specifications in
the production i.e. the module does not know whether explicit slot and value specifications were
provided or if the production specified a single chunk which resulted in the slot value pairs of the

request.

In addition to specifying slots in the request one may also include additional labels called request

parameters. A request parameter is used like a slot in the request, but it is not actually the name of a

209

ACT-R7 11-Jul-17 ACT-R Reference Manual

slot. It is a Lisp keyword which has been created by a particular module to allow additional

information to be provided in a request without having to use slots in chunks.

Here is an example of specifying the details of a request:

+retrieval>
slotl =value
- slotl 10
slot2 start
<= count =count
:recently-retrieved nil

That request would be sent off to the retrieval buffer’s module for handling, and what happens based

on that request depends on the module which gets the request.

Here is an example of an indirect request:

+retrieval> =value
If =value is bound to a chunk name in the instantiation of the production being fired, then that chunk
is essentially expanded to its slot value pairs to make the request. Thus, if =value were bound to the
chunk A and the chunk A were defined like this:

(define-chunks (a state start slot2 10))

Then that would be equivalent to specifying this in the production:

+retrieval>
state start
slot2 10

It is also possible to include request parameters in an indirect request by specifying a list which has
the chunk as the first element and the request parameters and values as the remaining items:
+retrieval> (=value :recently-retrieved t)

If a variable used in an indirect request is not bound to the name of a chunk in the production’s

instantiation, then warnings are printed and no request is made (note that the implicit clearing
described below is still performed even if such a warning is encountered). The warnings will look

like this in the trace:

#|Warning: define-chunk-spec's 1 parameter doesn't name a chunk: (not-a-chunk) |#
#|Warning: schedule-module-request called with an invalid chunk-spec NIL [#

210

ACT-R7 11-Jul-17 ACT-R Reference Manual

A valid request action will show up in the trace as a module-request event specifying the buffer to

which the request was sent:

0.800 PROCEDURAL MODULE-REQUEST GOAL

Typically, that will be followed by events from the module to which the request was made

performing the requested action.
modification request

A modification request is similar to both the module request and buffer modification actions, and it is
another way for a production to ask a module to perform some action. The differences between a
modification request and a module request are that a modification request does not include an implicit
clearing of the buffer and it is restricted to the same specification style as a buffer modification (no
slot modifiers are allowed, no request parameters are accepted, and the buffer to which this request is
made must have been used in a buffer test on the production’s LHS). As with a request, what the

module does in response to a modification request is entirely up to the module.

3L

To create a modification request the buffer name is preceded by the character. Here is an

example of a modification request:

*imaginal>
slotl =value
slot2 start

This would send those slot and value pairs off to the imaginal buffer’s module to process. It is also

possible to make an indirect modification request just like an indirect buffer modification:

*imaginal> =chunk

A modification request will show up in the trace as a module-mod-request event specifying the buffer

to which the request is made:

1.000 PROCEDURAL MODULE-MOD-REQUEST IMAGINAL

An empty modification request is also allowed syntactically, but may not be meaningful to the

module which receives it.

If a module does not accept modification requests then a warning like this will be displayed when the

production is fired:

211

ACT-R7 11-Jul-17 ACT-R Reference Manual

#|Warning: Module XXXXX does not support buffer modification requests. |#

eval
The eval action works just like the eval condition except that the return value does not matter.
binding

The binding action works just like the binding condition except that a returned value of nil can be
bound to the variable or variables in the action. Additionally, if the binding actions must be

reordered for proper evaluation a warning will be output when the production is defined.
output

The !output! action allows one to embed additional text in the model’s trace. The output will be

shown when the :v parameter is non-nil under any of the :trace-detail setting.

There are three ways to use the output action. It can be used to print a single value like this:

loutput! =value
loutput! started

In that case the item specified will be output followed by a newline in the trace. If the item is a

variable then it is the binding of the variable which is output.

It can also output several items if they are placed into a list:

loutput! (the value is =value)

In that case all of the items will be printed on one line followed by a newline. Again, variables will

be replaced with their current bindings before outputting.

Finally, it can use the Lisp format control mechanisms to output the text. If the first item given in a
list to an !output! action is a string then that string is assumed to be a format specification. It is used
to generate the output text using the remaining arguments in the same way that the Lisp format

command would:

loutput! ("The count is ~6,3f.~%The value is ~a~%" =count =value)

212

ACT-R7 11-Jul-17 ACT-R Reference Manual

stop

The stop action is used to force the model to stop after firing that production. A stop action is created

with this;

Istop!

A break event will be generated by the stop action that will cause the current run to terminate.

Implicit production clearing actions

In addition to the events specified in the production there are two situations where a buffer clearing
action will be implicitly executed when the production fires. They are referred to as strict harvesting

and implicit clearing.
strict harvesting

Strict harvesting means that when a production tests a buffer on its LHS (harvests the chunk) it will
automatically clear that buffer in the actions of the production. That will occur unless either: a
modification is performed on that buffer (either a buffer modification with an = or a modification
request with a *) or the buffer has been specified as one which should not be strict harvested using

the :do-not-harvest parameter.

request clearing

For each buffer which has a module request on the RHS of a production there is an implicit buffer
clearing action performed on that buffer. There is no mechanism provided for suppressing this

clearing action.

Examples:

For examples of productions in actual models see the example models in the ACT-R tutorial. These
examples will show some of the warnings which may result when trying to define productions. Only

those examples which result in no production being defined are indicated as errors.
For these examples the following chunk-type is assumed to have been defined:

(chunk-type goal-type slot slot2 state)

213

ACT-R7 11-Jul-17 ACT-R Reference Manual

and the :style-warnings parameter has been turned off to avoid the warnings which may result

because of the productions being defined individually.

1> (p test
"Automatically creating a chunk which is referenced"
=goal>
isa goal-type
state start
==>

#|Warning: Creating chunk START with no slots [#
TEST

2> (p test
"Redefining the production test"
=goal>
isa goal-type
state start
==>

#|Warning: Production TEST already exists and it is being redefined. |#
TEST

E> (p test

"No current model"

=goal>

isa goal-type
state start

==>

)
#|Warning: get-module called with no current model. |#
#|wWarning: No procedural modulue found cannot create production. |#

NIL
> (p test2
"Slot name doesn't match chunk-type specified"
=goal>
isa goal-type
bad-slot t
==>
)

#|Warning: Production TEST2 uses previously undefined slots (BAD-SLOT). |#
TEST2

E> (p test2
"Invalid buffer name in condition"
=buffer>
isa goal-type
state start
==>

)

#|Warning: No production defined for (TEST2 "Invalid buffer name in condition" =BUFFER>
ISA GOAL-TYPE STATE START ==>). [#
#|Warning: First item on LHS is not a valid command |#

#|Warning: --- end of warnings for undefined production TEST2 --- |#
NIL
E> (p test2

"Invalid buffer in query after a valid buffer test"

=goal>

214

ACT-R7 11-Jul-17 ACT-R Reference Manual

isa goal-type
?buffer>

buffer empty
==>

)

#|Warning: No production defined for (TEST2 "Invalid buffer in query after a valid buffer
test" =GOAL> ISA GOAL-TYPE ?BUFFER> BUFFER EMPTY ==>). |#

#|Warning: Invalid syntax in (=GOAL> ISA GOAL-TYPE ?BUFFER> BUFFER EMPTY) condition. |#
#|Warning: Invalid slot-name ?BUFFER> in call to define-chunk-spec. |#

#|Warning: --- end of warnings for undefined production TEST2 --- |#
NIL
E> (p test2
"Buffer not tested on LHS for modification action"
==>
=goal>

state start

)

#|Warning: No production defined for (TEST2 "Buffer not tested on LHS for modification
action" ==> =GOAL> STATE START). |#

#|Warning: Buffer modification action for untested buffer (=GOAL> STATE START). |#
#|Warning: --- end of warnings for undefined production TEST2 --- |#

NIL

all-productions

Syntax:

all-productions -> (production-name*)

Arguments and Values:

production-name ::= a symbol which names a production
Description:

The all-productions command takes no parameters. It returns a list of the names of all the
productions defined in the current model of the current meta-process. If there is no current model it

prints a warning and returns nil.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

> (all-productions)
(START INCREMENT STOP)

E> (all-productions)
#|Warning: get-module called with no current model. |#
NIL

E> (all-productions)

215

ACT-R7 11-Jul-17 ACT-R Reference Manual

#|Warning: get-module called with no current meta-process. |#
NIL

pPp

Syntax:

pp production-name* -> (production-name*)
pp-fct (production-name*) -> (production-name®*)

Arguments and Values:
production-name ::= a symbol which names a production
Description:

The pp command is used to print the procedural module’s representation of a production. It takes any
number of production names and for each one prints out the representation of the named production
in the current model of the current meta-process. If no names are provided it prints out all of the
productions in the current model (which can be useful when production compilation is enabled to see
what productions the model has learned). It returns a list of the names of the productions that were

printed.

Note that the representation printed for a production may not exactly match the text which was used
to define the production. In particular, any chunk-types specified in the original definition will not be
shown in the printed representation since the chunk-type information is only used for the definition

and does not represent an actual component of the production.

If there is no current model or current meta-process a warning is printed and nil is returned. If an

invalid production name is given a warning is printed.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

> (pp)
(P START
=GOAL>
START =NUM1
COUNT NIL
==>
=GOAL>
COUNT =NUM1
+RETRIEVAL>
FIRST =NUM1

216

ACT-R7 11-Jul-17 ACT-R Reference Manual

(P INCREMENT
=GOAL>
COUNT =NUM1
- END =NUM1
=RETRIEVAL>
FIRST =NUM1
SECOND =NUM2
==>
=GOAL>
COUNT =NUM2
+RETRIEVAL>
FIRST =NUM2
IOUTPUT! (=NUM1)

)
(P STOP
=GOAL>
COUNT =NUM
END =NUM
==>
-GOAL>
IOUTPUT! (=NUM)

)
(START INCREMENT STOP)

E> (pp-fct (list 'not-production 'start))
#|Warning: No production named NOT-PRODUCTION is defined |#
(P START
=GOAL>
START =NUM1
COUNT NIL
==>
=GOAL>
COUNT =NuM1
+RETRIEVAL>
FIRST =NUM1

)
(START)

E> (pp)
#|Warning: get-module called with no current model. |#

#|Warning: No procedural module found |#
NIL

E> (pp)
#|Warning: get-module called with no current meta-process. |#

#|Warning: No procedural module found |#
NIL

pbreak/punbreak

Syntax:

pbreak production-name* -> (break-production*)
pbreak-fct (production-name¥*) -> (break-production*)
punbreak production-name* -> (break-production*)
punbreak-fct (production-name¥*) -> (break-production*)

Arguments and Values:

217

ACT-R7 11-Jul-17 ACT-R Reference Manual

production-name ::= a symbol that names a production
break-production ::= a symbol that names a production which is currently set to generate a break event

Description:

The pbreak command can be used to force a break event to occur when particular productions are
selected during conflict resolution. Each production which is specified in a call to pbreak will force a
break event if it is selected. Before the break, the current instantiation of the production will be

output to the trace.

The punbreak command is used to remove the productions from the break condition. Each
production passed to punbreak will no longer force a break event upon its selection. If no

productions are specified for punbreak then all productions have their break status cleared.

Both commands return a list of all productions which currently have a break status set in the current

model of the current meta-process.

If there is no current model or current meta-process or a production name provided is invalid a
warning is printed.
Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

1> (pbreak)

NIL
2> (pbreak start)
(START)
3> (run 10)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
(P START
=GOAL>
START 2
COUNT NIL
==>
=GOAL>
COUNT 2
+RETRIEVAL>
FIRST 2
)
0.000 ------ BREAK-EVENT PRODUCTION START

4> (pbreak-fct '(start increment))
(INCREMENT START)

5> (punbreak start)
(INCREMENT)

218

ACT-R7 11-Jul-17 ACT-R Reference Manual

6> (pbreak start stop)
(STOP INCREMENT START)

7> (punbreak-fct '(increment stop))
(START)

8E> (pbreak bad-name)

#|Warning: BAD-NAME is not the name of a production |#

(START)

9E> (punbreak-fct '(not-a-production))

#|Warning: NOT-A-PRODUCTION is not the name of a production |#
(START)

10> (punbreak)
NIL

11> (pbreak)
NIL

E> (pbreak)

#|Warning: There is no current model - pbreak cannot be used. |#
NIL

E> (punbreak start)

#|Warning: There is no current model - punbreak cannot be used. |#
NIL

pdisable/penable

Syntax:

pdisable production-name* -> (disabled-production*)
pdisable-fct (production-name*) -> (disabled-production*)
penable production-name* -> (disabled-production*)
penable-fct (production-name*) -> (disabled-production*)

Arguments and Values:

production-name ::= a symbol that names a production
disabled-production ::= a symbol that names a production which is currently disabled

Description:

The pdisable command can be used to disable productions. A production which is disabled will not
participate in conflict resolution. Each production which is specified in a call to pdisable will be
disabled.

The penable command is used to enable productions which have been disabled. Each production
passed to penable will no longer be disabled. If no productions are specified for penable then all

productions will be enabled.

219

ACT-R7 11-Jul-17 ACT-R Reference Manual

Both commands return a list of all productions which currently have been disabled in the current

model of the current meta-process.
If there is no current model or meta-process or a production name is invalid a warning is printed.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

1> (pdisable)
NIL

2> (pdisable start stop)
(STOP START)

3> (penable-fct '(start))
(STOP)

4> (pdisable-fct '(start increment))
(STOP INCREMENT START)

5> (penable)
NIL

E> (penable)

#|Warning: There is no current model - penable cannot be used. |#
NIL

E> (pdisable bad-name)

#|Warning: BAD-NAME is not the name of a production |#

NIL

E> (penable-fct '(not-a-production))

#|Warning: NOT-A-PRODUCTION is not the name of a production |#
NIL

whynot

Syntax:

whynot production-name* -> (matching-production*)
whynot-fct (production-name*) -> (matching-production*)

Arguments and Values:

production-name ::= a symbol that names a production
matching-production ::= a symbol that names a production which matches at the current time

Description:

The whynot command is a useful model debugging tool. For each of the named productions passed
to it (or all productions if no names are provided) it will print out whether the production matches the

current state or not. If it does match, then the instantiation of the production is printed and if it does

220

ACT-R7 11-Jul-17 ACT-R Reference Manual

not match then the production is printed and the first condition that is unsatisfied at the current time is

provided.

If the :ppm parameter is enabled to allow for imperfect matching then the instantiation of a

production which is a partial match will indicate the current slot value, the imperfectly matching

buffer slot value and the similarity between those values.

It returns a list of all the productions which do match the current state in the current model of the

current meta-process (regardless of whether they were passed into whynot for display).

If there is no current model or meta-process then a warning is printed and nil is returned. If an

invalid production-name is provided a warning will be displayed.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

1> (reset)
DEFAULT

2> (whynot)

Production START does NOT match.
(P START
=GOAL>
START =NUM1
COUNT NIL

=GOAL>
COUNT =NUM1
+RETRIEVAL>
FIRST =NUM1

It fails because:
The GOAL buffer is empty.

Production INCREMENT does NOT match.
(P INCREMENT
=GOAL>
COUNT =NuM1
- END =NUM1
=RETRIEVAL>
FIRST =NUM1
SECOND =NUM2

=GOAL>
COUNT =NUM2

+RETRIEVAL>
FIRST =NUM2

IOUTPUT! (=NUM1)

It fails because:
The GOAL buffer is empty.

221

ACT-R7 11-Jul-17

Production STOP does NOT match.

(P STOP
=GOAL>
COUNT =NUM
END =NUM
==>
-GOAL>

1OUTPUT! (=NUM)
)
It fails because:
The GOAL buffer is empty.

NIL

3> (run-n-events 2)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 ------ Stopped because event limit reached

0.0

2

NIL

4> (whynot-fct '(increment))

(P INCREMENT
=GOAL>
COUNT =NUM1
- END =NUM1
=RETRIEVAL>
FIRST =NUM1
SECOND =NUM2
==>
=GOAL>
COUNT =NUM2
+RETRIEVAL>
FIRST =NUM2
IOUTPUT! (=NUM1)

It fails because:

The chunk in the GOAL buffer does not have slot COUNT.

(START)
5> (whynot start)

Production START matches:
Production START matches:
(P START
=GOAL>
START 2
COUNT NIL
==>
=GOAL>
COUNT 2
+RETRIEVAL>
FIRST 2

)
(START)

ACT-R Reference Manual

This example uses a simple model definition to show a production which is a partial match with :ppm

enabled:

1> (define-model test
(sgp :esc t :ppm 1)
(chunk-type test slot)
(define-chunks (buffer-value) (production-test))

(set-similarities (buffer-value production-test -.5))

222

ACT-R7 11-Jul-17 ACT-R Reference Manual

(set-buffer-chunk 'goal (car (define-chunks (slot buffer-value))))

(p test
=goal>
isa test
slot production-test
==>))

TEST

2> (whynot)

Production TEST partially matches the current state:
Production TEST partially matches the current state:
(P TEST

=GOAL>
SLOT [PRODUCTION-TEST, BUFFER-VALUE, -0.5]

==>

)

(TEST)

E> (whynot)
#|Warning: Whynot called with no current model. |#
NIL

E> (whynot bad-name)

BAD-NAME does not name a production.
(START)

production-firing-only

Syntax:

production-firing-only event -> production-firing-event?

Arguments and Values:

event ::= an ACT-R event

production-firing-event? ::= a generalized boolean that is true if event has an action of production-fired
and is false otherwise

Description:

This is not a command which would be called by the modeler directly. It is provided as a possible

value for the :trace-filter parameter to restrict the trace to only the production-fired events.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

> (with-parameters (:trace-filter production-firing-only)

(run 10))
0.050 PROCEDURAL PRODUCTION-FIRED START
0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT

223

ACT-R7 11-Jul-17 ACT-R Reference Manual

0.250 PROCEDURAL PRODUCTION-FIRED INCREMENT
3
0.300 PROCEDURAL PRODUCTION-FIRED STOP
4
0.300 ------ Stopped because no events left to process
0.3
50
NIL

un-delay-conflict-resolution

Syntax:
un-delay-conflict-resolution -> nil
Arguments and Values:
Description:

The un-delay-conflict-resolution command takes no parameters and will cause a new conflict-
resolution event to be scheduled in the current model of the current meta-process if the procedural
module is currently waiting for some change in the system to schedule the next conflict-resolution
event. If there is no current model or current meta-process then this command has no effect and a

warning is output.

This is not a command which one will typically need to use. Right now, it is only used by the
procedural system modules (procedural, utility, and production-compilation) to ensure that conflict
resolution gets rescheduled if necessary when parameters are changed or new productions are
created. However, in rare circumstances other modules could put the system in such situations and
thus may need to use this command (though typically the other module should just be able to

schedule an event which would allow conflict resolution to occur normally).

Examples:

> (un-delay-conflict-resolution)
NIL

E> (un-delay-conflict-resolution)

#|Warning: get-module called with no current model. |#
NIL

E> (un-delay-conflict-resolution)

#|Warning: get-module called with no current meta-process. |#
NIL

clear-productions
Syntax:

224

ACT-R7 11-Jul-17 ACT-R Reference Manual

clear-productions -> nil
Arguments and Values:
Description:

The clear-productions command will delete all of the productions from the current model of the
current meta-process. It is not recommended, but there may be times where one finds doing so
necessary. It will also print out a warning indicating that it is not recommended. If there is no

current model or current meta-process then a warning is printed.
It always returns nil.

Examples:

> (clear-productions)

#|Warning: Clearing the productions is not recommended |#

NIL

E> (clear-productions)

#|Warning: get-module called with no current model. |#
#|Warning: No procedural module was found. |#

NIL

E> (clear-productions)

#|Warning: get-module called with no current meta-process. |#

#|Warning: No procedural module was found. |#
NIL

declare-buffer-usage

Syntax:

declare-buffer-usage buffer type-name { [:all | slot*] } -> [t | nil]
declare-buffer-usage-fct buffer type-name { [:all | (slot*)] } -> [t | nil]

Arguments and Values:

buffer ::= a symbol that is the name of a buffer

type-name ::= a symbol that is the name of a chunk-type

slot ::= a symbol that names a slot of the chunk-type type-name

Description:

The declare-buffer-usage command is used to indicate a chunk-type and any slots from that chunk-
type that are going to be used with a particular buffer but which are not created by the productions

nor set initially in the model definition. By declaring slots used it will prevent style warnings from

225

ACT-R7 11-Jul-17 ACT-R Reference Manual

the production definitions for the slots provided. This will typically be needed when chunks are
being placed into buffers from code. In that situation using this command in the model definition to
indicate the items which are being set outside of the model definition will avoid possible style

warnings.

If buffer names a valid buffer, type-name names a valid chunk-type, and all slots specified are valid
for the chunk-type given then style warnings related to those items will be avoided and a value of t
will be returned. If the keyword :all is provided instead of slot names then that will be equivalent to

specifying all the slots of the chunk-type given.

If any of the parameters are invalid or there is no current model or current meta-process then a

warning will be printed and nil will be returned.

Examples:

\

(declare-buffer-usage goal chunk)

T
: (declare-buffer-usage imaginal text screen-pos value)

; (declare-buffer-usage-fct 'imaginal 'visual-object '(value color))
: (declare-buffer-usage retrieval text :all)

; (declare-buffer-usage-fct 'imaginal 'visual-object :all)

E> (declare-buffer-usage not-a-buffer visual-location)

#|wWarning: Cannot declare usage for NOT-A-BUFFER because it does not name a buffer in the
model. |#

NIL

E> (declare-buffer-usage-fct 'goal 'not-a-chunk-type)

#|Warning: Cannot declare usage for buffer GOAL because NOT-A-CHUNK-TYPE does not name a
chunk-type in the model. |#

NIL

E> (declare-buffer-usage goal chunk not-a-slot)

#|wWarning: Cannot declare usage for buffer GOAL because the slots (NOT-A-SLOT) are not
valid for chunk-type CHUNK. |[#

NIL

E> (declare-buffer-usage goal type)

#|Warning: get-module called with no current model. |#

#|Warning: No procedural module found. Cannot declare buffer usage. |#
NIL

E> (declare-buffer-usage goal type)

#|wWarning: get-module called with no current meta-process. |#
#|Warning: No procedural module found. Cannot declare buffer usage. |#
NIL

226

ACT-R 7 11-Jul-17 ACT-R Reference Manual

227

ACT-R7 11-Jul-17 ACT-R Reference Manual

Utility module

The utility module provides the support for the productions’ subsymbolic utility value which is used
in conflict resolution. This is a numeric quantity associated with each production that can be learned

while the model runs or specified in advance for each production.

Only an overview of how utility works is provided here. The details of the utility calculation are
described in the additional documentation file named “new-utility” as well as tutorial units 6 and 7.

The variable noise mechanism discussed in the new-utility document is not implemented at this time.

Each production has a utility value associated with it, which we will call U. Of the productions in the
conflict set (those which match the current state) the one with the highest current U will be the one
selected. When utility learning is enabled, the U value is based on the rewards that a production
receives and will change as the model runs. The learning of utilities is controlled by the following

equation for a production i after its nth usage:

U (n) =U,(n=1) +a[R(n) -U,(n-1]

a is the learning rate set by the :alpha parameter
Ri(n) is the effective reward value given to production i for its nth usage
Ui(0) is determined based on initial parameter settings

The learning occurs when a reward is triggered, at which time productions which have been used
since the last reward may have their utility values updated (see the trigger-reward command for
details on which productions will be updated). The effective reward for a production i is the reward

value received after its nth usage minus the time since that nth selection of production i.

When the :esc parameter is enabled the utility values may also have a noise component added to them
(regardless of whether the learning mechanism is enabled). If :esc is enabled and the :egs parameter
is set then each time a production’s utility is calculated it will also have a noise component added to
it. That noise is generated using the act-r-noise command with the s value being the current setting of

the :egs parameter.

Parameters

228

ACT-R 7 11-Jul-17 ACT-R Reference Manual
:alpha

The o parameter in the utility learning equation. The default value is .2.

:egs

This is the expected gain s parameter. It specifies the s parameter for the noise added to the utility

values. It defaults to 0 which means there is no noise in utilities.
iiu

The initial utility value for a user defined production. This is the U(0) value for a production if utility

learning is enabled and the default utility if learning is not enabled. The default value is 0.
:nu

This is the starting utility for a newly learned production (those created by the production compilation

mechanism). This is the U(0) value for such a production if utility learning is enabled and the default

utility if learning is not enabled. The default value is 0.

:reward-hook

The reward-hook parameter allows the modeler to override the default calculation for effective
reward, Ri(n). It can be set to a function which must take three parameters. If the :reward-hook
parameter is not nil (which is the default value) then each time a reward is propagated back to a
production the reward-hook function will be called. It will be passed the name of the production as
the first parameter, the reward value being propagated as the second, and the time since the
production was selected (in seconds) as the third. If that function returns a number then that number
is used as the Ri(n) value in updating the production’s utility instead of the normal calculation (which
is the reward minus the time since the production’s selection). If any other value is returned, then the
standard calculation for Ri(n) is used. Only one reward-hook function may be specified at a time and

if the parameter is changed from one function to another a warning will be output.

:reward-notify-hook

This parameter allows one to specify functions which will be called whenever there is a reward
provided to the model. This parameter can be set to a function which takes one parameter and any

number of such functions may be set (the reported value of this parameter is a list of all functions

229

ACT-R7 11-Jul-17 ACT-R Reference Manual

which have been set). Whenever trigger-reward is called the functions set with this parameter will be
called during the propagate-reward event that gets generated as a result of that trigger-reward. Each
of the functions that has been set for this parameter will be called with one parameter which is the
reward value passed to trigger-reward. The return value from a function called through this hook is
ignored. If the parameter is set to nil then all functions are removed from the reward-notify-hook list.
A function should only be set once. If a function is specified more than once as a value for the
reward-notify-hook a warning will be displayed and a value of nil will be returned as the current

value.
:ul

This is the utility learning flag. If it is set to t or complete then the utility learning equation shown
above will be used to learn the utilities as the model runs. If it is set to nil then the explicitly set
utility values for the productions are used (though the noise will still be added if :egs is non-zero).

The default value is nil.
:ult

This is the utility learning trace flag. If it is set to t then when a reward is received and utilities are
updated the corresponding changes will be output in the model trace. If it is set to nil then there will

be no additional trace output from utility updating. The default value is nil.
ut

This is the utility threshold. If it is set to a number then that is the minimum utility value that a
production must have to compete in conflict resolution. Productions with a lower utility value than
that will not be selected. The default value is nil which means that there is no threshold value and all

productions will be considered.
:utility-hook

The utility-hook parameter allows the modeler to override or bypass the default utility calculation. It
can be set to a function which must take one parameter. If the :utility-hook parameter is not nil
(which is the default value) then each time a production’s utility is to be calculated, first this hook
function is called with the name of the production as the parameter. If that function returns a number

then that number is used as the production’s utility instead of using the normal mechanisms. Only

230

ACT-R7 11-Jul-17 ACT-R Reference Manual

one utility-hook function may be specified at a time and if the parameter is changed from one

function to another a warning will be output.

:utility-offsets

This parameter allows one to specify functions which can extend the utility equation with new terms.
This parameter can be set to a function which takes one parameter and any number of such functions
may be set (the reported value of this parameter is a list of all functions which have been set).
Whenever a production’s utility is computed each of the functions that has been set for this parameter
will be called with one parameter which is the name of the production. If a function called returns a
number then that value will be added to the utility of the production. If a function returns any other
value then no change is made to the utility of the production. If the parameter is set to nil then all
functions are removed from the utility-offsets list. A function should only be set once. If a function
is specified more than once as a value for the utility-offsets a warning will be displayed and a value

of nil will be returned as the current value.

Commands

trigger-reward

Syntax:
trigger-reward reward {maintenance} -> [t | nil]
Arguments and Values:

reward ::= [reward-value | nil]

reward-value ::= a number which indicates the amount of reward to apply

maintenance ::= a generalized boolean which indicates whether the propagate-reward event should be
marked as a maintenance event or not

Description:

The trigger-reward command allows the modeler to present rewards to the current model in the
current meta-process for the purposes of utility learning. If the reward specified is a number then that
value is used in computing the updated utility for the productions which need to be updated. If the
reward is nil then no utilities are updated but this still indicates when the last reward was given. This
function can be called at any time to introduce a reward to the model — it does not need to be called
synchronously with a production’s firing. If there is a current model in the current meta-process and

the reward value is valid, then a propagate-reward event will be scheduled at the current time to

231

ACT-R7 11-Jul-17 ACT-R Reference Manual

perform the new computations and t will be returned. The event will show the value of the reward

being used like this:

0.000 UTILITY PROPAGATE -REWARD 10

If utility learning is not enabled, then that will be followed by a warning indicating that no change has

occurred:

#|Warning: Trigger-reward can only be used if utility learning is enabled. |#

That event will be marked as a maintenance event if a non-nil maintenance value is provided
otherwise it will be a regular event. One may want to have the reward be a maintenance event if a
model is being tested in both learning and non-learning to avoid the introduction of the rewards for

the learning case adding additional changes relative to the non-learning situation.

The productions which will have their utilties updated depends upon the setting of the :ul parameter.
If it is set to t then all productions which have been selected since the last reward was provided will
receive an update. If it is set to complete then only productions which have “completed” since the
last reward will be updated. For a production to be completed it must have fired (as opposed to only
being selected) and all the requests and modfication requests which it has made must also have been
marked as completed by the module which received the request. The details on when a particular
module signals that its requests are completed are described in that module’s section, and information
about how one would handle that when creating a new module can be found in the sections on using

buffers and creating new modules.

If there is no current model, no current meta-process, or the parameter provided is invalid then a

warning is printed, no utilities are changed, and nil is returned.

Examples:

> (trigger-reward 10)
T

> (trigger-reward nil)
T

> (trigger-reward 3 t)
T

E> (trigger-reward "value")
#|Warning: Trigger-reward must be called with a number or nil. |#
NIL

232

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (trigger-reward 10)
#|Warning: No current model. Trigger-reward has no effect. |#
NIL

Spp

Syntax:

spp [{ [production-name | (production-name*) } { [param-name* | param-value-pair*] } |
(production-name [param-name* | param-value-pair*])*] -> (param-values*)
spp-fct ([{ [production-name | (production-name®*) } { [param-name* | param-value-pair*] } |
(production-name [param-name* | param-value-pair*])*])-> (param-values*)

Arguments and Values:

production-name ::= a symbol which is the name of a production in the current model
param-name ::= a keyword which names a production parameter

param-value-pair ::= param-name new-param-value

new-param-value ::= a Lisp value to which the preceding param-name is to be set
param-values :.= [(param-value*) | (production-name®*) | :error]

param-value ::= the current value of a requested production parameter or :error

Description:

Spp is used to set or get the value of the parameters of the productions in the current model of the
current meta-process. It is similar to the sgp command which is used to set and get the module

parameter.

Each production has six parameters associated with it. Two of them are read only, but the others can

be adjusted by the modeler. Those parameters are:
:at

The action time of the production. This is how much time passes (in seconds) between the
production's selection and when it fires. This can be set explicitly for each production and defaults to

the value of the :dat parameter at the time the production was created.
:name

The name parameter returns the name of the production. This cannot be changed. Requesting this

parameter is useful for annotating the results that are returned as shown in the examples.

233

ACT-R7 11-Jul-17 ACT-R Reference Manual

The u parameter returns the current U(n) value for the production. This may be set directly only
when the utility learning mechanism is not enabled. It defaults to the value of the :iu parameter at the

time the production is created unless it is created through production compilation in which case it

defaults to the value of the :nu parameter.
sutility

The last computed utility value of the production during conflict resolution (including any noise
which was added). This cannot be changed by the modeler. If the production has not yet been a

member of the conflict set, then the value will be nil.
:reward

This is a reward value to apply when this production fires. The default is nil which means the
production does not provide a reward. If it is set to a number then after this production fires a trigger-
reward call will be made using that reward value. If it is set to t then after the production fires a
trigger-reward call will be made with a value of nil (a null reward which clears the history without

adjusting any utilities).
:fixed-utility

This parameter can be set to exclude a production from having its utility updated by the utility
learning mechanism. The default value is nil which means that the production’s :u parameter will be
adjusted when rewards are received. If it is set to t then this production’s utility will not change and

will remain fixed at the current :u parameter value.

If no parameters are provided to spp, then all of the current model's productions’ parameters are
printed and a list of all the production names is returned. For each production it prints the
production’s name followed by the parameters which are currently appropriate based on the settings
of :esc and :ul. If :esc is nil, then the :u and :at parameters are printed. If :esc is t and :ul is nil

:utility, :u and :at are printed, and if :esc is t and :ul is t, then :utility, :u, :at, and :reward are printed.

If a production or list of productions is specified as the first parameter to spp then the following

parameters are set or retrieved from only those productions. If no production names are provided

234

ACT-R7 11-Jul-17 ACT-R Reference Manual

then the settings are applied to or retrieved from all productions that exist at the time of the call to

SPp.

If production names are specified but no specific parameters are specified then the parameters for
those productions are printed and the list of those production names is returned. If any of the
production names provided are invalid a warning will be printed and the corresponding element of

the return list will be :error.

If all of the parameters passed to spp (after any production names) are keywords, then it is a request
for the current values of the parameters named. Those parameters are printed for the productions
specified and a list containing a list for each production specified is returned. Each sub-list contains
the values of the parameters requested in the order requested and the sub-lists are in the order of the
productions which were requested. If an invalid parameter is requested, then a warning is printed and

the value returned in that position will be the keyword :error.

If there are any non-keyword parameters in the call to spp and the number of parameters (not
counting the production names) is even, then they are assumed to be pairs of a parameter name and a
parameter value. For all of the specified productions (or all productions if none are specified) those
parameters will be set to the provided values. The return value will be a list containing a list for each
production specified. Each sub-list contains the values of the parameters set in the order they were set
and the sub-lists are in the order of the productions which were specified. If a particular parameter
value was not of the appropriate type, then a warning is printed and the value returned in that position

will be the keyword :error.

It is also possible to pass lists of production-name and parameter settings to spp. Essentially, each list
provided must be formatted as something that could be passed to spp on its own and they will each be

processed as appropriate.

If there is no current model or current meta-process at the time of the call, then a warning is displayed

and nil is returned.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

1> (sgp :esc nil :ul nil)
(NIL NIL)

2> (spp)

235

ACT-R7

Parameters for production
u 0.000
:at 0.050

Parameters for production
‘U 0.000
rat 0.050

Parameters for production
u 0.000
:at 0.050

(START INCREMENT STOP)

3> (sgp :esc t)
(T)

4> (spp)

Parameters for production
rutility NIL
‘u 0.000
:at 0.050

Parameters for production
rutility NIL
‘u 0.000
:at 0.050

Parameters for production
rutility NIL
‘u 0.000
:at 0.050

(START INCREMENT STOP)

5> (sgp :ul t)
(T)

6> (spp)
Parameters for production
rutility NIL

‘u 0.000
:at 0.050
:reward NIL

:fixed-utility NIL
Parameters for production
rutility NIL

‘u 0.000
:at 0.050
:reward NIL

:fixed-utility NIL
Parameters for production
rutility NIL

‘u 0.000
:at 0.050
:reward NIL

:fixed-utility NIL
(START INCREMENT STOP)

7> (spp start)
Parameters for production
rutility NIL

‘u 0.000
;at 0.050
:reward NIL

:fixed-utility NIL
(START)

START:

INCREMENT:

STOP:

START:

INCREMENT:

STOP:

START:

INCREMENT:

STOP:

START:

> (spp-fct '((increment stop) :name

Parameters for production
:NAME INCREMENT

INCREMENT:

11-Jul-17

tu))

ACT-R Reference Manual

236

ACT-R7

:U 0.000

Parameters for production
:NAME STOP
U 0.000

((INCREMENT ©) (STOP 0))

1> (spp :at 10)
((10) (10) (10))

2> (spp-fct nil)
Parameters for production

rutility NIL

‘U 0.000

rat 10.000

‘reward NIL

:fixed-utility NIL
Parameters for production

rutility NIL

‘U 0.000

rat 10.000

‘reward NIL

:fixed-utility NIL
Parameters for production

rutility NIL

‘U 0.000

rat 10.000

‘reward NIL

:fixed-utility NIL
(START INCREMENT STOP)

1> (sgp :esc t :egs 3)
(T 3)

2> (run 10)

0.3

48

NIL

11-Jul-17

STOP:

START:

INCREMENT:

STOP:

4> (spp-fct '(:name :utility :u))

Parameters for production
:NAME START
CUTILITY -1.806
:U 0.000

Parameters for production
:NAME INCREMENT
CUTILITY -1.594
:U 0.000

Parameters for production
:NAME STOP
CUTILITY -3.252
:U 0.000

START:

INCREMENT:

STOP:

ACT-R Reference Manual

((START -1.80585 ©) (INCREMENT -1.5941277 0) (STOP -3.2521996 0))

5> (spp (start) (stop :name :utility) (increment :at 10))

Parameters for production
:utility -1.806
‘U 0.000
rat 0.050

Parameters for production
:NAME STOP
UTILITY -3.252

START:

STOP:

(START (STOP -3.2521996) (10))

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (spp (start end))
Parameters for production START:
rutility NIL
‘u 0.000
:at 10.000
:reward NIL
:fixed-utility NIL
#|Warning: Spp cannot adjust parameters because production END does not exist |#
(START :ERROR)

E> (spp start :u :ve)

Parameters for production START:
U 0.000

#|Warning: NO PARAMETER VE DEFINED FOR PRODUCTIONS. |#
:VE ERROR

((® :ERROR))

E> (spp)
#|Warning: get-module called with no current model. |#
NIL

238

ACT-R7 11-Jul-17 ACT-R Reference Manual

Production Compilation Module

The production compilation module implements the process of learning new productions. More
details of the production compilation process can be found in the additional document named

“compilation” and tutorial unit 7. Only the basic mechanisms of the module will be described here.

Production compilation works by combining two productions that fire in sequence into one new
production. When enabled, it will attempt to create a new production for each pair of productions
that fire. To determine if two productions can be combined into one production all of the buffers that
are referenced in those productions (in any condition or action) are checked to see if they have a
compatible usage between the two productions. If any buffer does not have a compatible usage

between the two productions then the productions cannot be combined.

Compatible usage is determined by the “compilation type” of the buffer. The compilation type also
controls how the usage of that buffer in the productions gets combined into the new production. The
provided module specifies five different compilation types, and each of the buffers in the system is
considered to be of one of those types. The five types are goal, imaginal, retrieval, perceptual, and
motor. The details of what constitutes valid usage for those compilation types are described in the
excel spreadsheet compilation.xls and the mechanism used to create the new production based on the
compilation type is described in the compilation document. It is possible to change the compilation
type of a buffer using the specify-compilation-buffer-type command and it is also possible to add new

compilation types to the system. For the buffers provided in the default system this is the assignment

of buffer to compilation type:

Buffer Name Compilation Type
goal Goal
imaginal Imaginal
retrieval Retrieval
aural Perceptual
aural-location Perceptual
visual Perceptual
visual-location Perceptual
temporal Perceptual
imaginal-action Motor
production Motor
manual Motor
vocal Motor

239

ACT-R7 11-Jul-17 ACT-R Reference Manual

Any buffer added with a new module will be of the motor compilation type by default, but may be
changed with the specify-compilation-buffer-type command.

If all of the buffers have a compatible usage between two successive productions which fire then the

following situations are checked. If any of these are true the productions cannot be combined:

- is the time between the productions greater than the threshold time?

- does either production have a !eval! condition or action?

- does either production have a !bind! or !safe-bind! condition?

- does either production have a !bind! action?

- does either production use !'mv-bind! in either the conditions or actions?
- does either production have a buffer overwrite action?

- does either production use any indirect actions?

- does either production use slot modifiers other than = in its conditions?

- does the first production make multiple requests using the same buffer?
- does the first production have a RHS !stop! action?

If none of those situations are true, then the two productions are combined into one new production.

After creating the new production, it is compared against the other productions in the procedural
memory of the model. If the new production is not semantically equivalent to an existing production
then the new production is also added to the procedural memory of the model. The parameters for

the new production are set as follows:

* The :utility is the value of the :nu parameter.

* The :at parameter is set to the max of the :at parameters from its two parent productions.

* If both of the parent productions have a numeric :reward the new production gets the max of
those two as its :reward. If only one of the parents has a numeric :reward the new production
gets that value as its :reward. If neither parent has a numeric :reward, but at least one has a
value of t for the :reward then the new production will get a value of t. If both parents have a

nil :reward value the new production also gets a nil :reward value.

If the newly formed production is semantically equivalent to an existing production then what
happens depends on whether the production to which it is equivalent was also created by production
compilation or whether it was one of the explicitly specified productions of the model and also

whether utility learning is enabled.

240

ACT-R7 11-Jul-17 ACT-R Reference Manual

If the production is equivalent to one of the explicitly specified productions or utility learning is not

enabled, then nothing happens and the newly created production is ignored.

If the production is equivalent to one which was previously created by production compilation and
utility learning is enabled then that production receives an update to its utility. The effective reward

which it receives is the current :u value of the first of the two productions which fired to create it.

Parameters
zepl

The enable production learning parameter controls whether the production compilation process is
enabled or disabled. If :epl is set to t then the process is enabled and if it is set to nil then it is

disabled. The default value is nil.
:pct

The production compilation trace parameter controls whether information about the production
compilation process is output to the trace. If it is set to t then after each production fires a notice
about the production compilation process will be displayed. If a new production was created then
that production will be printed along with its parameter values. If a new production was not created
then information indicating why not will be displayed. If the parameter is set to nil then no output
will be given for production compilation. The default value is nil.

it

The threshold time parameter specifies the maximum amount of time in seconds that is allowed to
pass between the firing of two productions and still allow them to be combined through production

compilation. The default value is 2 seconds.

Commands

show-compilation-buffer-types

Syntax:

show-compilation-buffer-types -> nil

241

ACT-R7 11-Jul-17 ACT-R Reference Manual
Description:

The show-compilation-buffer-types command can be used to print out the current assignments of all
the buffers’ compilation types in the current model of the current meta-process. If there is no current

model or current meta-process a warning is printed.

Examples:

> (show-compilation-buffer-types)

Buffer Type
VISUAL PERCEPTUAL
TEMPORAL PERCEPTUAL
AURAL - LOCATION PERCEPTUAL
VISUAL-LOCATION PERCEPTUAL
PRODUCTION MOTOR
AURAL PERCEPTUAL
VOCAL MOTOR
IMAGINAL-ACTION MOTOR
MANUAL MOTOR
GOAL GOAL
IMAGINAL IMAGINAL
RETRIEVAL RETRIEVALNIL

E> (show-compilation-buffer-types)

#|Warning: get-module called with no current model. |#
#|Warning: No production compilation module found |#

NIL

E> (show-compilation-buffer-types)

#|Warning: get-module called with no current meta-process. |#

#|Warning: No production compilation module found |#
NIL

compilation-buffer-type

Syntax:

compilation-buffer-type buffer-name -> [buffer-type | nil]
compilation-buffer-type-fct buffer-name -> [buffer-type | nil]

Arguments and Values:

buffer-name ::= should be a symbol which names a buffer
buffer-type ::= the compilation type of buffer-name

Description:

Compilation-buffer-type will return the compilation type for a buffer in the current model of the
current meta-process. If there is no current model, no current meta-process, or the buffer name is

invalid then nil is returned.

242

ACT-R7 11-Jul-17 ACT-R Reference Manual

Examples:

> (compilation-buffer-type-fct 'manual)
MOTOR

> (compilation-buffer-type goal)
GOAL

> (compilation-buffer-type not-a-buffer)
NIL

E> (compilation-buffer-type goal)

#|Warning: get-module called with no current model. |#
#|Warning: No production compilation module found |#

NIL

E> (compilation-buffer-type manual)

#|Warning: get-module called with no current meta-process. |#

#|Warning: No production compilation module found |#
NIL

specify-compilation-buffer-type

Syntax:

specify-compilation-buffer-type buffer-name buffer-type -> [t | nil]
specify-compilation-buffer-type-fct buffer-name buffer-type -> [t | nil |

Arguments and Values:

buffer-name ::= should be a symbol which names a buffer
buffer-type ::= a symbol which names a valid compilation type

Description:

Specify-compilation-buffer-type allows one to change the compilation type for the buffers of the
current model. If buffer-name and buffer-type are both valid, then that buffer will now be treated as a
buffer-type buffer for compilation purposes, and t will be returned. If either parameter is invalid or

there is no current model or current meta-process, then a warning is printed and nil is returned.

Note that this setting is only valid until the model is reset because the production compilation module
will return all buffers to their default types when it is reset. For that reason, if one wants to make a
new module’s buffer’s default type something other than motor without needing to specify this call in
each model definition that uses the buffer then this setting must be placed into the secondary reset
function for that module to ensure that the setting is not overwritten by the resetting of the production

compilation module (it uses the primary reset function to set the default values).

243

ACT-R7

Examples:

11-Jul-17 ACT-R Reference Manual

1> (specify-compilation-buffer-type goal motor)

T

2> (specify-compilation-buffer-type-fct 'visual-location 'retrieval)
T

3> (show-compilation-buffer-types)

Buffer Type
VISUAL PERCEPTUAL
TEMPORAL PERCEPTUAL
AURAL - LOCATION PERCEPTUAL
VISUAL-LOCATION RETRIEVAL
PRODUCTION MOTOR
AURAL PERCEPTUAL
VOCAL MOTOR
IMAGINAL-ACTION MOTOR
MANUAL MOTOR
GOAL GOAL
IMAGINAL IMAGINAL
RETRIEVAL RETRIEVAL
NIL

E> (specify-compilation-buffer-type visual bad-type)
#|Warning: Invalid compilation buffer type BAD-TYPE. |#
NIL

E> (specify-compilation-buffer-type-fct 'bad-buffer 'motor)
#|Warning: No buffer named BAD-BUFFER found. |#
NIL

E> (specify-compilation-buffer-type goal perceptual)
#|Warning: get-module called with no current model. |#
#|Warning: No production compilation module found |#
NIL

E> (specify-compilation-buffer-type goal goal)

#|Warning: get-module called with no current meta-process. |#
#|Warning: No production compilation module found |#

NIL

244

ACT-R7 11-Jul-17 ACT-R Reference Manual

Goal Module

The goal module provides the system with a goal buffer which is typically used to maintain the
current task state of a model and to hold relevant information for the current task. The goal buffer
also serves as a source of activation for declarative memory retrievals by default. The only action

which the goal module provides a model is the creation of new chunks.

Goal buffer

The goal module sets the goal buffer to not be strict harvested.

Activation spread parameter: :ga
Default value: 0.0

Queries

The goal buffer only responds to the default queries.

‘State busy’ will always be nil.
‘State free’ will always be t.
‘State error’ will always be nil.

Requests

All
{slot value}*

Each slot in the request should be specified at most once.

The request is used to create a new chunk which is placed into the goal buffer immediately. It will

result in two events which look like this in the trace:

0.050 GOAL CREATE-NEW-BUFFER-CHUNK GOAL
0.050 GOAL SET-BUFFER-CHUNK GOAL CHUNKO

245

ACT-R7 11-Jul-17 ACT-R Reference Manual

There is also a third event generated which will not show up in the trace. It is a maintenance event
with the action clean-up-goal-chunk which performs some system clean up and will occur after the

set-buffer-chunk event.

All requests are marked as completed at the time they are made.

Modification Requests

All

{slot value}*

The goal buffer accepts modification requests and those specified buffer modifications are passed to

mod-buffer-chunk for the goal buffer at the time of the request. It is assumed that the chunk will still

be there at that time. If there are slots specified which are not valid slot names they will be added as

extended slots prior to sending the modification request.

The event below will show up in the trace as a result of such an action being made by a production

(always at the same time as the procedural request):
0.050 GOAL MOD-BUFFER-CHUNK GOAL
If there are extended slots added then there will also be an event which looks like this indicating that

the procedural module extended the possible slots:

0.050 PROCEDURAL EXTEND-BUFFER-CHUNK GOAL

A modification request for the goal buffer is equivalent to performing the same buffer modification
action in the production. The only difference is that by using a modification request to perform the
change to the chunk the effort is attributed to the goal module instead of the procedural module which

may be important for purposes of predicting the BOLD response or for tracing purposes.

All modification requests are marked as completed at the time they are made.

246

ACT-R7 11-Jul-17 ACT-R Reference Manual
Commands

goal-focus

Syntax:

goal-focus {chunk-name} -> [goal-chunk | nil]
goal-focus-fct {chunk-name} -> [goal-chunk | nil]

Arguments and Values:

chunk-name ::= should be a symbol which names a chunk
goal-chunk ::= a symbol which names the chunk in the goal buffer or the chunk which will be in the
goal buffer

Description:

If chunk-name is provided, then goal-focus will schedule an event to put that chunk into the goal
buffer of the current model at the current time with a priority of :max. This will result in the
unrequested query being true for the buffer because this chunk was not placed into the buffer as a
result of a module request. There will also be a maintenance event scheduled with an action of clear-
delayed-goal following the set-buffer-chunk event which updates some internal information for the
goal module but which will not show up in the trace. If an event is created to place this chunk into
the buffer then chunk-name is returned. If chunk-name is not a valid chunk or there is no current

model or meta-process then a warning is printed and nil is returned.

If chunk-name is not provided, then the chunk currently in the goal buffer is printed if there is one
and that chunk’s name is returned. If the buffer is empty, then a message stating that is printed and
nil is returned. If there is a pending change to the chunk in the goal buffer (an event generated by
goal-focus has been scheduled but not yet executed), then a notice of that is printed along with any
chunk which may be in the buffer currently and the name of the chunk which will be in the buffer is

returned.

This command typically occurs in a model to set the initial chunk in the goal buffer. If declarative
learning of past goals is something that the model will be doing, then one should consider using

define-chunks to create that initial goal instead of add-dm so that it is not in declarative memory prior

to the start of the task.

Examples:

> (goal-focus)

247

ACT-R7 11-Jul-17 ACT-R Reference Manual

Goal buffer is empty
NIL

1> (goal-focus black)
BLACK

2> (goal-focus)
Will be a copy of BLACK when the model runs
BLACK

COLOR BLACK

BLACK

3> (run-n-events 1)
0.000 GOAL SET-BUFFER-CHUNK GOAL BLACK REQUESTED NIL
0.000 ------ Stopped because event limit reached

0.0

1

NIL

4> (goal-focus)
BLACK-0
COLOR BLACK

BLACK-0

5> (goal-focus-fct 'free)
FREE

6> (goal-focus-fct)
Will be a copy of FREE when the model runs
Currently holds:
BLACK-0
COLOR BLACK

FREE

7> (run-n-events 1)
0.000 GOAL SET-BUFFER-CHUNK GOAL FREE REQUESTED NIL
0.000 ------ Stopped because event limit reached

0.0

1

NIL

8> (goal-focus)
FREE-0
NAME FREE

FREE-0O

E> (goal-focus notchunk)
#|Warning: NOTCHUNK is not the name of a chunk in the current model - goal-focus failed |#
NIL

E> (goal-focus black)

#|Warning: get-module called with no current model. |#

#|Warning: get-chunk called with no current model. |#

#|Warning: BLACK is not the name of a chunk in the current model - goal-focus failed |#
NIL

mod-focus

248

ACT-R7 11-Jul-17 ACT-R Reference Manual

Syntax:

mod-focus {slot-name slot-value }* -> [chunk-name | nil]
mod-focus-fct ({slot-name slot-value }*) -> [chunk-name | nil]

Arguments and Values:
slot-name ::= a symbol that should be the name of a slot

slot-value ::= a Lisp value to set for the value of the corresponding slot-name
chunk-name ::= a symbol which will be the name of the chunk in the goal buffer

Description:

Mod-focus is used to modify the chunk currently in the goal buffer or the chunk which will be in the
buffer as a result of a goal-focus call. It schedules an event with the action goal-modification and

priority :max for the current model. That event calls mod-buffer-chunk for the goal buffer with the

slot-name and slot-value pairs provided.

If there is a chunk in the buffer or a pending goal-focus and the modifications are valid for that
chunk, then that chunk’s name is returned after scheduling the event. If there is no current model or
current meta-process, no chunk in the goal buffer and no pending goal-focus, or the modifications are

invalid a warning is printed and nil is returned without scheduling the event.

Examples:

1> (define-model test
(chunk-type test color state)
(goal-focus-fct (car (define-chunks (state start) (start)))))

TEST
2> (run 1)
0.000 GOAL SET-BUFFER-CHUNK GOAL CHUNKG® REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 ------ Stopped because no events left to process
0.0
4
NIL

3> (mod-focus color green)
CHUNKO-0

4> (goal-focus)
CHUNKO -0
STATE START

CHUNKO-0

5> (run 1)
0.000 GOAL GOAL-MODIFICATION
0.000 PROCEDURAL CONFLICT-RESOLUTION

249

ACT-R7 11-Jul-17 ACT-R Reference Manual

0.000 ------ Stopped because no events left to process

6> (goal-focus)
CHUNKO-0
STATE START
COLOR GREEN

CHUNKO-0

7> (mod-focus-fct '(state busy))
CHUNKO -0

8> (goal-focus)
CHUNKO-0
STATE START
COLOR GREEN

CHUNKO-0
9> (run 1)
0.000 GOAL GOAL-MODIFICATION
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 ------ Stopped because no events left to process
0.0
2
NIL
10> (goal-focus)
CHUNKO -0
STATE BUSY

COLOR GREEN
CHUNKO-0

11> (clear-buffer 'goal)
CHUNKO-0

12E> (mod-focus color green)

#|Warning: No chunk currently in the goal buffer and no pending goal-focus chunk to be
modified. |#

NIL

E> (mod-focus slot)
#|Warning: 0dd length modifications list in call to mod-focus. |#
NIL

E> (mod-focus bad-slot green)
#|Warning: Invalid slot name BAD-SLOT specified for mod-focus. |#
NIL

E> (mod-focus state start)
#|Warning: get-module called with no current model. |#
NIL

E> (mod-focus state start)

#|Warning: get-module called with no current meta-process. |#
NIL

250

ACT-R7 11-Jul-17 ACT-R Reference Manual

Imaginal Module

The imaginal module provides the system with an imaginal buffer which is typically used to maintain
context relevant to the current task and a buffer called imaginal-action which can be used to call user
functions for manipulating the contents of the imaginal buffer. The imaginal buffer’s requests
operates like the goal buffer’s request in creating new chunks. However, unlike the goal buffer,
requests to create chunks using the imaginal module take time. It also accepts modification requests
which it also handles the same way the goal buffer does, except again there is a cost for doing that

with the imaginal module.

Parameters
:imaginal-delay

The imaginal-delay parameter controls how long it takes a request or modification request to the

imaginal buffer to complete. It can be set to a non-negative time (in seconds) and defaults to .2.
:vidt

The variable imaginal delay time parameter controls whether the actions of the imaginal buffer take
exactly the amount of time specified by :imaginal-delay or if they are randomized with the
randomize-time command. If it is set to t, then randomize-time is used to adjust the delay time, and

if it is set to nil, which is the default, then the delay times are fixed at the :imaginal-delay time.

Chunk-types & Chunks

The imaginal module defines the following two chunk-type:

(chunk-type generic-action action slots result)
(chunk-type simple-action action slots (simple t)))

It creates no initial chunks.

Imaginal buffer

The imaginal buffer is typically used to create and hold task relevant information. It operates similar
to the goal buffer except that there is a time cost associated with creating and manipulating the

chunks.

251

ACT-R7 11-Jul-17 ACT-R Reference Manual

Activation spread parameter: :imaginal-activation
Default value: 1.0

Queries

The imaginal buffer only responds to the default queries.

‘State busy’ will be t after a new request or modification request is received (through either of the
module’s buffers). If the request came through the imaginal buffer the state will return to nil once the
request is completed. If the request came through the imaginal-action buffer then the busy state will

remain t until the set-imaginal-free command is used to clear the busy state back to nil.

‘State free’ will be t when the ‘state busy’ flag is nil i.e. when the module is not currently handling a

request, and it will be nil when the module is handling a request.

‘State error’ will be nil unless set by the user with the set-imaginal-error command which will cause
it to be t. If set with the command, it will stay t until the next request is made to either of the

module’s buffers. When the error state begins the imaginal buffer’s failure flag will also be set.

Requests

All

{slot value}*

Each slot should be specified at most once and no modifiers are allowed.

The request is used to create a new chunk which is placed into the imaginal buffer after :imaginal-

delay seconds. That will result in two events showing up in the trace:

0.750 IMAGINAL CREATE-NEW-BUFFER-CHUNK IMAGINAL
0.750 IMAGINAL SET-BUFFER-CHUNK IMAGINAL VISUAL-OBJECT1

There are three other maintenance events generated which will occur at the same time as the two
actions shown but will not show up in the trace. The first occurs before the create-new-buffer-chunk

event and will have an action of goal-style-request. The second has an action of clean-up-goal-chunk

252

ACT-R7 11-Jul-17 ACT-R Reference Manual

which performs some system cleanup as happens for the goal module and will occur after the set-
buffer-chunk event. The final event, which occurs after the clean-up-goal-chunk event, has the action
set-imaginal-free and serves to set the module back to the state free after it has created the new
chunk.

The module can only handle one request at a time. If a request is made while the module is busy

processing a previous request it will print a warning and ignore the newer request.

#|Warning: Imaginal request made to the IMAGINAL buffer while the imaginal module was
busy. New request ignored. |#

The module marks a request as completed when the set-imaginal-free action occurs.

Modification requests

All

{slot value}*

The imaginal buffer accepts modification requests and those specified buffer modifications are

passed to mod-buffer-chunk for the imaginal buffer after :imaginal-delay seconds have passed. It is

assumed that the chunk will still be there at that time. If there are slots specified which are not valid
slot names they will be added as extended slots prior to sending the modification request to the

module.

This event will show up in the trace as a result of such an action:

1.000 IMAGINAL MOD-BUFFER-CHUNK IMAGINAL

If there are any extended slots created then there will also be an event which looks like this indicating

that at the time of the request:

0.800 PROCEDURAL EXTEND-BUFFER-CHUNK IMAGINAL

There will also be a maintenance event generated which will not output to the trace. It will have the
action of set-imaginal-free and occur after the mod-buffer-chunk event. It serves to set the module

back to the free state after the buffer-modification is complete.

The module marks a modification request as completed when the set-imaginal-free action occurs.

253

ACT-R7 11-Jul-17 ACT-R Reference Manual

Imaginal-action buffer

The imaginal-action buffer is available for users to extend the capabilities of the imaginal module. It
does not perform any actions on its own nor does the module place any chunks into the buffer. It
essentially provides a hook for the modeler to perform actions on the imaginal buffer’s chunk which

are attributed to the imaginal module.

Activation spread parameter: :imaginal-action-activation
Default value: 0.0

Queries

The imaginal-action buffer only responds to the default queries.

‘State busy’ will be t after a new request or modification request is received (through either buffer).
If the request came through the imaginal buffer the state will return to nil once the request is
completed. If the request came through the imaginal-action buffer then the busy state will remain t

until the set-imaginal-free command is used to clear the busy state back to nil.

‘State free’ will be t when the ‘state busy’ flag is nil i.e. when the module is not currently handling a

request and it will be nil when the module is handling a request.

‘State error’ will be nil unless set by the user with the set-imaginal-error command which will cause
it to be t. If set with the command, it will stay t until the next request is made to either of the
module’s buffers. When the error state begins the imaginal-action buffer’s failure flag will also be

set.

Requests

Generic action

action function-name
{slots (slot-name*)}

254

ACT-R7 11-Jul-17 ACT-R Reference Manual

This request to the imaginal-action buffer requires the action slot be specified and its value must
name a function. An optional list of slot names may be provided as the value of the slots slot in the
request. Every slot-name provided must be the name of a slot of the chunk currently in the imaginal
buffer. When the request is received by the module the state busy query for the module will be set to
t, the state error query will be set to nil, and the function specified by function-name will be called.
If there is a list of slot names provided the function will be applied to that list, otherwise the function
will be called with no parameters. No chunks will be placed into the buffer by default and the
function which is called must return the module to the state free using the set-imaginal-free command
either directly or by scheduling an event to do so at a later time. The function may also call the set-
imaginal-error command to set the state error to t for the module if that is needed. The request will

be marked as completed by either set-imaginal-free or set-imaginal-error.

This action essentially allows users to manipulate the chunk which is in the imaginal buffer via
arbitrary functions and have the action attributed to the imaginal module i.e. it is essentially the same
as a call to !eval! in a production except that the request is marked as going to the imaginal module
and the module indicates “state busy” during that time. This allows modelers to add commands
which they feel should be attributed to the imaginal module (for example rotations, translations or

other manipulations of the representation) without having to change the code for the module.

No events are explicitly generated by this request, but the function which is called should generate

events for any changes it makes to the buffer and to schedule the call to set-imaginal-free.

Simple action

action function-name

simple t

{slots (slot-name*)}
This request to the imaginal-action buffer is very similar to the generic action described above. The
distinction between the two is that the simple action requires that an additional slot named simple be
specfied with the value t in the request. The difference between the two is that the simple action

handles some of the event scheduling automatically.

When the request is received by the module the state busy query for the module will be set to t, the
state error query will be set to nil, and the function specified by function-name will be called. If there

is a list of slot names provided the function will be applied to that list, otherwise the function will be

255

ACT-R7 11-Jul-17 ACT-R Reference Manual

called with no parameters. That function should return either the name of a chunk or nil. If it returns
the name of a chunk then after the current :imaginal-delay time passes that chunk will be copied into
the imaginal buffer, the module will be returned to the free state, and the request will be completed.
If the function returns nil then after the imaginal-delay time passes the module will be set to the free
state, it will be marked as also being in the error state, and the request will be completed. This
request provides an easy way to have code create arbitrary chunks for the imaginal buffer without

having to schedule any events or manage the internal imaginal state flags directly.

A valid request of this type will generate two events. One will be an event with the action of set-
imaginal-free. The other depends on whether the action function returned a chunk or nil. If it returns
a chunk then an event with the action set-buffer-chunk will be generated, but if nil was returned an

event with the action set-imaginal-error will be created.

Commands
set-imaginal-free

Syntax:
set-imaginal-free -> [t | nil]
Description:

Set-imaginal-free is used to clear the busy state of the imaginal module in the current model of the
current meta-process and indicate that a request has been completed. It should only be used by

functions that are called as a result of a generic action request to the imaginal-action buffer.

If there is a current model then it returns t. If there is no current model then it returns nil and no

change is made.

Examples:

> (set-imaginal-free)
T

E> (set-imaginal-free)

#|Warning: get-module called with no current model. |#
#|Warning: Call to set-imaginal-free failed |#

NIL

256

ACT-R7 11-Jul-17 ACT-R Reference Manual
set-imaginal-error

Syntax:
set-imaginal-error -> [t | nil]
Description:

Set-imaginal-error is used to set the error state of the imaginal module in the current model of the
current meta-process and indicate that a request has been completed. It should only be used by
functions that are called as a result of a generic action request to the imaginal-action buffer. It causes
queries of either of the imaginal module’s buffers for ‘state error’ to return t and also sets the failure

flags for both buffers as requested failures using set-buffer-failure. The module’s error state will

remain until another request is made to either of the module’s buffers.

If there is a current model then it returns t. If there is no current model then it prints a warning,

returns nil, and no change is made.

Examples:

> (set-imaginal-error)
T

E> (set-imaginal-error)

#|Warning: get-module called with no current model. |#
#|wWarning: Call to set-imaginal-error failed |#

NIL

257

ACT-R7 11-Jul-17 ACT-R Reference Manual

Declarative module

The declarative module provides the model with a declarative memory which stores the chunks that
are generated by the model and it provides a mechanism for retrieving those chunks through its
retrieval buffer. The retrieval of chunks from the declarative memory depends on many factors that
affect the accuracy and speed with which a chunk can be retrieved which is based on research of

human memory performance.

The model’s declarative memory (DM) consists of all the chunks which are explicitly added to it by
the modeler as well as all of the chunks which are cleared from the buffers. Whenever a chunk is
cleared from a buffer the declarative module merges that chunk into the model’s DM. The merging
process compares the chunk being added to the chunks already in DM. If the chunk being added is
equivalent to a chunk which is already in DM, then the new chunk is merged with the existing chunk
using the merge-chunks command and that chunk is strengthened by giving it another reference at the
time of the merging. If the chunk being added is not equivalent to any chunk in DM then that chunk
is added to DM.

Retrieval of chunks from DM is done through requests to the module. A request specifies a
description of a chunk which is desired and if there are chunks in DM which match the specification
request, then one of those chunks is placed into the retrieval buffer as a response. If no such chunk is
found then it signals that a failure to retrieve occurred by signaling the state error, setting the buffer’s

failure flag, and leaving the buffer empty.

The time it takes to complete the request and how a single chunk is chosen among possibly many
which match the request are controlled by several parameters. First, the setting of the :esc parameter

determines very coarsely what process is used.

If the :esc parameter is nil then only the symbolic matching is considered. The chunks are always
retrieved immediately and if there is more than one chunk which matches the request the setting of :er
determines how a chunk is chosen. If :er is t then the choice is made randomly. If :er is nil then a
deterministic process is used such that the same chunk will be chosen for that model each time the
same set of possible chunks could be retrieved. However, that process is not specified as part of the
declarative module’s definition because it is not intended to be a process which one relies on for

chunk preferences.

258

ACT-R7 11-Jul-17 ACT-R Reference Manual

If the :esc parameter is t then the selection of which chunk is retrieved and how long it takes is
controlled by a quantity called activation. Each chunk in DM has an activation value associated with
it and among the chunks which match the request the one with the highest activation value, above a
parameterized threshold, is the one that will be retrieved. If no matching chunk has an activation
above the threshold then a failure to retrieve occurs. The activation of that chunk also determines
how long the request takes to complete. If multiple matching chunks have the same highest
activation, then the :er parameter determines how one of those chunks is chosen in the same way it

happens when :esc is nil.

Activation

How the activation of a chunk is computed is based on the setting of several parameters which
determine which mechanisms are to be used and those will be discussed in the specific sections

which follow. Here is the general equation for the activation (A) of a chunk i:
A =B +S,+P+¢,

B.: This is the base-level activation and reflects the recency and frequency of use of the chunk.

S.: This is the spreading activation value computed for the chunk which reflects the effect that the

contents of the buffers have on the retrieval process.

P.: This is the partial matching value computed for the chunk which reflects the degree to which the

chunk matches the specification requested.

&:: A noise value with both a transient and permanent component.

Each of those components will be described in more detail below. Note that for each of those
components it is possible for the modeler to replace the mechanism as described with their own

mechanism using the hook function parameters available in the declarative module.

Base-level

The base-level component, B, is computed differently based on the setting of the :bll and :ol

parameters.

259

ACT-R7 11-Jul-17 ACT-R Reference Manual

If :bll is nil then the setting of :0l does not matter and the base-level is a constant value determined by

the :blc parameter or specific user settings for the chunk.

B =8

Bi: A constant offset which is determined by the :blc parameter or the chunk’s :base-level parameter.

If :bll is set to a number, then the setting of :0l determines how the base-level is computed.

If :0l is nil then this equation is used:

B, =In(y t;)+p
el

n: The number of presentations for chunk i.
t;: The time since the jth presentation. A presentation is either the chunk’s initial entry into DM or
when another chunk is merged with a chunk which is in DM (these are also called the chunk’s

references).
d: The decay parameter which is set using the :bll parameter.

Bi: A constant offset determined by the :blc parameter.

If :ol is t then this approximation to that equation is used which does not require recording the

complete history of the chunk:
B, =In(n/(1—d))—d *In(L) +3

n: The number of presentations of chunk i.
L: The lifetime of chunk i (the time since its creation).
d: The decay parameter (the value of :bll).
Bi: A constant offset determined by the :blc parameter.

If :ol is set to a number, then a hybrid of those is used such that the specified number of true
references are used and the approximation is used for any remaining references (if there are not more
total references than the parameter setting for :0l (n <= k) then the full equation is used and the extra

term in this equation is not computed):

260

ACT-R7 11-Jul-17 ACT-R Reference Manual

k: is the value of the :ol parameter.

t;: The time since the jth presentation (for this equation t; is the time since the most recent
presentation and t, the time since the first presentation)

n: The total number of presentations of chunk i.

d: The decay parameter (the value of :bll).

Bi: A constant offset determined by the :blc parameter.

Spreading Activation

Whether spreading activation is used is determined by the setting of the :mas parameter. If it is nil,
which is the default value, then the value of S is 0 in the activation equation. If :mas is set to a

number, then this equation determines the spreading activation component of chunk i’s activation:

S, = Z > WS,
J

The elements k being summed over are all of the buffers in the model which currently contain a
chunk with a slot that has a chunk as its value (a source of activation) and which has a non-zero
source activation.

The elements j being summed over are the chunks which are in the slots of the chunk in buffer k
(these are referred to as the sources of activation).

ij: This is the amount of activation from source j in buffer k. It is the source activation of buffer k

divided by the number of sources j in that buffer by default.

Sji: This is the strength of association from source j to chunk i.

strength of association

The strength of association, S , between two chunks is computed using the following equations by
Ji

default, but can also be set explicitly by the modeler using the add-sji command or thorough the sji-

hook parameter.

If chunks j and i are not the same chunk and j is not in a slot of chunk i:

261

ACT-R7 11-Jul-17 ACT-R Reference Manual

If chunks j and i are the same chunk or chunk j is in a slot of chunk i:
S, =S —In(fan)
S: The maximum associative strength set with the :mas parameter.

fan;: a measure of how many chunks are associated with chunk j.

The fan is typically thought of as the number of chunks in which j is the value of a slot plus one for
chunk j being associated with itself. However, because j may appear in more than one slot of the

chunk i, this is the specific calculation which is used to compute the fan:

1+ slotsj

n;=——
slotsof ;

slots;: the number of slots in which j is the value across all chunks in DM.
slotsof;i: the number of slots in chunk i which have j as the value (plus 1 when chunk i is chunk j).

The S value can become negative as the fan value grows, but that is generally an undesirable
ji ji
situation. By default the declarative module will print a warning if S becomes negative due to that
ji

calculation and use 0.0 instead of the negative value, but that can be changed using the :nsji

arameter.

Partial Matching

When the partial matching process is enabled it is possible for a chunk that is not a perfect match to
the retrieval specification to be the one that is retrieved. To enable the partial matching one needs to
set the :mp parameter to a number instead of its default of nil. When enabled, the similarity of the
values requested to those in the slots of the chunks in DM are computed to determine the activation

value. If partial matching is disabled then P is 0, but if it is enabled it is computed with this equation:

R=3pM,

262

ACT-R7 11-Jul-17 ACT-R Reference Manual

The elements k being summed over are the slot values of the retrieval specification for slots with an =

or — modifier only.

P: This is a match scale parameter (set with :mp) that reflects the amount of weighting given to the
similarity.
M,i: The similarity between the value k in the retrieval specification and the value in the
corresponding slot of chunk i.

similarities

The possible range of default similarity values is configurable using the maximum similarity
parameter (:ms) and the maximum difference parameter (:md). The default range is from 0 to -1 with
0 being the most similar and -1 being the largest difference. In general, the similarity can be thought
of more as a difference penalty because the concept is not to boost the similar items, but to penalize
the different ones. Since it gets added to the activation value, the values should be negative for items

that are not the same and using positive similarities is not recommended (though not prohibited).

By default, a chunk has a maximum similarity to itself and a maximum difference to all other chunks.
Any other similarities must be set explicitly by the modeler either using the set-similarities command

or the sim-hook parameter. For non-chunk slot values in a retrieval request, the similarity is the

maximum similarity if the values are equal using the chunk-slot-equal function and the maximum

difference if they are not. The only way to set non-default similarity values for items which are not
chunks is through the sim-hook capability. Similarities set explicitly with the declarative commands

or through the sim-hook function are not constrained by the :ms and :md parameters.

One final note on the computation of the M values. If the retrieval specification is requesting the

ki

value using the negation modifier, then the Mki value for that slot test k is not the specific similarity
value between the items involved. If the similarity between those items is equal to the maximum
similarity then Mki is set to the maximum difference. Otherwise, Mki is set to O for that slot.
Essentially, if they are the same (or perfectly similar items), then the chunk is given the maximum
penalty since the request specified that it not have that value and if they are different (any similarity

other than a perfect match) then no penalty is applied.

Noise

The noise calculation has two components. There is a transient component which is computed each

time a retrieval request is made and there is a permanent component which is associated specifically

263

ACT-R7 11-Jul-17 ACT-R Reference Manual

with the chunk that is generated once when the chunk is entered into DM. The total noise added to
the activation is the sum of the two components. Often, the transient component is sufficient for

modeling and the permanent noise is left disabled.

Each one is generated using the act-r-noise command. Thus they are generated from a logistic
distribution with a mean of 0 and an s as specified by the corresponding parameter of the declarative
module. The parameter for the transient noise s value is :ans and the parameter for the permanent
noise s value is :pas. The default value for each parameter is nil. For the transient noise that means
to not generate any transient noise and for the permanent noise it means to leave the chunk’s
permanent noise set to 0. The permanent noise is always added to the activation of the chunk and can

be set by the modeler using the sdp command for creating specific offset values when needed.

Retrieval time

The time that it takes the declarative module to respond to a request for a chunk, i, is determined by

the activation that the chunk has using this equation when the subsymbolic computations are enabled:

RT = Fe ™)

RT: The time to retrieve the chunk in seconds
Ai: The activation of the chunk i which is being retrieved
F: The latency factor parameter

f : The latency exponent parameter

If there is no chunk found in response to a request or the chunk with the highest activation is below
the retrieval threshold then the time required to indicate a failure to retrieve any chunk is determined

by this equation when subsymbolic computations are enabled:

RT =Fe™ "™

RT: The time until the failure is noted in seconds.
T : The retrieval threshold parameter

F: The latency factor parameter

f : The latency exponent parameter

Declarative finsts

264

ACT-R7 11-Jul-17 ACT-R Reference Manual

The declarative module maintains a record of the chunks which have been retrieved and provides a
mechanism which allows one to indicate whether a retrieval request should search only those which
have or have not been so marked. This is done through the use of a set of finsts (fingers of
instantiation) which mark those chunks. The finsts are limited in the number that are available and

how long they persist specified by the parameters :declarative-num-finsts and :declarative-finst-span

respectively. If more finsts are required than are available, then the oldest one (the one marking the
chunk retrieved at the earliest time) is removed and used to mark the most recently retrieved chunk.

The details on how to use the finsts are found in the description of the retrieval buffer requests.

Parameters

The declarative module has a lot of parameters which can be set and they fall into four general
categories. The first category contains the parameters which are used in the activation equations as
described above. The next category contains the parameters which control basic functionality of the
module. The third category is parameters which allow the user to adjust the chunk activation
equation: each of the four primary components may be replaced by the user, the default computations
for strengths of association and similarities can be replaced, and additional terms may be added to the
equation. The final set of parameters allow the user to install functions to monitor the operations of

the module.

Note on parameters for the declarative module. There are some parameters which should not be
adjusted once chunks have entered DM. The reason for this is that the module does not attempt to
reconcile differences in interpretations which may result due to such changes i.e. chunks which have
had their internal parameters set under one set of parameters may no longer be valid under different
settings. A warning will be printed if one does change such parameters after there are chunks in DM.
That warning does not mean that things will necessarily break (there are a few situations where the
warning can be safely ignored), but one should be cautious when changing things in that manner.
The critical parameters are the :bll and :mas parameters of the declarative module as well as the

parameters :esc and :ol.

:act

The activation trace parameter controls whether or not the declarative module should print the details

of a chunk’s activation computation when it is computed (whether during a retrieval request or

265

ACT-R7 11-Jul-17 ACT-R Reference Manual

otherwise). If it is set to t then all of the components of the equation are output to the model’s trace
when a chunk’s activation is computed, and if it is set to nil then no extra trace is generated. The

default value is nil.

There are also two lesser output levels available for the activation trace if one specifies a setting of
medium or low for the parameter value. = The medium output level does not print the information
about chunks which did not match a retrieval request and the low level only prints the final activation

values computed for the chunks.

:activation-offsets

This parameter allows one to specify functions which can extend the activation equation with new
terms. This parameter can be set to a function which takes one parameter and any number of such
functions may be set (the reported value of this parameter is a list of all functions which have been
set). Whenever a chunk’s activation is computed each of the functions that has been set for this
parameter will be called with one parameter which is the name of the chunk. If a function called
returns a number then that value will be added to the activation of the chunk and if the activation
trace is enabled a line will be shown indicating the name of the function and the offset added. If a
function returns any other value then no change is made to the activation of the chunk. If the
parameter is set to nil then all functions are removed from the activation-offsets list. A function
should only be set once. If a function is specified more than once as a value for the activation-offsets

a warning will be displayed and a value of nil will be returned as the current value.

«dns

The activation noise s parameter specifies the s value used to generate the instantaneous noise added
to the activation equation if it is set to a positive number. If it is set to nil, which is the default, then

no instantaneous noise is added to the activations.

:bl-hook

This parameter allows one to override the base-level calculation. If it is set to a function then that
function will be passed one parameter which is the name of the chunk for which a base-level is
needed. If the function returns a number then that will be the B value used in the activation equation,

1

otherwise the standard base-level calculation will be used.

266

ACT-R7 11-Jul-17 ACT-R Reference Manual

:blc

The base-level constant parameter specifies the default value for the Si component of the base-level
equations. If base-level learning is disabled (:bll is nil) and the :base-level parameter for the chunk is

set through the sdp command then that overrides the :blc setting. The default value is 0.0.
:bll

The base-level learning parameter controls whether base-level learning is enabled, and if so what the
value of the decay parameter, d, is set to. It can be set to any positive number or the value nil. The
value nil means do not use base-level learning and is the default value, a number means that base-
level is enabled. The recommended value for :bll is .5, and it is one of the few parameters which

have a strong recommended value.

:chunk-add-hook

This parameter allows one to specify functions to be called automatically when chunks are added to
the current model’s DM. This parameter can be set with a function which takes one parameter and
any number of such functions may be set (the reported value of this parameter is a list of all functions
which have been set). Whenever a chunk is added into DM each of the functions that has been set
will be called with one parameter which is the name of the chunk that was added into DM. This call
is made after the chunk has been added to DM and its declarative parameters updated appropriately.
The return values of those functions are ignored. If the parameter is set to nil then all functions are
removed from the chunk-add-hook. A function should only be set once. If a specific function is
specified more than once as a value for the chunk-add-hook a warning will be displayed and a value

of nil will be returned as the current value.

:chunk-merge-hook

This parameter allows one to specify functions to be called automatically when chunks are merged
into to the current model’s DM. This parameter can be set with a function which takes one parameter
and any number of such functions may be set (the reported value of this parameter is a list of all
functions which have been set). Whenever a chunk is merged into DM each of the functions that has
been set will be called with one parameter which is the name of the chunk that was merged into DM.
This call is made after the chunk has been merged into DM and its declarative parameters updated

appropriately. The return values of those functions are ignored. If the parameter is set to nil then all

267

ACT-R7 11-Jul-17 ACT-R Reference Manual

functions are removed from the chunk-merge-hook. A function should only be set once. If a specific
function is specified more than once as a value for the chunk-merge-hook a warning will be displayed

and a value of nil will be returned as the current value.

:declarative-finst-span

This parameter controls how long a finst can mark a chunk as having been recently retrieved. After a
finst has been on a chunk for this amount of time the finst is removed and the chunk is no longer

marked as recently retrieved. It can be set to any positive number and defaults to 3.0.

:declarative-num-finsts

This parameter controls how many finsts are available in the declarative module. It can be set to any

positive number and the default is 4.

:declarative-stuffing

This parameter controls whether or not the declarative module will place chunks into the retrieval
buffer without a corresponding request i.e. stuff the buffer. The default value is nil which means to
disable the mechanism. If it is set to a number that enables the mechanism and sets the period of time

in seconds for the potential stuffing actions to occur.

When it is enabled, at time 0 and again whenever the module is not busy and either the buffer empties
or the time period has passed a new stuffing attempt will occur. The chunk that will be stuffed into
the buffer is the chunk with the current highest activation. That stuffing will not interrupt an ongoing
retrieval request nor overwrite a requested chunk in the buffer. This mechanism is a very speculative
bottom-up approach which needs further refinement based on use — if you use this parameter please

let me know how it worked out and any recommendations or comments you have about it.
:le

The latency exponent value, f, in the equation for retrieval times. It can be set to any non-negative

value and defaults to 1.0.
:Af

The latency factor value, F, in the equation for retrieval times. It can be set to any non-negative value

and defaults to 1.0.

268

ACT-R7 11-Jul-17 ACT-R Reference Manual
mas

The maximum associative strength parameter controls whether the spreading activation calculation is
used, and if so, what the S value in the Sji calculations will be. It can be set to any number or the
value nil. The value nil means do not use spreading activation and is the default value, any number

means that spreading activation is enabled.
:md

The maximum difference. This is the default similarity value between two items which are not

chunk-slot-equal. It can be set to any number and defaults to -1.0.

:mp

The mismatch penalty parameter controls whether the partial matching system is enabled, and if so,
what the value of the penalty parameter, P, in the activation equation is set to. It can be set to any
number or the value nil. The value nil means do not use partial matching (only exact matches can be

retrieved), and is the default. If it is set to a number then partial matching is enabled.
:ms

The maximum similarity. This is the default similarity value between items which are chunk-slot-

equal. Tt can be set to any number and defaults to 0.0.

:noise-hook

This parameter allows one to override the noise calculation. If it is set to a function then that function
will be passed one parameter which is the name of the chunk for which a noise value is needed. If

the function returns a number then that will be the noise value used in the activation equation.
:nsji

Whether or not to allow negative Sji values from the S-log(fan) calculation, Can be set to t which
means that they are allowed, warn which means that negative values will be treated as 0 activation
spread and a warning will be displayed, or nil which means that negative values will be treated as 0
activation spread and no warning will be displayed. A value of warn or nil does not prevent the user

from setting explicit negative values if desired. The default is warn.

269

ACT-R7 11-Jul-17 ACT-R Reference Manual
:partial-matching-hook

This parameter allows one to override the partial matching calculation. If it is set to a function then
that function will be passed two parameters. The first will be the name of the chunk for which a
partial matching value is needed and the second will be the chunk-spec of the request. If the function

returns a number then that will be the P value used in the activation equation.
:pas

The permanent activation noise s parameter specifies the s value used to generate the permanent noise
added to the activation equation of a chunk if it is set to a positive number. The permanent noise is
only generated once when the chunk is added to DM. If :pas is set to nil, which is the default, then
no permanent noise is automatically generated for the chunks, but it may still have such a value set

explicitly using the sdp command.

:retrieval-request-hook

This parameter allows one to specify functions to be called automatically when a retrieval request is
made. This parameter can be set with a function which takes one parameter and any number of such
functions may be set (the reported value of this parameter is a list of all functions which have been
set). When there is a start-retrieval event these functions will be called with the chunk-spec of the
request as the parameter. The return values of those functions are ignored. If the parameter is set to
nil then all functions are removed from the retrieval-request-hook. A function should only be set
once. If a specific function is specified more than once as a value for the retrieval-request-hook a

warning will be displayed and a value of nil will be returned as the current value.

:retrieval-set-hook

This parameter allows one to specify functions to be called during the retrieval process. This
parameter can be set with a function which takes one parameter and any number of such functions
may be set (the reported value of this parameter is a list of all functions which have been set). After
the set of chunks which match have been determined and their activations are calculated this function
will be called with the list of the chunk names that match the request. The first chunk on the list is
the one that will be retrieved (if its activation is above the threshold). This function can be used to
override the choice of which chunk to retrieve. If this function returns a cons of a chunk name and a

number, then that chunk will be the one placed in the retrieval buffer after that many seconds pass. If

270

ACT-R7 11-Jul-17 ACT-R Reference Manual

the function returns a number, then the declarative module will signal a retrieval failure after that
many seconds pass. If the function returns anything else then the normal retrieval process will occur.
If more than one function on the list for this parameter return a value, then none of those values will
be used and the default mechanisms will be applied. If the parameter is set to nil then all functions
are removed from the retrieval-set-hook. A function should only be set once. If a specific function is
specified more than once as a value for the retrieval-set-hook a warning will be displayed and a value

of nil will be returned as the current value.

:retrieved-chunk-hook

This parameter allows one to specify functions to be called automatically when chunks are retrieved
or a failure to retrieve occurs. This parameter can be set with a function which takes one parameter
and any number of such functions may be set (the reported value of this parameter is a list of all
functions which have been set). When there is a retrieved-chunk event these functions will be called
with the name of the chunk which has been retrieved, and when there is a retrieval-failure event these
functions will be called with nil as the parameter. The return values of those functions are ignored.
If the parameter is set to nil then all functions are removed from the retrieved-chunk-hook list. A
function should only be set once. If a specific function is specified more than once as a value for the
retrieved-chunk-hook a warning will be displayed and a value of nil will be returned as the current

value.
:rt

The retrieval threshold. This is the minimum activation a chunk must have to be able to be retrieved,

T, in the retrieval failure time equation. It can be set to any number and defaults to 0.0.

:sact

The save activation trace parameter controls whether or not the declarative module should save the
details of the activation computation when it is computed during a retrieval request. If it is set to a
non-nil value then all of the components of the activation calculations are saved and a trace like the

one displayed when using the :act parameter can be printed out after a run using the print-activation-

trace and print-chunk-activation-trace commands. The default value is nil.

271

ACT-R7 11-Jul-17 ACT-R Reference Manual

The parameter can be set to values like :act i.e. t, medium, low, or nil. The output of the print-
activation-trace and print-chunk-activation-trace commands will use the specific setting of this

parameter to display the requested amount of detail in the traces shown.

:sim-hook

This parameter allows one to override the similarity calculation. If it is set to a function then that
function will be passed two parameters. The first will be the slot contents of the request
specification, the k from the partial matching equation, and the second will be the considered chunk’s
value for that slot. If the function returns a number that will be the M value used for that term in the

ki

partial matching equation. If the function returns nil or a non-numeric value the default M value

ki

will be used.
:sji-hook

This parameter allows one to override the strength of association calculation. If it is set to a function
then that function will be passed two parameters. The first will be the chunk j from a slot in a buffer
chunk and the second will be the considered chunk i. If the function returns a number that will be the
Sji value used in the equation of Si for the chunk i. If the function returns nil or a non-numeric value

the default S value will be used.
ji

:spreading-hook

This parameter allows one to override the spreading activation calculation. If it is set to a function
then that function will be passed one parameter which is the name of the chunk for which a spreading
activation value is needed. If the function returns a number then that will be the S value used in the

activation equation. If the function returns nil or a non-numeric value the default spreading

activation calculation will be used.
:w-hook

This parameter allows one to override the default values for ij in the strength of association
calculation. If it is set to a function then that function will be passed two parameters. The first will
be the name of the buffer, the k, and the second will be the name of a slot for which the source of
activation, the j, is being spread. If the function returns a number that will be the W value used in

Kj

the equation of S at that time. If the function returns nil or a non-numeric value the default Wk' value
i J

will be used.

272

ACT-R7 11-Jul-17 ACT-R Reference Manual

Retrieval buffer

The retrieval buffer is used to retrieve chunks from the model’s declarative memory using the

mechanisms described above.

Activation spread parameter: :retrieval-activation
Default value: 0.0

Queries

In addition to the default queries the retrieval buffer can be queried with recently-retrieved which can

be checked for the values of t or nil.

‘State busy’ will be t while a retrieval request is being processed — the time between the start-retrieval

event and either the retrieved-chunk or retrieval-failure event. It will be nil at all other times.

‘State free’ will be nil while a retrieval request is being processed — the time between the start-

retrieval event and either the retrieved-chunk or retrieval-failure event. It will be t at all other times.

‘State error’ will be t if no chunk matching the most recent request was found (a retrieval-failure
event has occurred) and nil otherwise. Once it becomes t it will not change back to nil until the next

retrieval request is made.

‘Recently-retrieved t” will be t if there is a chunk in the retrieval buffer and there is a chunk in DM
from which that chunk was copied which is currently marked with a declarative finst. Otherwise this

query will be nil.

‘Recently-retrieved nil’ will be t if there is a chunk in the retrieval buffer and there is a chunk in DM
from which that chunk was copied which is currently not marked with a declarative finst. Otherwise

this query will be nil.

Requests

All

{{modifier} slot value}*

273

ACT-R7 11-Jul-17 ACT-R Reference Manual

{:recently-retrieved [t | nil | reset]}

{:mp-value [nil | temp-value]}
A request to the retrieval buffer is a description of a chunk which the declarative module will try to
find in DM and place into the retrieval buffer. For the declarative module to consider a chunk in DM
as a possible candidate it must have all of the slots specified with non-nil values and not have any

slots specified with a value of nil.

There are two request parameters which can be used to modify how that request is handled. The
:recently-retrieved request parameter can be used to test the declarative finsts associated with the
chunks in addition to the chunks' contents. If :recently-retrieved is specified as t then the request will
only match to chunks which have a finst set for them at the time of the request. If :recently-retrieved
is specified as nil then the request will only match to chunks which do not have a finst set for them at
the time of the request, and if :recently-retrieved is specified as reset then all of the declarative finsts
are removed before the request is processed. The :mp-value request parameter allows one to

temporarily change the setting of the declarative module's :mp parameter while this request is

processed. That can only be used if the :mp parameter has been enabled (set to a number) for the

model, and the value provided can be anything that is valid for :mp (a number or nil).

If a chunk which matches the request is found it will be placed into the retrieval buffer. If no chunk
is found, or no chunk which matches has an activation which is above the retrieval threshold when
the :esc parameter is t, then the buffer is left empty, the module signals that its state is error, and the

retrieval buffer’s failure flag is set.

The declarative module will only process one request at a time. If a new request comes in prior to the
completion of a previous request the older request is terminated immediately — no chunk will be
placed into the buffer or error signaled as a result of that request. A warning will be output to the
trace indicating the early termination of the previous request and the module will remain busy while

processing the new request.

A successful request to the declarative module will generate the events start-retrieval, retrieved-

chunk, set-buffer-chunk like this:

0.050 DECLARATIVE START-RETRIEVAL
0.100 DECLARATIVE RETRIEVED-CHUNK C
0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL C

274

ACT-R7 11-Jul-17 ACT-R Reference Manual

A failed request will generate the events start-retrieval and retrieval-failure:

10.250 DECLARATIVE START-RETRIEVAL

10.300 DECLARATIVE RETRIEVAL-FAILURE

If a request is terminated prematurely by a new request this is the warning that will show in the trace:

10.350 DECLARATIVE START-RETRIEVAL

#|Warning: A retrieval event has been aborted by a new request |#

The request is considered completed when it succeeds and places a chunk into the buffer, when the
retrieval-falure action occurs, or when it is aborted by a new request.

Commands

add-dm

Syntax:

add-dm ({chunk-name}{[doc-string isa chunk-type | isa chunk-type]} {slot value}*)* -> (chunk*)
add-dm-fct (({chunk-name}{[doc-string isa chunk-type | isa chunk-type]} {slot value}*)*) -> (chunk*)

Arguments and Values:

chunk-name ::= a symbol that will be the name of the chunk

doc-string ::= a string that will be the documentation for the chunk

chunk-type ::= a symbol that names a chunk-type in the model

slot ::= a symbol that names a slot for the chunk

value ::= any Lisp value which will be the contents of the correspondingly named slot for this chunk
chunk ::= a symbol which names a chunk that was created

Description:

The add-dm command functions exactly like the define-chunks command to create new chunks for
the model. In addition, add-dm places those chunks into the current model’s declarative memory. It

returns a list of the names of the chunks that were created.

If the syntax is incorrect or any of the components are invalid for a list describing a chunk then a
warning is displayed and no chunk is created for that chunk description, but any other valid chunks

defined will still be created.

275

ACT-R7 11-Jul-17 ACT-R Reference Manual

If there is no current model or meta-process then a warning is displayed, no chunks are created and

nil is returned.

Add-dm is used to provide the model with a set of initial memories. It should not be used for the
creation of general chunks. In particular, it should not be used by other modules to create the chunks
to place into their buffers because those chunks will be added to DM automatically when the buffer is

cleared and should not be placed there prior to that.

Examples:

1> (chunk-type number value)
NUMBER

2> (add-dm (isa number value 1)
(two value 2))
(NUMBER® TWO)

3> (add-dm-fct (list '(three "the number 3" isa number value 3)
'(value 4)))
(THREE CHUNKO)

E> (add-dm (bad-chunk isa invalid-type)

(bad-slot 10))
#|wWarning: Invalid chunk definition: (BAD-CHUNK ISA INVALID-TYPE) chunk-type specified
does not exist. |#
#|wWarning: Extending chunks with slot named BAD-SLOT because of chunk definition (BAD-SLOT
10) |#
(CHUNK1)

E> (add-dm (a))

#|Warning: get-module called with no current model. |#

#|wWarning: Could not create chunks because no declarative module was found |#
NIL

E> (add-dm (a))

#|wWarning: get-module called with no current meta-process. |#

#|Warning: Could not create chunks because no declarative module was found |#
NIL

dm

Syntax:

dm chunk-name* -> (chunk-name®*)
dm-fct (chunk-name®) -> (chunk-name*)

Arguments and Values:
chunk-name ::= a symbol which names a chunk

Description:

276

ACT-R7 11-Jul-17 ACT-R Reference Manual

The dm command is used to print out chunks which are in the declarative memory of the current
model in the current meta-process. For each chunk name provided that chunk will be printed to the
current model’s command output stream. If no chunk names are provided then all of the chunks in

DM will be printed. A list of the names of the chunks which are printed will be returned.
If there is no current model or current meta-process then a warning is printed and nil is returned.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

> (dm)

FIRST-GOAL
START 2
END 4

FIRST 5
SECOND 6

FIRST 4
SECOND 5

FIRST 3
SECOND 4

FIRST 2
SECOND 3

FIRST 1
SECOND 2

(FIRST-GOAL F E D C B)

> (dm b d)
B
FIRST 1
SECOND 2

FIRST 3

SECOND 4
(B D)
> (dm-fct '(first-goal c))
FIRST-GOAL

START 2
END 4

FIRST 2
SECOND 3

277

ACT-R7 11-Jul-17 ACT-R Reference Manual

(FIRST-GOAL C)

E> (dm bad-name)
NIL

E> (dm)

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found [#

NIL

E> (dm)

#|Warning: get-module called with no current meta-process. |#

#|Warning: No declarative memory module found |#
NIL

sdm

Syntax:

sdm {isa chunk-type} slot-test* -> (chunk-name*)
sdm-fct ({isa chunk-type} slot-test*) -> (chunk-name®*)

Arguments and Values:

chunk-type ::= a symbol which names a chunk-type
slot-test ::= {slot-modifier} slot value

slot-modifier ::=[=]-| <| >| <=]| >=]

slot ::= a symbol which names a slot

value ::= any Lisp value

chunk-name ::= a symbol which names a chunk

Description:

The sdm command is used to search the declarative memory of the current model and print out
chunks which match the search specification. If no parameters are provided then all chunks in DM
are printed. If parameters are provided then all chunks from DM which match the specification
provided are printed. If the chunk-type is specified then the slots given must be valid for that chunk-
type otherwise a warning will be printed and no chunks returned. As is the case elsewhere, the
chunk-type itself is not a constraint in the search, but if it contains default slot values those will be
included in the specification unless other values are provided. If no chunk-type is provided then any

slots and values may be provided. A list of the names of the chunks which are printed is returned.

If there is an error in the specification or there is no current model a warning is printed and nil is

returned.

Examples:

278

ACT-R7 11-Jul-17 ACT-R Reference Manual

1> (chunk-type test (slotl t))
TEST

2> (add-dm (tl1 isa test slotl t) (t2 isa test slotl nil))
(T1 T2)

3> (sdm isa test)
T1
SLOT1 T

(T1)

1> (chunk-type typel slotl slot2)
TYPE1

2> (chunk-type number name value)
NUMBER

3> (chunk-type type2 name slotl)
TYPEZ2

4> (add-dm (one isa chunk)
(a isa typel slotl 1 slot2 a)
(b isa typel slotl 2 slot2 a)
(c isa number name one value 1)
(d isa type2 name one slotl 3))
(ONE A B C D)

5> (sdm isa typel)
D
NAME ONE
SLOT1 3

NAME ONE
VALUE 1

SLOT1 1
SLOT2 A

SLOT1
SLOT2

>N

ONE

(D C A B ONE)

6> (sdm name one)
D

NAME ONE
SLOT1 3

NAME ONE
VALUE 1

(D C)
7> (sdm-fct '(< slotl 2))

SLOT1 1
SLOT2 A

(A)

279

ACT-R7 11-Jul-17 ACT-R Reference Manual

8> (sdm - slot2 a)
D
NAME ONE
SLoT1 3

NAME ONE
VALUE 1
ONE
(D C ONE)
E> (sdm isa bad-type)
#|Warning: Element after isa in define-chunk-spec isn't a chunk-type. (ISA BAD-TYPE) |#
#|Warning: Invalid chunk specification (ISA BAD-TYPE) passed to sdm [#
NIL
E> (sdm isa typel value 3)
#|Warning: Invalid slot-name VALUE in call to define-chunk-spec. |#
#|Warning: Invalid chunk specification (ISA TYPE1l VALUE 3) passed to sdm |#
NIL
E> (sdm)
#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found [#
NIL
E> (sdm)
#|Warning: get-module called with no current meta-process. |#

#|Warning: No declarative memory module found |#
NIL

print-dm-finsts

Syntax:

print-dm-finsts -> (<chunk-name time-stamp>*)

Arguments and Values:

chunk-name ::= a symbol which names a chunk in DM

time-stamp ::= a number indicating the time the finst was applied to the chunk chunk-name in seconds
Description:

Print-dm-finsts can be used to see which chunks in the current model of the current meta-process
have declarative finst markers. It takes no parameters and will print out a table of the chunks with
finsts on them showing the time at which the finst was set in seconds. It returns a list of cons cells
where each cell has the name of a chunk with a finst on it as the car and the creation time of its finst

in seconds as the cdr.

280

ACT-R7

If there is no current model or current meta-process then a warning is printed and nil is returned.

Examples:

11-Jul-17 ACT-R Reference Manual

This example assumes that the count model from tutorial unit 1 has been loaded.

1> (print-dm-finsts)

Chunk name

NIL

CG-USER(839):

(o]

.000
0.000
.000
.000
.050
.050
.050
.050
.050
.050
.100
.100
.100
.100
.100
.100
.150

[cNcoNoNoNoNoNoNoNoNoNoNoNoNoNo]

.150
.150
.150
.150
.150
.200
.200
.200
.200
.200
.200
.250

[ocNoNoNoNoNoNoNoNoNoNoNo)

.250
.250
.250
.250
.250
.250
.250
.300
.300
.300

[cNcoNoNoNoNoNoNoNoNo]

.300
.300
.300

[cNoNo)

0.3
50
NIL

Time Stamp

(run 10)
GOAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
DECLARATIVE
PROCEDURAL
DECLARATIVE
DECLARATIVE
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL

PROCEDURAL
PROCEDURAL
PROCEDURAL
DECLARATIVE
PROCEDURAL
DECLARATIVE
DECLARATIVE
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL

PROCEDURAL
PROCEDURAL
PROCEDURAL
DECLARATIVE
PROCEDURAL
PROCEDURAL
PROCEDURAL
DECLARATIVE
DECLARATIVE
PROCEDURAL

PROCEDURAL
PROCEDURAL

3> (print-dm-finsts)

SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
CONFLICT-RESOLUTION
PRODUCTION-SELECTED START
BUFFER-READ-ACTION GOAL
PRODUCTION-FIRED START
MOD-BUFFER-CHUNK GOAL
MODULE-REQUEST RETRIEVAL
CLEAR-BUFFER RETRIEVAL
START-RETRIEVAL
CONFLICT-RESOLUTION
RETRIEVED-CHUNK C
SET-BUFFER-CHUNK RETRIEVAL C
CONFLICT-RESOLUTION
PRODUCTION-SELECTED INCREMENT
BUFFER-READ-ACTION GOAL
BUFFER-READ-ACTION RETRIEVAL
PRODUCTION-FIRED INCREMENT

MOD-BUFFER-CHUNK GOAL
MODULE-REQUEST RETRIEVAL
CLEAR-BUFFER RETRIEVAL
START-RETRIEVAL
CONFLICT-RESOLUTION
RETRIEVED-CHUNK D
SET-BUFFER-CHUNK RETRIEVAL D
CONFLICT-RESOLUTION
PRODUCTION-SELECTED INCREMENT
BUFFER-READ-ACTION GOAL
BUFFER-READ-ACTION RETRIEVAL
PRODUCTION-FIRED INCREMENT

MOD-BUFFER-CHUNK GOAL
MODULE-REQUEST RETRIEVAL
CLEAR-BUFFER RETRIEVAL
START-RETRIEVAL
CONFLICT-RESOLUTION
PRODUCTION-SELECTED STOP
BUFFER-READ-ACTION GOAL
RETRIEVED-CHUNK E
SET-BUFFER-CHUNK RETRIEVAL E
PRODUCTION-FIRED STOP

CLEAR-BUFFER GOAL
CONFLICT-RESOLUTION
Stopped because no events left to process

281

ACT-R7 11-Jul-17 ACT-R Reference Manual

Chunk name Time Stamp

E 0.300

D 0.200

C 0.100

((E . 0.3) (D . 0.2) (C . 0.1))

E> (print-dm-finsts)

#|Warning: get-module called with no current model. |#

NIL

E> (print-dm-finsts)

#|Warning: get-module called with no current meta-process. |#
NIL

sdp

Syntax:

sdp [{ [chunk-name | (chunk-name*)]} {[param-name* | param-value-pair*]} |
(chunk-name [param-name* | param-value-pair*])*] -> (param-values*)

sdp-fct ([{ [chunk-name | (chunk-name*)]} {[param-name* | param-value-pair*]} |
(chunk-name [param-name* | param-value-pair*])*])-> (param-values*)

Arguments and Values:

chunk-name ::= a symbol which is the name of a chunk in declarative memory
param-name ::= a keyword which names a declarative parameter
param-value-pair ::= param-name new-param-value

new-param-value ::= a Lisp value to which the preceding param-name is to be set
param-values ::= [(param-value*) | (chunk-name?*)| :error]

param-value ::= the current value of a requested declarative parameter or :error.

Description:

Sdp is used to set or get the declarative parameters of the chunks in the current model. It is similar to

the sgp command which is used to set and get module parameters.

Each chunk has several declarative parameters associated with it, and most of those are relate to the
computation of the activation equation. The declarative parameters are only relevant when the :esc
parameter is enabled, and even then, some of the parameters are only available when specific options

of the declarative module are also enabled.

The declarative parameters available through sdp are listed below. An important thing to note is that

while these declarative parameters are maintained using general chunk parameters not all of the

general chunk parameters are available through sdp. Only the chunk parameters which are relevant

to the declarative module are accessible through the sdp command, and the mapping of declarative

282

ACT-R7 11-Jul-17 ACT-R Reference Manual

parameters onto chunk parameters may not be one-to-one. Thus, the declarative parameters should

only be accessed through the sdp command and not be read or changed through the general chunk

parameter accessors since their internal representations are not part of the declarative module’s API.

name := the name of the chunk. Cannot be changed.

activation := the chunk’s current activation value. Cannot be changed through sdp.
permanent-noise := the permanent noise is a value which is added to the activation of the
chunk each time it is computed. It defaults to 0.0. If :pas is set to a number, then when a
chunk is initially added to DM a random noise value generated using the :pas value as the s
parameter to act-r-noise will be generated and set as the chunk’s permanent noise. It can be
set by the modeler to any number, which will override the default and automatically generated
values.

base-level := the chunk’s current base-level value. Cannot be changed directly through sdp
when base-level learning is enabled because in that case it is controlled by the chunk’s
creation-time, reference-count, and/or reference-list. If base-level learning is disabled then it
can be set to a number which will be the [3i value for the chunk.

creation-time := the time (in seconds) when the chunk was first added to DM. Used by the
base-level equations to determine the t values and the chunk’s life time. Can be set to any
time (including negative values) which Jis less than or equal to the current time. This is only
applicable when :bll is set to a non-nil value.

reference-count := the number of references which the chunk has received. Can be set to any
positive value. It is applicable when :bll is non-nil and :ol is either t or a number. It is the n
value used in the optimized base-level equations. If the reference-count is set by the user then
the reference-list for the chunk will be adjusted to contain an appropriate number of
references as follows. If the reference-list is as long as the reference-count specified or :ol is t
then the reference-list will be unchanged. If the reference-list is currently longer than the
specified reference-count it will be truncated to that many of the most recent entries. If the
reference-list is shorter than the specified reference-count but has as many items as the current
setting of :ol it will be unchanged. Otherwise, the reference-list will be set to an evenly
distributed set of references as would be done by the set-base-levels command.

reference-list := the list of times at which the chunk’s references have occurred (most recent
first). Can be set to a list of times. It is applicable when :bll is non-nil and :ol is either nil or
a number. If :ol is nil, then the list will contain all of the reference times of the chunk. If :ol

is set to a number then it will only hold that many references (the most recent). If more

283

ACT-R7 11-Jul-17 ACT-R Reference Manual

references are provided than are needed, the list is truncated to the necessary length. When
the reference-list is set by the user the reference-count may be adjusted automatically. If :ol is
nil, then the reference-count will be updated to the length of the reference-list (even though
the reference-count is not actually used when :ol is nil). If :ol is a number and the reference-
count is less than the length of the (possibly truncated) reference-list it will be set to the length

of the reference-list. Otherwise, the reference-count will be unchanged.

» references := This parameter is deprecated and should not be used, but is still available for
compatibility with older models. This parameter will not be shown for a chunk and modelers

should use reference-count and reference-list instead to get/set the relevant values.

* source := the chunk’s current activation spread from the current buffer contents. Cannot be

changed directly through sdp. Only applicable when the :mas parameter is set to a number.

" sjis := this reports the S value for chunks j to the chunk i (where i is the chunk for which the
value is being reported)J.l The reported value is a list of cons cells where the car of a cons is
the name of a chunk j and the cdr is the S between that chunk j and the chunk i. Only chunks
j which have a connection with i are rejllaorted — all other S values to chunk i will be 0.0
(unless a provided :sji-hook overrides that). This parameterﬂis only relevant when the :mas
parameter is set to a number. It is possible to set this parameter using a list of cons cells (or
two element lists). Each value specified is effectively added to the set of S values for the
chunk as if the add-sji command was called (possibly replacing a value whichﬂwas previously
set or overriding a default value). The add-sji command is the recommended way to set S _
values instead of using this parameter through sdp. '

* similarities := this reports the similarities (the Mki values) between other chunks k and this
chunk, i. The reported value is a list of cons cells where the car of the cell is the name of the
chunk k and the cdr is the similarity value Mki. Only chunks k for which a similarity value
has been set and the similarity of the chunk with itself are reported. All other Mki values will
be the maximum difference (the :md parameter setting). This parameter is only relevant when
the :mp parameter is set to a number. It is possible to set this parameter using a list of cons
cells (or two element lists). Each value specified is effectively added to the similarity values
for the chunk (possibly replacing a value which was previously set or overriding a default
value). The set-similarities command is the recommended means of setting similarities, but if
one wants asymmetric similarities between chunks they must be set explicitly with sdp per

chunk (set-similarities always sets the values symmetrically).

284

ACT-R7 11-Jul-17 ACT-R Reference Manual

» Jast-retrieval-activation := the activation that the chunk had the last time that it was attempted
to be retrieved. This value is computed during the start-retrieval event and will be updated for
all chunks which match the retrieval request. Cannot be changed through sdp.

= Jast-retrieval-time := the time at which the last attempt to retrieve this chunk occurred i.e. the

time at which the last-retrieval-activation value was set. Cannot be changed through sdp.

Note: because parameter settings are applied in the order provided and there are dependences
between the creation-time, reference-count, and reference-list the order in which they are given may
affect the resulting values. The ordering to achieve what is typically wanted would be to set creation-
time, then reference-count, and then reference-list. That ensures that the creation-time has been
updated before any automatic references are generated and that the specified reference-list is not
overwritten by one automatically created by the reference-count. It is not required that they be
provided in that order however, and one may use other orderings to achieve different resultant values

as desired.

If no parameters are provided to sdp, then all of the current model's declarative memory chunks’

parameters are printed and a list of all the chunk names is returned.

If a chunk or list of chunks is specified as the first parameter to sdp then the following parameters are
set or retrieved from only those chunks. If no chunk names are provided then the settings are applied

to or retrieved from all chunks in DM at the time of the call to sdp.

If chunk names are specified but no specific parameters are specified then the parameters for those

chunks are printed and the list of those chunk names is returned.

When sdp prints the parameters for a chunk its name is printed followed by the parameters which are
currently appropriate based on the declarative module’s parameter settings to the command output

stream.

If any of the chunk names provided are invalid a warning will be printed and the corresponding

element of the return list will be :error.

If all of the parameters passed to sdp (after any chunk names) are keywords, then it is a request for
the current values of the parameters named. Those parameters are printed for the chunks specified

and a list containing a list for each chunk specified is returned. Each sub-list contains the values of

285

ACT-R7 11-Jul-17 ACT-R Reference Manual

the parameters requested in the order requested and the sub-lists are in the order of the chunks which
were requested. If an invalid parameter is requested, then a warning is printed and the value returned

in that position will be the keyword :error.

If there are any non-keyword parameters in the call to sdp and the number of parameters (not
counting the chunk names) is even, then they are assumed to be pairs of a parameter name and a
parameter value. For all of the specified chunks (or all chunks in DM if none are specified) those
parameters will be set to the provided values. The return value will be a list containing a list for each
chunk specified. Each sub-list contains the values of the parameters set in the order they were set and
the sub-lists are in the order of the chunks which were specified. If a particular parameter value was
not of the appropriate type, then a warning is printed and the value returned in that position will be

the keyword :error.

It is also possible to pass lists of a chunk name and parameter settings to sdp. Essentially, each list
provided could be formatted as something that could be passed to sdp and they will each be processed

as appropriate.

If there is no current model or current meta-process at the time of the call, then a warning is displayed

and nil is returned.

There is one small issue worth noting about using sdp. If the :activation or :base-level value is
returned (either because it is explicitly specified or because no parameters were specified and thus it
gets returned automatically) that will cause the chunk’s activation to be recomputed at the current
time if it is not currently at the time of the chunk’s last retrieval attempt (the value of the :last-
retrieval-time parameter). That activation computation will include the activation noise if there is
any. There are two consequences of that. First, multiple calls to sdp will likely return different
:activation values for a given chunk, even if those calls occur at the same model time. The other
consequence is that if there is noise in the activations then if sdp has to recomputed the chunk
activations it will affect the random sequence which will likely change how a model with a set :seed

parameter runs from that point on relative to how it would have run had sdp not been called.

Examples:

The examples assume that this model has been defined:

(define-model test
(sgp :esc t :bll .5 :mas 2 :mp 1)
(chunk-type test slotl slot2)

286

ACT-R7 11-Jul-17 ACT-R Reference Manual

(add-dm (a isa test)
(b isa test slotl a slot2 c)
(c isa test slotl a slot2 c)
(d isa test slot2 b)))

1> (sdp)

Declarative parameters for chunk D:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1
:Source-Spread 0.000
:Sjis ((D . 2.0) (B . 1.3068528))
:Similarities ((D . 0.0))

Declarative parameters for chunk C:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1
:Source-Spread 0.000
:Sjis ((A . 0.9013877) (C . 1.5945349))
:Similarities ((C . 0.0))

Declarative parameters for chunk B:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1
:Source-Spread 0.000
:Sjis ((B . 1.3068528) (A . 0.9013877) (C . 0.9013877))
:Similarities ((B . 0.0))

Declarative parameters for chunk A:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1
:Source-Spread 0.000
:Sjis ((A . 0.9013877))
:Similarities ((A . 0.0))

(D C B A)

2> (sdp a :permanent-noise)
Declarative parameters for chunk A:
:PERMANENT-NOISE 0.000

((0.0))

3> (sdp a :permanent-noise .3)

((0.3))

4> (sdp a)

Declarative parameters for chunk A:
:Activation 2.491
:Permanent-Noise 0.300
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1
:Source-Spread 0.000
:Sjis ((A . 0.9013877))

:Similarities ((A . 0.0))

(A)

5> (sdp (a b) :name :activation)

287

ACT-R7 11-Jul-17 ACT-R Reference Manual

Declarative parameters for chunk A:
:NAME A
ACTIVATION 2.491

Declarative parameters for chunk B:
:NAME B
ACTIVATION 2.191

((A 2.4910133) (B 2.1910133))

6> (sdp-fct '(c))

Declarative parameters for chunk C:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1
:Source-Spread 0.000
:Sjis ((A . 0.9013877) (C . 1.5945349))
:Similarities ((C . 0.0))

(C)

7> (sdp-fct '((d b) :sjis))
Declarative parameters for chunk D:
:SJIS ((D . 2.0) (B . 1.3068528))
Declarative parameters for chunk B:
:SJIS ((B . 1.3068528) (A . 0.9013877) (C . 0.9013877))

((((D . 2.0) (B . 1.3068528))) (((B . 1.3068528) (A . 0.9013877) (C .

8> (sdp (a :base-level) (b :creation-time -1.0))
Declarative parameters for chunk A:

'BASE-LEVEL 2.191
((2.1910133) (-1.0))

9> (sdp b)

Declarative parameters for chunk B:
:Activation 0.693
:Permanent-Noise 0.000
:Base-Level 0.693
:Creation-Time -1.000
:Reference-Count 1
:Source-Spread 0.000
:Sjis ((B . 1.3068528) (A . 0.9013877) (C . 0.9013877))
:Similarities ((B . 0.0))

(B)

10> (sdp-fct '(:reference-count 3))
((3) (3) (3) (3))

11> (sdp-fct '((a b)))

Declarative parameters for chunk A:
:Activation 3.590
:Permanent-Noise 0.300
:Base-Level 3.290
:Creation-Time 0.000
:Reference-Count 3
:Source-Spread 0.000
:Sjis ((A . 0.9013877))
:Similarities ((A . 0.0))

Declarative parameters for chunk B:
:Activation 1.792
:Permanent-Noise 0.000
:Base-Level 1.792
:Creation-Time -1.000
:Reference-Count 3
:Source-Spread 0.000
:Sjis ((B . 1.3068528) (A . 0.9013877) (C . 0.9013877))

0.9013877))))

288

ACT-R7 11-Jul-17 ACT-R Reference Manual

:Similarities ((B . 0.0))
(A B)

E> (sdp bad-chunk)
#|Warning: BAD-CHUNK does not name a chunk in DM. |#
(:ERROR)

E> (sdp a :bad-parameter)

Declarative parameters for chunk A:

#|Warning: BAD-PARAMETER is not a declarative parameter for chunks. |#
((:ERROR))

E> (sdp)

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found [#

NIL

E> (sdp)

#|Warning: get-module called with no current meta-process. |#
#|Warning: No declarative memory module found |#

NIL

sji/add-sji
Syntax:

sji chunk-name-j chunk-name-i -> [sji | nil]

sji-fct chunk-name-j chunk-name-i -> [sji | nil]

add-sji (chunk-name-j chunk-name-i sji)* -> ([sji | :error]*)
add-sji-fct ((chunk-name-j chunk-name-i sji)*) -> ([sji | :error]*)

Arguments and Values:

chunk-name-j ::= a symbol which names a chunk
chunk-name-i ::= a symbol which names a chunk
sji ::= a number which is the associative strength (S;; value) from chunk-name-j to chunk-name-i

Description:

The sji command is used to get the S value between two chunks in the current model. It takes two
ji

parameters which are the names of the chunk j and the chunk i respectively, and it returns the S

ji

value between them. The S value will be either the value determined by the standard equation, the
ji

explicit value which has been set using the add-sji command, or the result returned by the sji-hook if

it is specified. The sji-hook function overrides an explicit setting and the default calculation, and an
explicitly set value will override the default calculation. If either of the chunk names is invalid then a

warning is printed and an S of 0.0 is returned. If there is no current model or current meta-process
ji
then a warning is printed and nil is returned.

The add-sji command is used to specify explicit S values between chunks. It can be used to set any
ji

number of S values at a time. Each parameter to add-sji (or element of the list passed to add-sji-fct)
ji

289

ACT-R7 11-Jul-17

ACT-R Reference Manual

should be a list of three items. Those items are the chunk j, the chunk i, and the S value between

them respectively. It applies the S values in order left to right. Thus, if any pair of items is specified
ji

more than once it will be the right most setting for the pair that will be their S . It returns a list of the

S wvalues set in the order they were specified. If any of the lists are not three elements long, have bad

ji

chunk names, or an invalid S value then that item is ignored for purposes of setting an S , a warning
ji

ji

is printed, and the corresponding element of the return list will be :error.

Examples:

The example assumes this initial model is defined.

(define-model sji-demo

(sgp :esc t :mas 2)

(chunk-type item slot)

(add-dm (a isa item slot nil)
(b isa item slot a)
(c isa item slot d)
(d isa item slot c)
(e isa item slot c)
(f isa item slot f)
(g isa item slot f)))

> (sji a b)
1.3068528

> (sji b a)
0.0

> (sji c d)
0.9013877

> (sji d c)
1.3068528

> (sji-fct 'a 'a)
1.3068528

> (sji-fct 'f 'f)
1.5945349

E> (sji-fct 'bad-name 'a)

#|Warning: BAD-NAME does not name a chunk in the current model.

0.0

E> (sji a a)

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found [#

NIL

E> (sji a a)

#|Warning: get-module called with no current meta-process. |#
#|Warning: No declarative memory module found |#

NIL

1> (add-sji (a b 2.5) (b a 10))
(2.5 10)

2> (sji a b)

| #

290

ACT-R7 11-Jul-17 ACT-R Reference Manual

2.5

3> (sji b a)
10

4> (add-sji-fct '((f f 1) (d c 0)))
(1 0)

5> (sji f f)
1

6> (sji d c)
0

7> (add-sji (c d 1.0) (c d 2.0))
(1.0 2.0)

8> (sji c d)
2.0

E> (add-sji a b 1.0)

#|Warning: Bad Sji setting in A |#
#|Warning: Bad Sji setting in B [#
#|Warning: Bad Sji setting in 1.0 |#

(:ERROR :ERROR :ERROR)

E> (add-sji (a bad 1.0))
#|Warning: Bad Sji setting in (A BAD 1.0) |#
(:ERROR)

E> (add-sji-fct '(a b 2))
#|Warning: Bad Sji setting in
#|Warning: Bad Sji setting in
#|Warning: Bad Sji setting in
(:ERROR :ERROR :ERROR)

N>
S

E> (add-sji (a a 1))

#|Warning: get-chunk called with no current model. |#
#|Warning: Bad Sji setting in (A A 1) |#

(:ERROR)

E> (add-sji (a a 1))

#|Warning: get-chunk called with no current meta-process. |#
#|Warning: Bad Sji setting in (A A 1) |#

(:ERROR)

similarity/set-similarities

Syntax:

similarity item1 item2 -> [sim | nil]

similarity-fct item1 item2-> [sim | nil]

set-similarities (chunk-name-k chunk-name-i sim)* -> ([sim | :error]*)
set-similarities-fct ((chunk-name-k chunk-name-i sim)*) -> ([sim | :error]*)

Arguments and Values:
item1 ::= any value

item2 ::= any value
chunk-name-k ::= a symbol which names a chunk

291

ACT-R7 11-Jul-17 ACT-R Reference Manual

chunk-name-i ::= a symbol which names a chunk
sim ::= a number which is the similarity between the specified items

Description:

The similarity command is used to get the similarity value between two items in the current model

(the items do not have to be chunks). It takes two parameters which are the items, and it returns the

similarity value between them (the Mk_ from the partial matching equation). The value will be
1

determined either by the default calculation, explicit user settings, or the hook function. The sim-

hook function overrides an explicit setting and the default calculation, and an explicitly set value will
override the default calculation. If there is no current model then a warning is printed and nil is

returned.

The set-similarities command is used to specify explicit similarity values between chunks (to use
values other than the defaults between non-chunk items one must use the hook function). It can be
used to set any number of similarity values at a time. Each parameter to set-similarities (or element
of the list passed to set-similarities-fct) should be a list of three items. Those items are the chunk k,
the chunk i, and the similarity value between them respectively. It applies the similarity values in
order left to right. Thus, if any pair of items is specified more than once it will be the right most
setting for the pair that will be their similarity. Note that similarities are set reciprocally with this
command, and thus setting the similarity for k,i also sets the same similarity for i,k. It returns a list of
the similarity values set in the order they were specified. If any of the lists are not three elements
long, have bad chunk names, or an invalid similarity value then that item is ignored for purposes of
setting a similarity, a warning is printed, and the corresponding element of the return list will be
:error. If there is no current model or meta-process then a warning will be printed and all elements

in the list will be :error.

Examples:

This example assumes that this initial model is defined.

(define-model sim-demo
(sgp :esc t :mp 1)
(add-dm (a isa chunk)

(b isa chunk)
(c isa chunk)))

1> (sgp :ms :md)

:MS 0.0 (default 0.0) : Maximum Similarity
MD -1.0 (default -1.0) : Maximum Difference
(0.0 -1.0)

2> (similarity a b)
-1.0

292

ACT-R7 11-Jul-17

3> (similarity a a)
0.0

4> (similarity-fct 'a 'c)
-1.0

5> (similarity-fct "STRING" "string")
0.0

6> (similarity-fct "STRING" 'string)
-1.0

7> (similarity-fct 1.5 1.5)
0.0

E> (similarity a b)

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found [#

NIL

E> (similarity a b)

#|Warning: get-module called with no current meta-process.

#|Warning: No declarative memory module found |#
NIL

1> (set-similarities (a b -.5) (b c -2))
(-0.5 -2)

2> (similarity a b)
-0.5

3> (similarity b a)
-0.5

4> (similarity b c)
-2

5> (set-similarities-fct '((a a .5) (ac -1) (a c -2)))
(0.5 -1 -2)

6> (similarity a c)
-2

7> (similarity a a)
0.5

E> (set-similarities a b .5)

#|Warning: Bad similarity setting in A |#
#|Warning: Bad similarity setting in B |#
#|Warning: Bad similarity setting in 0.5 |#
(:ERROR :ERROR :ERROR)

E> (set-similarities (d e .5))
#|Warning: Bad similarity setting in (D E 0.5) |#
(:ERROR)

E> (set-similarities (a b 1) (ad 1) (bc 1))
#|Warning: Bad similarity setting in (A D 1) |#
(1 :ERROR 1)

E> (set-similarities (a a 1))

#|Warning: get-chunk called with no current model. |#
#|Warning: Bad similarity setting in (A A 1) |#
(:ERROR)

ACT-R Reference Manual

| #

293

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (set-similarities (a a 1))

#|Warning: get-chunk called with no current meta-process. |#
#|Warning: Bad similarity setting in (A A 1) |#

(:ERROR)

get-base-level/set-base-levels/set-all-base-levels

Syntax:

get-base-level {chunk-name*} -> ([base-level | :error]*)

get-base-level-fct (chunk-name*) -> ([base-level | :error]*)

set-base-levels (chunk-name level {creation-time})* -> ([base-level | :error]*)
set-base-levels-fct ((chunk-name level {creation-time})*) -> ([base-level | :error]*)
set-all-base-levels level {creation-time} -> [t | nil]

Arguments and Values:

chunk-name ::= a symbol which names a chunk

base-level ::= a number representing the base-level activation of a chunk

level ::= a number which is the setting for the base-level of chunk-name

creation-time ::= a number which represents the time at which chunk-name was added to DM

Description:

Get-base-level will return a list of the current base-level activations in the current model for the
chunks provided in the same order as they are given. This will result in the base-level being
recomputed for those chunks. If a chunk-name given does not name a chunk which is in the DM of
the current model then the corresponding base-level value will be :error. If there is no current model

or current meta-process then a warning is printed and nil is returned.

Set-base-levels is used to set the base-level activation for chunks in the DM of the current model. For
each chunk specified, its base-level is set as described below and if a new creation time is specified
that is also set for the chunk. The list of current base-level activations is returned for the chunks
specified in the same order as they were given. If a chunk-name is invalid, the level is not a number,
or the creation time is specified and is not a number then a warning is printed, no change is made to

the chunk’s parameters and the corresponding base-level returned will be :error.

The setting of the chunk’s base-level depends on the settings of the :bll and :ol parameters. If :bll is
nil then the level provided is used directly as the chunk’s base-level. If :bll is non-nil then the setting
of the :ol parameter determines how the level is used. If :ol is t then the level is the number of
references for the chunk (n in the optimized learning equation). If :ol is nil then the level specifies

how many references the chunk has and a history of the chunk is generated which evenly spaces

294

ACT-R7 11-Jul-17 ACT-R Reference Manual

those references between the current time and the chunk’s creation time (which will be the new value
if provided). If :ol is a number, then the level specifies the number of references for the chunk (the n
in the hybrid optimized equation) and a history list is generated which evenly spaces either the value
of :ol or level (whichever is lesser) references between the current time and the chunk’s creation-

time.

The set-all-base-levels command works like the set-base-levels command except that it applies the
level and creation-time (if provided) to all chunks in DM of the current model at the time it is called.

If it was successful it returns t. If there was a problem then a warning is printed and nil is returned.

Examples:

1> (define-model test-base-levels
(sgp :esc t :bll nil)
(add-dm (a isa chunk)
(b isa chunk)
(c isa chunk)))

TEST-BASE-LEVELS

2> (get-base-level a b)

(0.0 0.0)

3> (set-all-base-levels 1.5)
T

4> (set-base-levels (c -1))
(-1)

5> (get-base-level a b c)
(1.5 1.5 -1)

1> (define-model test-base-levels-2
(sgp :esc t :bll .5 :0l t)
(add-dm (a isa chunk)
(b isa chunk)
(c isa chunk)))
TEST-BASE-LEVELS-2

2> (get-base-level-fct '(a b c))
(2.1910133 2.19160133 2.1910133)

3> (set-all-base-levels 4 -1)

T

4> (sdp)

Declarative parameters for chunk C:
:Activation 2.079
:Permanent-Noise 0.000
:Base-Level 2.079
:Reference-Count 4.000
:Creation-Time -1.000

Declarative parameters for chunk B:
:Activation 2.079
:Permanent-Noise 0.000
:Base-Level 2.079

295

ACT-R7 11-Jul-17

:Reference-Count 4.000
:Creation-Time -1.000

Declarative parameters for chunk A:
:Activation 2.079
:Permanent-Noise 0.000
:Base-Level 2.079
:Reference-Count 4.000
:Creation-Time -1.000

(C B A)

5> (set-base-levels-fct '"((a 2 -10)))
(0.2350018)

6>(get-base-level-fct '(a b))
(0.2350018 2.0794415)

E> (get-base-level bad-name)
(:ERROR)

E> (set-all-base-levels :not-a-number)
#|Warning: Invalid level :NOT-A-NUMBER |#
NIL

E> (set-all-base-levels 1.5 :not-a-number)
#|Warning: Invalid creation-time :NOT-A-NUMBER |#
NIL

E> (set-base-levels (a))
#|Warning: Invalid level in setting (A) [#
(:ERROR)

E> (set-base-levels (a 1.5) (:not-a-chunk 1.5))
#|Warning: :NOT-A-CHUNK does not name a chunk in DM. |#
(1.5 :ERROR)

E> (get-base-level a)

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found |#

NIL

E> (set-base-levels (b 3))

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found [#

NIL

E> (set-all-base-levels 10)

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found |#

NIL

E> (get-base-level a)

#|Warning: get-module called with no current meta-process.

#|Warning: No declarative memory module found [#
NIL

E> (set-base-levels (b 3))

#|Warning: get-module called with no current meta-process.

#|Warning: No declarative memory module found |#
NIL

E> (set-all-base-levels 0)

#|Warning: get-module called with no current meta-process.

#|Warning: No declarative memory module found [#
NIL

ACT-R Reference Manual

| #

| #

| #

296

ACT-R7 11-Jul-17 ACT-R Reference Manual

clear-dm

Syntax:

clear-dm -> [t | nil]
Arguments and Values:
Description:

The clear-dm command can be used to remove all chunks from the declarative memory of the current
model. It is not recommended for general use, but there may be rare situations where it would be
needed. The command returns t if the current model’s DM was cleared and nil if there was no
current model, no current meta-process or some other problem was encountered. It will always print

a warning that states either that all chunks were cleared or that a problem occurred.

Examples:

> (clear-dm)
#|Warning: All the chunks cleared from DM. |#
T

E> (clear-dm)

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found |#

NIL

reset-declarative-finsts
Syntax:
reset-declarative-finsts -> nil
Arguments and Values:
Description:

The reset-declarative-finsts command can be used to remove all of the finst markers from the
declarative module of the current model. It takes no parameters and always returns nil. If there is no

current model or current meta-process then it will print a warning.

This command is not recommended for typical modeling use because the “:recently-retrieved reset”

request parameter setting can be used in the procedural requests to accomplish the same thing in a

297

ACT-R7 11-Jul-17 ACT-R Reference Manual

more model-driven manner. However, sometimes it may be necessary or more convenient to do that

through the Lisp code accompanying the model.

Examples:

> (reset-declarative-finsts)
NIL

E> (reset-declarative-finsts)
#|wWarning: get-module called with no current model. |#

#|Warning: No declarative module found - cannot reset the finsts. |#
NIL

merge-dm

Syntax:

merge-dm ({chunk-name}{[doc-string isa chunk-type | isa chunk-type]} {slot value}*)* -> (chunk*)
merge-dm-fct (({chunk-name}{[doc-string isa chunk-type | isa chunk-type]} {slot value}*)*) -> (chunk*)

Arguments and Values:

chunk-name ::= a symbol that will be the name of the chunk

doc-string ::= a string that will be the documentation for the chunk

chunk-type ::= a symbol that names a chunk-type in the model

slot ::= a symbol that names a slot for the chunk

value ::= any Lisp value which will be the contents of the correspondingly named slot for this chunk
chunk ::= a symbol which names a chunk that was created

Description:

The merge-dm command functions exactly like the add-dm command to create new chunks for the
model. However, unlike add-dm merge-dm will merge those chunks into the current model’s
declarative memory in the same way they would be merged if they had been cleared from a buffer.
Thus, if any of the chunks created by merge-dm are equal using the chunk-equal test with a chunk
already in declarative memory that existing declarative memory chunk is strengthened with a new
reference at the current time and those two chunks are merged. If a chunk created by merge-dm is
not equal to an existing chunk in the current model’s declarative memory then that new chunk is

added to declarative memory as if it had been created using add-dm.

If there are dependencies among the chunks created with merge-dm then those chunks will be merged
into declarative memory in an order that allows for proper merging of all chunks if such an order
exists. If there are dependencies and no safe order exists a warning will be displayed to indicate that

and the chunks will be merged into declarative memory in the order that they are provided. Merge-

298

ACT-R7 11-Jul-17 ACT-R Reference Manual

dm returns a list of the names of the chunks that were created in the order in which they were merged

into declarative memory (first chunk returned was the first merged).

If the syntax is incorrect or any of the components are an invalid list describing a chunk then a
warning is displayed and no chunk is created for that chunk description, but all valid chunks defined

will still be created.

If there is no current model or current meta-process then a warning is displayed, no chunks are

created and nil is returned.

Examples:

These examples assume that the base-level learning is enabled so that there is a strengthening of
activations when additional references to a chunk occur.

1> (chunk-type node slotl slot2)
NODE

2> (add-dm (a slotl b slot2 c)
(b slot1 10)
(c slot2 20))
(A B C)

3> (sdp)

Declarative parameters for chunk C:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Reference-Count 1.000
:Creation-Time 0.000

Declarative parameters for chunk B:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Reference-Count 1.000
:Creation-Time 0.000

Declarative parameters for chunk A:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Reference-Count 1.000
:Creation-Time 0.000

(C B A)

4> (merge-dm (d slotl e slot2 f)
(e slot1 10)
(f slot2 20)
(x slot1 30))
(E F D X)

5> (sdp)

Declarative parameters for chunk C:
:Activation 2.884
:Permanent-Noise 0.000
:Base-Level 2.884
:Reference-Count 2.000

299

ACT-R7 11-Jul-17 ACT-R Reference Manual

:Creation-Time 0.000

Declarative parameters for chunk X:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Reference-Count 1.000
:Creation-Time 0.000

Declarative parameters for chunk B:
:Activation 2.884
:Permanent-Noise 0.000
:Base-Level 2.884
:Reference-Count 2.000
:Creation-Time 0.000

Declarative parameters for chunk A:
:Activation 2.884
:Permanent-Noise 0.000
:Base-Level 2.884
:Reference-Count 2.000
:Creation-Time 0.000

(C X B A)

6> (merge-dm-fct '((y)))
(Y)

7E> (merge-dm (g slotl h)
(h slot2 g))
#|Warning: Chunks in call to merge-dm have circular references. |#

#|Warning: Because of that there is no safe order for merging and they will be merged in
the order provided. |#
(G H)

E> (merge-dm (isa bad-type-name))

#|Warning: Invalid chunk definition: (ISA BAD-TYPE-NAME) chunk-type specified does not
exist. |#

NIL

E> (merge-dm (a))
#|Warning: get-module called with no current model. |#

#|Warning: Could not create chunks because no declarative module was found |#
NIL

E> (merge-dm (a))

#|Warning: get-module called with no current meta-process. |#

#|Warning: Could not create chunks because no declarative module was found |#
NIL

print-activation-trace

Syntax:

print-activation-trace time {time-in-ms} -> nil
Arguments and Values:

time ::= a number which is the time of a start-retrieval event
time-in-ms ::= a generalized boolean indicating the units for time

Description:

300

ACT-R7 11-Jul-17 ACT-R Reference Manual

The print-activation-trace command works in conjunction with the :sact parameter to allow one to

print the activation trace information for retrieval requests that occurred during a model run after the
model has stopped. If the :sact parameter is non-nil, then this command will print out the activation
trace for the retrieval request which started at the time provided, measured in milliseconds if the time-
in-ms parameter is true or seconds if it is nil or not specified, from the current model in the current
meta-process as it would have appeared in the model trace if the :act parameter had been set, except
that this trace information will be printed to the command output instead of the model output. If
the :sact parameter is nil, the time provided does not correspond to the time of a start-retrieval event,
or there is no current model or meta-process then a warning will be printed instead of an activation

trace.

Examples:

These examples assume that the fan model from unit 5 of the ACT-R tutorial has been loaded and

modified to set the :sact parameter to t.

1> (fan-sentence-model "hippie" "park" t 'person)

1.444 ------ Stopped because no events left to process
(1.354 T)

2> (print-activation-trace 0.485)

Chunk PARK matches

Computing activation for chunk PARK

Computing base-level

User provided chunk base-level: 10.0

Total base-level: 10.0

Computing activation spreading from buffers

Spreading 1.0 from buffer IMAGINAL chunk CHUNKG-0

sources of activation are: (HIPPIE)
Spreading activation 0.0 from source HIPPIE level 1.0 times Sji 0.0

Total spreading activation: 0.0

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk PARK has an activation of: 10.0

Chunk PARK with activation 10.0 is the best

NIL

3> (print-activation-trace 585 t)

Chunk P3 matches

Chunk P2 matches

Chunk P1 matches

Computing activation for chunk P3

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

Spreading 1.0 from buffer IMAGINAL chunk CHUNKO-0

sources of activation are: (PARK HIPPIE)
Spreading activation 0.0 from source PARK level 0.5 times Sji 0.0
Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566

Total spreading activation: 0.10685283

301

ACT-R7 11-Jul-17 ACT-R Reference Manual

Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P3 has an activation of: 0.10685283
Computing activation for chunk P2
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
Spreading 1.0 from buffer IMAGINAL chunk CHUNKO-0
sources of activation are: (PARK HIPPIE)
Spreading activation 0.0 from source PARK level 0.5 times Sji 0.0
Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566
Total spreading activation: 0.10685283
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P2 has an activation of: 0.10685283
Computing activation for chunk P1
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
Spreading 1.0 from buffer IMAGINAL chunk CHUNKO@-0
sources of activation are: (PARK HIPPIE)
Spreading activation 0.10685283 from source PARK level 0.5 times Sji 0.21370566
Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566
Total spreading activation: 0.21370566
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P1 has an activation of: 0.21370566
Chunk P1 with activation 0.21370566 is the best
NIL

4E> (print-activation-trace 0.050)
#|Warning: No activation trace information available for time 0.05 |#
NIL

E> (print-activation-trace 0.0)

#|Warning: get-module called with no current model. |#

#|Warning: No declarative module available for reporting activation trace. |#
NIL

E> (print-activation-trace 0.0)

#|Warning: get-module called with no current meta-process. |#

#|Warning: No declarative module available for reporting activation trace. |#
NIL

print-chunk-activation-trace

Syntax:

print-chunk-activation-trace chunk-name time {time-in-ms} ->

[nil | total base-level spreading similarity noise]
print-chunk-activation-trace-fct chunk-name time {time-in-ms} ->

[nil | total base-level spreading similarity noise]

Arguments and Values:

chunk-name ::= a symbol which should name a chunk in the model’s declarative memory
time ::= a number which is the time of a start-retrieval event
time-in-ms ::= a generalized boolean indicating the units for time

302

ACT-R7 11-Jul-17 ACT-R Reference Manual

total ::= a number which is the total activation the chunk had for the retrieval
base-level ::= a number which is the total value of the base-level component of the chunk’s activation
spreading ::= a number which is the total spreading activation component of the chunk’s activation or
nil if spreading activation is not enabled
similarity ::= a number which is the total partial matching component of the chunk’s activation or nil if
partial matching is not enabled
noise ::= a number which is the total amount of noise added to the chunk’s activation

Description:

The print-chunk-activation-trace command works in conjunction with the :sact parameter to allow

one to print the activation trace information for the retrieval requests that occurred during a model
run after the model has stopped. If the :sact parameter is non-nil, then this command will print out
the activation trace for the specified chunk at the time provided, measured in milliseconds if the time-
in-ms parameter is true or seconds if it is nil or not specified, from the current model in the current
meta-process similar to how it would have appeared in the model trace if the :act parameter had been
set, except that this trace information will be printed to the command output instead of the model
output. If the :sact parameter is nil, the time provided does not correspond to the time of a start-
retrieval event, or there is no current model or meta-process then a warning will be printed instead of
an activation trace. If the provided chunk-name doesn’t name a chunk or wasn’t an element in
declarative memory then the output will indicate it doesn’t have any activation information to

display.

If there was chunk activation information displayed then this command will return five values. The
first value will be the total activation for the chunk. The remaining four values are the primary
components of that activation value: base-level activation, spreading activation, partial matching
penalty, and noise. The spreading activation and partial matching penalty values will be nil if the
corresponding mechanism is not enabled for the model. If there is no chunk activation information

displayed then the return value of the command is nil.

Examples:

These examples assume that the fan model from unit 5 of the ACT-R tutorial has been loaded and

modified to set the :sact parameter to t.

1> (fan-sentence-model "hippie" "park" t 'person)

1.444 ------ Stopped because no events left to process
(1.354 T)

303

ACT-R7 11-Jul-17 ACT-R Reference Manual

2> (print-chunk-activation-trace park .485)

Computing activation for chunk PARK

Computing base-level

User provided chunk base-level: 10.0

Total base-level: 10.0

Computing activation spreading from buffers

Spreading 1.0 from buffer IMAGINAL chunk CHUNKO-0

sources of activation are: (HIPPIE)
Spreading activation 0.0 from source HIPPIE level 1.0 times Sji 0.0

Total spreading activation: 0.0

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk PARK has an activation of: 10.0

10.0

10

0.0

NIL

0.0

3> (print-chunk-activation-trace-fct 'pl 585 t)

Computing activation for chunk P1

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

Spreading 1.0 from buffer IMAGINAL chunk CHUNKO-0

sources of activation are: (PARK HIPPIE)
Spreading activation 0.10685283 from source PARK level 0.5 times Sji 0.21370566
Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566

Total spreading activation: 0.21370566

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P1 has an activation of: 0.21370566

0.21370566

0.0

0.21370566

NIL

0.0

4> (print-chunk-activation-trace-fct 'p5 0.585)
Chunk P5 did not match the request.
NIL

5> (print-chunk-activation-trace park 0.585)
Chunk PARK was not considered.
NIL

6> (print-chunk-activation-trace not-a-chunk 0.585)
Chunk NOT-A-CHUNK was not considered.
NIL

7E> (print-chunk-activation-trace park 0.0)
#|Warning: No activation trace information available for time 0.0 |#
NIL

8E> (print-chunk-activation-trace chunk 0.0)

#|Warning: get-module called with no current model. |#

#|Warning: No declarative module available for reporting activation trace. |#
NIL

9E> (print-chunk-activation-trace chunk 0.0)

#|Warning: get-module called with no current meta-process. |#

#|Warning: No declarative module available for reporting activation trace. |#
NIL

304

ACT-R7 11-Jul-17 ACT-R Reference Manual
saved-activation-history
Syntax:

saved-activation-history -> (activation-history*)

Arguments and Values:

activation-history ::= (time chunk-name¥)

time ::= a number which is the time of a retrieval request for which a history has been saved
chunk-name ::= a symbol which names a chunk for which activation information was stored at time

Description:

The saved-activation-history command returns a list which indicates what retrieval information has

been saved as a result of the :sact parameter being enabled for the current model in the current meta-

process. If the :sact parameter is enabled then this command will return a list of lists where each sub-
list consists of a time in milliseconds and the chunks which were attempted to be retrieved at that
time for which the activation information was recorded. There will be a separate sub-list for each
time for which activation details are recorded and those lists will be in order based on the times
(lowest time first). If the :sact parameter is not enable or there is no current model or meta-process

then a warning will be printed and the return value will be nil.

Examples:

This first example assume that the fan model from unit 5 of the ACT-R tutorial has been loaded and

modified to set the :sact parameter to t.

1> (fan-sentence-model "hippie" "park" t 'person)

1.444 ------ Stopped because no events left to process
(1.354 T)

2> (saved-activation-history)
((235 HIPPIE) (485 PARK) (585 P3 P2 P1))

E> (saved-activation-history)
#|Warning: No activation trace information available |#
NIL

E> (saved-activation-history)

#|Warning: get-module called with no current model. |#

#|wWarning: No declarative module available for reporting activation trace. |#
NIL

E> (saved-activation-history)
#|wWarning: get-module called with no current meta-process. |#

305

ACT-R7 11-Jul-17 ACT-R Reference Manual

#|Warning: No declarative module available for reporting activation trace. |#
NIL

whynot-dm

Syntax:

whynot-dm chunk-name* -> (matching-chunk*)
whynot-dm-fct (chunk-name*) -> (matching-chunk*)

Arguments and Values:

chunk-name ::= a symbol that names a chunk in the current model
matching-chunk ::= a symbol that names a chunk which matched the last retrieval request

Description:

The whynot-dm command can be used to determine which chunks in the current model’s declarative
memory matched the last retrieval request which the declarative module has received and to indicate
reasons why a chunk did not get retrieved. If there has been a retrieval request made to the
declarative module then the whynot-dm command will display the time at which the most recent
request occurred along with the display of the request’s specification. Then, for each of the chunk
names passed to it (or all chunks in the model’s declarative memory if no names are provided) it will
print out the chunk, its appropriate parameters if subsymbolic computations are enabled, and then

whether the chunk matched that request or not.

It returns a list of all the chunks which did match that request at the time it was made (regardless of
whether they were passed into whynot-dm for display). The list is sorted by the chunks’ activations
at the time of the request (highest activation first), and if there was a chunk retrieved it will be the

first element of the list.

If there is no current model then a warning is printed and nil is returned. If an invalid chunk-name is

provided it will indicate that in the output.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

1> (reset)
DEFAULT

2> (whynot-dm)

No retrieval request has been made.
NIL

306

ACT-R7 11-Jul-17 ACT-R Reference Manual

3> (run .1)
0.050 DECLARATIVE START-RETRIEVAL
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.100 DECLARATIVE RETRIEVED-CHUNK C
0.160 ------ Stopped because time limit reached
0.1
20
NIL

4> (whynot-dm)
Retrieval request made at time 0.05:
FIRST 2

FIRST-GOAL
START 2
END 4

Declarative parameters for chunk FIRST-GOAL:
:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000

FIRST-GOAL did not match the request

F
FIRST 5
SECOND 6

Declarative parameters for chunk F:
:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000

F did not match the request
FIRST 4
SECOND 5
Declarative parameters for chunk E:
:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000
E did not match the request
FIRST 3
SECOND 4
Declarative parameters for chunk D:
:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000
D did not match the request
FIRST 2
SECOND 3

Declarative parameters for chunk C:

307

ACT-R7 11-Jul-17 ACT-R Reference Manual

:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000
:Last-Retrieval-Activation 0.000
:Last-Retrieval-Time 0.050

C matched the request
C was the chunk chosen to be retrieved

FIRST 1
SECOND 2

Declarative parameters for chunk B:
:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000

B did not match the request

(C)

5> (whynot-dm b)
Retrieval request made at time 0.05:
FIRST 2

FIRST 1
SECOND 2

Declarative parameters for chunk B:
:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000

B did not match the request

(C)

6> (whynot-dm-fct (list 'c))
Retrieval request made at time 0.05:
FIRST 2

FIRST 2
SECOND 3

Declarative parameters for chunk C:
:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000
:Last-Retrieval-Activation 0.000
:Last-Retrieval-Time 0.050

C matched the request
C was the chunk chosen to be retrieved
(C)

7> (whynot-dm first-goal-0)
Retrieval request made at time 0.05:
FIRST 2

Chunk FIRST-GOAL-0 is not in the model's declarative memory.
(C)

8E> (whynot-dm :bad-name)
Retrieval request made at time 0.05:

308

ACT-R7 11-Jul-17 ACT-R Reference Manual

FIRST 2

:BAD-NAME does not name a chunk in the current model.
(C)
E> (whynot-dm)

#|Warning: Whynot-dm called with no current model. |#
NIL

simulate-retrieval-request

Syntax:

simulate-retrieval-request specification -> (matching-chunk*)
simulate-retrieval-request-fct (specification) -> (matching-chunk*)
simulate-retrieval-request-plus-seed-fct (specification) -> (matching-chunk*) seed

Arguments and Values:

specification ::= [chunk-name | {isa chunk-type }{{modifier} slot value}*]

chunk-name ::= a symbol which names a chunk in the current model

chunk-type ::= a symbol which names a chunk-type in the current model

modifier ::=[=]-] <| >| <=| >=]

slot ::= [possible-slot | request-param]

possible-slot ::= a symbol which names a valid slot in the specified chunk-type or any valid slot if no
chunk-type provided

request-param ::= a Lisp keyword which is a valid retrieval buffer request parameter

value ::= any Lisp value

matching-chunk ::= a symbol that names a chunk in DM which matched specification

seed ::= the value of the :seed parameter in the model after the retrieval process was simulated

Description:

The simulate-retrieval-request command can be used to simulate the results of making a request to
the retrieval buffer under the current model conditions. If there is a current model in the current
meta-process then the specification provided is used to create a chunk-spec which is used to simulate
a request to the retrieval buffer. That request will perform the matching and activation calculations
based on the current buffer contents for spreading activation and report the results of whether chunks
match the request or not and show the activation for those which do similar to the low detail

activation trace.

The simulated request does not perform many of the side effects which occur with a normal retrieval

request. The simulated request does not trigger calls to the functions set with the :retrieval-request-

hook, :retrieval-set-hook, or :retrieved-chunk-hook parameters. The results of the simulated request

309

ACT-R7 11-Jul-17 ACT-R Reference Manual

are not recorded for use with why-not-dm. The activations computed will include noise, but the

model’s :seed parameter will be restored to the value it had prior to those computations. It does

however set the activation parameter of the chunks that are matched which can be accessed using the

function chunk-activation (see extending chunks for information on using chunk parameters).

It returns a list of all the chunks which match the request specified sorted by the chunks’ activations
(highest activation first) with any chunk which would have been retrieved as the first element of the
list. However, just because there is a first element in the list does not mean that it would necessarily

be retrieved because it may have an activation below the current retrieval threshold.

The simulate-retrieval-request-plus-seed-fct function returns the value of the :seed parameter after the

retrieval process completes as its second value. That is done so that one can use this mechanism to
implement a second buffer that accesses the model’s declarative memory and update the random state

appropriately.

If there is no current model or current meta-process then a warning is printed and nil is returned. If

an invalid specification is provided it will indicate that in the output and return nil.

Examples:

These examples assume the grouped model from unit 5 of the tutorial has been loaded.

> (simulate-retrieval-request)

Chunk LIST has the current best activation 0.13675894

Chunk FIRST has activation -0.36428827

Chunk SECOND has activation -0.2693139

Chunk THIRD is now the current best with activation 0.15103722
Chunk FOURTH has activation 0.069821134

Chunk GROUP1 has activation 0.14088637

Chunk GROUP2 has activation 0.05243059

Chunk GROUP3 has activation -0.31867743

Chunk ITEM1 has activation -0.010031511

Chunk ITEM2 has activation 0.11004096

Chunk ITEM3 has activation -0.087834366

Chunk ITEM4 has activation -0.27916592

Chunk ITEM5 is now the current best with activation 0.21117316
Chunk ITEM6 has activation -0.2579252

Chunk ITEM7 has activation 0.18635121

Chunk ITEM8 has activation 0.09208258

Chunk ITEM9 has activation -0.2433808

Chunk GOAL has activation -0.044656888

Chunk ITEM5 with activation 0.21117316 is the best

(ITEM5 ITEM7 THIRD GROUP1 LIST ITEM2 ITEM8 FOURTH GROUP2 ITEM1 ...)

> (simulate-retrieval-request isa item - name nil)

Chunk ITEM1 has the current best activation -0.36428827

Chunk ITEM2 is now the current best with activation -0.2693139
Chunk ITEM3 is now the current best with activation 0.15103722
Chunk ITEM4 has activation 0.069821134

310

ACT-R7 11-Jul-17 ACT-R Reference Manual

Chunk ITEM5 has activation 0.14088637

Chunk ITEM6 has activation 0.05243059

Chunk ITEM7 has activation -0.31867743

Chunk ITEM8 has activation -0.010031511

Chunk ITEM9 has activation 0.11004096

Chunk ITEM3 with activation 0.15103722 is the best
(ITEM3 ITEM5 ITEM9 ITEM4 ITEM6 ITEM8 ITEM2 ITEM7 ITEM1)

> (simulate-retrieval-request-fct '(position third))

Chunk GROUP1 has the current best activation -1.3642883

Chunk GROUP2 is now the current best with activation -0.76931393
Chunk GROUP3 is now the current best with activation 0.15103722
Chunk ITEM1 has activation -0.9301789

Chunk ITEM2 has activation -0.35911363

Chunk ITEM3 has activation 0.05243059

Chunk ITEM4 has activation -1.3186774

Chunk ITEM5 has activation -0.5100315

Chunk ITEM6 has activation 0.11004096

Chunk ITEM7 has activation -1.0878344

Chunk ITEM8 has activation -0.7791659

Chunk ITEM9 is now the current best with activation 0.21117316
Chunk ITEM9 with activation 0.21117316 is the best

(ITEM9 GROUP3 ITEM6 ITEM3 ITEM2 ITEM5 GROUP2 ITEM8 ITEM1 ITEM7

> (simulate-retrieval-request groupl)

Chunk GROUP1 has the current best activation -0.36428827
Chunk GROUP2 has activation -1.7693139

Chunk GROUP3 has activation -1.8489628

Chunk GROUP1 with activation -0.36428827 is the best
(GROUP1 GROUP2 GROUP3)

E> (simulate-retrieval-request)
#|Warning: get-module called with no current model. |#

#|Warning: No declarative memory module available. Simulate-retrieval-request cannot

perform the request. |#
NIL

E> (simulate-retrieval-request)
#|Warning: get-module called with no current meta-process. |#

#|Warning: No declarative memory module available. Simulate-retrieval-request cannot

perform the request. |#
NIL

311

ACT-R7 11-Jul-17 ACT-R Reference Manual

Perceptual & Motor modules

The perceptual and motor modules provide a model with a way to interact with a world. The
provided perceptual modules allow the model to attend to visual and aural stimuli and the given
motor modules provide the model with hands and a voice. The perceptual and motor modules
provided with ACT-R are essentially updated versions of the modules which comprised those same
components in the ACT-R/PM system. ACT-R/PM was developed by Mike Byrne as a combination
of ACT-R, the Visual Interface for ACT-R created by Mike Matessa, and the EPIC cognitive
architecture created by David Kieras and David Meyer. Providing a model access to an external
world was an important development in the advancement of ACT-R modeling, and that integration
lead to many of the changes that came about with the introduction of ACT-R 5. Those components
are now fully integrated with ACT-R and ACT-R/PM is no longer a separate system because the
perceptual and motor modules which it contained are now integral components of the main ACT-R

system.

Unlike the cognitive modules, the perceptual and motor modules each primarily work with chunks
that are created using the slots of specific chunk-types that the module defines, and the requests
which they respond to are more rigidly specified descriptions of actions. The chunk-types a module

defines and any initial chunks which it creates will be listed with each module’s description.

These modules also have more complicated internal states than the basic state free and state busy
which can be queried for all modules. Each of these modules has three separate internal systems:
preparation, processor, and execution. Each of those systems can be queried individually for being
busy or free. Different requests to these modules may require the use of different internal systems
and thus may not require that all internal states be free before being allowed to progress. This is
particularly useful in the motor module to request an action before the previous has completed. How
the modules respond to the queries and how that affects the requests which can be made to them vary

from module to module.

Before describing the perceptual and motor modules themselves, however, the interface that they

have to the world will be described.

312

ACT-R7 11-Jul-17 ACT-R Reference Manual

The Device Module

The world with which the perceptual and motor modules of an ACT-R model interacts is called a
device. The device defines the operations which the perceptual modules can use for gathering
information and the operators available to the motor modules for manipulating that device. The
device module provides a model with its interface to the device and provides the commands to the

modeler for installing and configuring a device.

The typical device used for modeling is one where the model is operating a computer. Essentially, the
model is sitting in front of a monitor, has its hands on a keyboard/mouse, and the computer has
speaker outputs and an input microphone. That is the situation generally assumed by the device
module, and the one for which many of the parameters are relevant. However it is not the only
device with which a model can be interfaced. Models have also been situated within driving and
flight simulation systems, in virtual worlds as provided by the game Unreal Tournament or the
RoboCup soccer simulation, and have also used devices that allow them to receive the inputs and

control the actions of real robots.

In general, a device can be any Lisp object and the control of the device is handled by defining the
appropriate methods for that object. For this section and the description of the following modules,
the assumption is that the world with which the model is interacting is the basic computer device
created using one of the default devices included with ACT-R. Information on construction new
devices can be found in the slides titled “extending-actr” in the docs directory of the distribution and

in example code found in the “examples/creating devices” directory.

The system includes devices for the basic GUI classes in LispWorks, ACL for Windows, CCL on
Macs, as well as a virtual windowing system that works for models in any Lisp whether or not it
provides a GUI interface. There is a set of commands called the AGI (ACT-R GUI Interface) which
can be used with any Lisp to create interfaces using those devices, and when used with the ACT-R
Environment the AGI will create a real GUI with which a person or model can interact even in a
command line only Lisp. The AGI and ACT-R Environment each have their own manual included in

the docs directory.

Parameters

:mouse-fitts-coeff

313

ACT-R7 11-Jul-17 ACT-R Reference Manual

This parameter is the b coefficient in the Fitts's Law equation for aimed movements which is used
when the model moves the mouse cursor. The default value is .1 and it can be set to any positive

value.

:needs-mouse

This parameter controls whether or not the model will take control of the computer’s mouse cursor
when interacting with a real interface. If it is set to t, then the system will attempt to keep the mouse
pointer located where the model has placed it within the current device. The default value is t. If the
model does not need to use the mouse, but is interacting with a real interface then setting this

parameter to nil will prevent the system from taking over the mouse cursor.
:pixels-per-inch

This is the number of pixels/inch assumed for the device which the model is looking at. It is used in
computations of the size of items in terms of degrees of visual angle. The default value is 72 and it

can be set to any positive number.

process-cursor

This parameter controls whether the mouse cursor should be included as a feature for the vision
module when processing a display. If it is set to t, then a feature for the mouse will be generated.

The default value is nil.

:show-focus

This parameter controls whether a red circle is drawn in a real device window to indicate where the

model’s visual attention is located. If it is set to t, then a red circle is drawn. The default is nil.

:stable-loc-names

When using the virtual device windows, this parameter determines whether the device sorts the items
found in the window before generating the visual features. If the model is not using the virtual device
windows, then this parameter has no effect. Setting the parameter to t, which is the default value,
will force the items to be sorted which means that the same interface display will result in the same
feature names each time it is run on all systems — it will be deterministic. If it is set to nil then the

items in the interface will not be sorted and the names could vary among runs or across systems.

314

ACT-R7 11-Jul-17 ACT-R Reference Manual

Setting it to nil should not affect the model’s performance and may improve the time it takes to run

the simulation at the potential cost of debugging time needed to compare different model runs.

:trace-mouse

This parameter controls whether or not the device module maintains a record of where the model has
moved the mouse. If it is set to t then one can use the get-mouse-trace command to access the history

of mouse positions. The default value is nil.
:viewing-distance

This is the assumed distance between the model’s eyes and the display in inches. It is used in
determining the size of items in terms of degrees of visual angle. The default is 15 and it can be set

to any positive number.
vwt

The virtual window trace parameter controls whether the included virtual window device reports
interactions with the model in the trace. If the parameter is set to t, then virtual window interactions
will be printed in the trace surrounded by “<<” and “>>” characters, otherwise no additional output

will be generated. The default value is nil.

Commands

These are the general commands relating to the device itself. Commands which are related to a

specific module’s interaction with the device will be described with that module.

install-device

Syntax:

install-device {device} -> [device | nil]

Arguments and Values:
device ::= any Lisp value for which the appropriate device methods have been defined

Description:

315

ACT-R7 11-Jul-17 ACT-R Reference Manual

The install-device command takes one parameter which should be an item for which the appropriate
ACT-R device methods have been defined. It makes that item the current device for the current
model. The device itself is returned if no problems occurred. If there is no current model or no

current meta-process then a warning is printed and nil is returned.
A model must have a device installed before it issues requests to the perceptual or motor modules.

Examples:

> (install-device (make-instance 'my-device))
#<MY-DEVICE @ #x2b481f72>

> (install-device nil)
NIL

E> (install-device (make-instance 'my-device))

#|Warning: install-device called with no current model. |#
NIL

E> (install-device nil)

#|Warning: install-device called with no current meta-process. |#
NIL

current-device

current-device -> [device | nil]
Arguments and Values:

device ::= the currently installed device
Description:

The current-device command takes no parameters. It returns the device which has been installed for
the current model in the current meta-process. If there is no current model or no current meta-process

then a warning is printed and nil is returned.

Examples:

1> (install-device (make-instance 'my-device))
#<MY-DEVICE @ #x2b5a7972>

2> (current-device)
#<MY-DEVICE @ #x2b5a7972>

E> (current-device)
#|Warning: current-device called with no current model. |#
NIL

E> (current-device)

#|Warning: current-device called with no current meta-process. |#
NIL

316

ACT-R7 11-Jul-17 ACT-R Reference Manual

get-mouse-trace

get-mouse-trace -> [trace | :mouse-trace-off | nil |

Arguments and Values:

trace ::= (<time x-y>*)

time ::= a number in seconds at which a model generated mouse movement occurred
x-y ::= a vector of two numbers indicating the position to which the mouse was moved

Description:

The get-mouse-trace command takes no parameters. If tracing of the mouse has been enabled by

setting the :trace-mouse parameter to t then it returns a list of cons which record every time the

current model of the current meta-process has moved the mouse and where it was moved to. The car
of the cons is the time of the action and the cdr is a vector indicating the x and y coordinates
(respectively). If the mouse tracing has not been enabled, then the keyword :mouse-trace-off is
returned. If there is no current model or current meta-process then a warning is printed and nil is

returned.

Examples:

> (get-mouse-trace)
((0.909 . #(130 160)))

> (get-mouse-trace)
:MOUSE-TRACE-OFF

E> (get-mouse-trace)

#|Warning: get-module called with no current model. |#
#|Warning: No device interface found for get-mouse-trace. |#
NIL

E> (get-mouse-trace)

#|Warning: get-module called with no current meta-process. |#

#|Warning: No device interface found for get-mouse-trace. |#
NIL

model-generated-action
model-generated-action -> [model-name | nil]
Arguments and Values:

model-name ::= a symbol which names the model that generated the action

317

ACT-R7 11-Jul-17 ACT-R Reference Manual

Description:

The model-generated-action command takes no parameters. It can be used in writing the interface
methods for a device as a way to determine whether the model performed the action which caused the
method to be called, and if so, which model it was if there are multiple models defined. If a model
performed the action which triggered the method it returns the name of the model which generated
the action. If the method was called other than through a model’s action then it returns nil. Outside

of a method called from a device interaction this command will always return nil.

That last point is an important one and puts some limits on where this command can be used. It can
only be used in the device interface methods or those functions and methods which are called directly
by those methods. If a function or method is not called directly by those methods this command
should not be used. In particular, the rpm-window-key-event-handler method and button action
functions are called indirectly when using the native interface in ACL and LispWorks because those
are called by the Lisp in response to the corresponding system event that was generated by the
interface methods. However, it can be used in those methods and functions when working with the
virtual windows and the visible windows generated through the ACT-R environment because those

are all handled directly instead of going out through a system event.
Examples:

> (model-generated-action)
NIL

318

ACT-R7 11-Jul-17 ACT-R Reference Manual

Vision module

The vision module is used to provide a model with information about what can be seen in the current
device and provides the model with a visual attention system. The vision module consists of two
subsystems, a "where" system and a "what" system. The two subsystems work together, but each has
its own buffer and accepts specific requests. One important thing to note is what the vision module
does not do — it does not model eye movements. It is a model of visual attention abstracted away
from what is occurring with the eyes. There has been work done by Dario Salvucci to create a more
detailed vision module which takes into account eye movements. That extension makes the time
required for attention shifts dependent on the eccentricity between the requested location and the
current point of gaze as well as the frequency of items. That work is instantiated in a system called
EMMA (eye movements and movements of attention) which was built as a replacement for the
default vision module of ACT-R. That module is included in the extras directory of ACT-R, but is

not part of the default system and will not be described here.

The model’s visual world

The vision module sees the features that are made available by the current device. The device
provides a set of features to which a model may attend. That set of features is referred to as the
visicon (visual icon). The features in the visicon are the items which can be found with the where
system, and contain basic information about items like their general categorization, location, and
color. When one of those features is attended by the what system the model gets access to the more
detailed representation reported by the device for the item that was attended. The details as to the
information provided for the visicon items and the attended objects is controlled by the device. The
default devices include representations for text, button, and line features for the visicon and attended

objects that will be used in the examples here.

The Where System

The where system takes requests through the visual-location buffer. A request to the visual-location
buffer specifies a set of constraints, and the where system searches for a feature in the visicon which
matches those constraints and creates a chunk representing the corresponding item’s location if one is
found. This is often referred to as “finding a location”. The constraints are specified as slot-value
pairs in a request which represent visual properties of the object (“color red”), the spatial location of

the object (“y position greater-than 153”), coarse temporal information such as whether it recently

319

ACT-R7 11-Jul-17 ACT-R Reference Manual

became visible, and tests of whether the model has previously attended to that location. This is akin
to so-called “pre-attentive” visual processing (Triesman & Gelade, 1980) and supports visual pop-out
effects. For example, if the display consists of one green object in a field of blue objects, the time to

determine the location of the green object is constant regardless of the number of blue objects.

When a visual-location request is made, if there is a feature in the visicon that meets the constraints,
then a chunk representing the location of that object is placed in the visual-location buffer. If
multiple objects meet the constraints, then the newest one (the one with the most recent onset time)
will be returned. If multiple objects meet the constraints and they have the same onset time, then one
will be picked randomly. If there are no objects which meet the constraints, then the buffer will be

left empty and an error will be indicated.

Finsts

As noted above, one property of the objects in the visicon which can be tested is whether the item has
been previously attended by the model. The vision module is able to keep track of a small number of
locations to which it has attended. It does so using a set of markers called finsts (fingers of
instantiation) which are limited both in number and in duration. When a location is attended by the
model a finst marker is placed upon it. The finst marker will remain until the finst’s duration expires,
at which time the location will revert to unattended, or until an attention shift requires a finst and
there are none available. If all finsts are in use and a new one is needed then the oldest one which
was assigned will be removed (thus forcing that location to revert to unattended) and reused for the
newly attended location. The visual finsts work the same as those described for the declarative
module (the declarative module actually had the finsts mechanism added recently as a copy of the
visual finsts), but the two systems are completely separate with each module having its own set of

finsts.

The What System

The what system takes requests through the visual buffer. Its primary use is to attended to locations
which have been found using the where system. A request to the what system entails providing a
chunk representing a visual location, which will cause the what system to shift visual attention to that
location, process the object located there, and place a chunk representing the object into the visual
buffer. If there is more than one object at the location specified when the attention shift completes,
only one of them will be encoded and placed into the buffer. The vision module chooses among the

objects by using the constraints which led to the where system finding that visual location. Thus, if

320

ACT-R7 11-Jul-17 ACT-R Reference Manual

the location to be attended to was found based on a constraint of having the color red, and there are

three objects at that location, one of which is red, then the red one will be encoded.

The what system has a rudimentary tolerance for movement. That is, if the location chunk provided
to be attended specifies a location, but the object which created that feature has moved slightly such
that it is no longer at that specific location the vision module will still attend that item if the
movement is small. Just how far an object can move and still be encoded is configurable with a
parameter, and the default tolerance is 0.5 degrees of visual angle. That means the object can move
up to 0.5 degrees of visual angle from the location which was found by the where system and still be

processed by the what system.

The basic assumption behind the vision module is that the chunks placed into the visual buffer as a
result of an attention operation are episodic representations of the objects in the visual scene. Thus, a
chunk with the value "3" represents a memory of the character "3" available via the eyes, not the
semantic THREE used in arithmetic—a declarative retrieval would be necessary to make that
mapping. Note also that there is no "top-down" influence on the creation of these chunks; top-down
effects are assumed to be a result of the system’s processing of these basic visual chunks, not
anything that’s done by the vision module. (See Pylyshyn, 1999 for a clear argument about why it
should work this way.)

Re-encoding

Once a location has been attended to, if the visual world changes at that location, the module will
automatically update the chunk in the visual buffer. The where system will be busy while it re-
encodes the new object (or lack of one) at the currently attended location. This behavior is sometimes
undesirable because visual attention cannot be shifted to a new location while it is busy re-encoding a
change at the current location which may make a response to new stimuli slower than desired. If this
is a problem, it is possible for the model to un-allocate visual attention after it has processed the
visual chunk. The clear request to the visual buffer can be used to make the vision module “stop
attending” to the visual scene, and then it will no longer re-encode items until a new attention shift is

performed.

Scene change

The vision module can detect when there is a significant change to the visual display. When there is

a change to the visicon the module computes the proportion of the items which have changed. If that

321

ACT-R7 11-Jul-17 ACT-R Reference Manual

value is greater-than or equal to a threshold (set with the :scene-change-threshold parameter) then the
module will signal that there has been a scene change. That signal will only last for a short time

(controlled with the :visual-onset-span parameter), and is made available to the model through the

scene-change query of the visual buffer.
This is the calculation which computes the proportion of items which have changed:

+
Change = d*n
o+n

o: The number of features in the scene prior to the update
d : The number of features which have been deleted from the original scene
n: The number of features which are newly added to the scene by the update

Note: if both 0 and n are 0 then the change value will also be 0.

Tracking

The vision module has a rudimentary ability to track moving objects. The basic pattern is to attend
the object, then issue a request to start tracking. While the module is tracking an object the chunks
representing that item in the visual-location and visual buffers will be updated as the object moves,
and the where system will remain busy. Tracking will continue until a new request is made of the

what system, which could be a clear request to stop attending everything.

Parameters

:auto-attend

This parameter controls whether or not a visual-location request results in an automatically generated
request to also move attention to the location which is found. This is designed as a modeling shortcut
to allow one to skip productions which make attention shift requests when they will always follow a
visual-location request in the model. It does not affect the timing of the model because there is a
50ms delay before the visual request is sent to compensate for the skipped production’s firing time.

It is off by default (nil) but setting it to t will enable that functionality.

:delete-visicon-chunks

322

ACT-R7 11-Jul-17 ACT-R Reference Manual

This parameter controls what happens to chunks which the vision module creates internally for the
visicon (they are copies of the chunks returned by the device) when they are no longer needed i.e. not
still elements of the visicon after an update occurs. The default value is t which means that those
chunks are deleted and the names uninterned through the purge-chunk command. Setting this
parameter to nil will prevent those chunks from being deleted. Most models should leave this
parameter at the default value, but if one is working to extend or modify the operation of the vision

module itself it may be necessary to disable this functionality.
:optimize-visual

This parameter controls how text is processed with the default devices. If it is set to t (the default
value), then each word in text items will be parsed into one feature for the visicon (how words are
determined is described with the add-word-characters command) . If it is set to nil, then each letter is

parsed into multiple features.

There are several options for what features will result from carving up the letters; there is no
universally agreed-upon way to do this. The default option is to carve the letters into features
consisting of a LED-type representation of the characters of the text. Different feature sets are also
available, including Gibson's (1968) set and Briggs & Hochevar's (1975) set. See the set-char-

feature-set command for details on changing the feature set used when :optimize-visual in set to nil.

:overstuff-visual-location

This parameter controls whether the module can “stuff” a new chunk into the buffer when there is
already a previously stuffed chunk in the buffer. The default value is nil which means that it will not
overwrite a previously stuffed chunk, but if it is set to t then it will overwrite a chunk which was

stuffed into the visual-location buffer with a new one.

:save-visicon-history

This parameter is not technically in the vision module, but in a module called perceptual-history.
However, since its purpose is to store information from the vision module it is included here instead
of a separate section. If this parameter is set to t then all of the visicon information as displayed by

print-visicon will be recorded each time it changes. The show-visicon-history command can be used

to view that recorded information. The default value is nil.

323

ACT-R7 11-Jul-17 ACT-R Reference Manual

:scene-change-threshold

This parameter controls the smallest proportion of change in the visicon which will result in signaling

that the scene has changed. It must be set to a number in the range [0.0 — 1.0] and defaults to .25.

:test-feats

This parameter controls how items in the visicon are compared on successive calls to proc-display to
determine which items are the same between the two calls for purposes of maintaining the finsts,
tracking, and scene change information. If it is set to nil then the only test performed is whether the
same chunk names are used. If it is set to t then the items are also compared across all of their

features (slot values). The default value is t.

Setting it to nil can allow for a significant performance improvement in proc-display. However, there
are only certain circumstances where setting it to nil is safe i.e. if it is set to nil in other circumstances
it may result in incorrect operation of the module. One safe situation is if all proc-display calls also
specify “:clear t”. In that case the screen is always considered as all new items and there is no need
to perform the checks between the old and new visicon items. The other situation is if the device’s
build-vis-locs-for method(s) always return the same chunks for the visicon items (chunks with the
same names). For the included devices the virtual windows meet that criteria, but the Lisp specific
devices do not. So, this parameter should only be set to nil if proc-display is only called with “clear”
screens, the model only uses the virtual windows without modifying the object features explicitly, or

if a custom device is installed which satisfies the “same chunk name” constraint on visual items.

:tracking-clear

This parameter controls how the module reacts when an object being tracked is no longer found in the
visicon. If it is set to t then the module will clear the currently attended location when it stops
tracking which will leave the visual buffer empty if it was holding the tracked object chunk. If it is
set to nil then the currently attended location will be the last tracked location of the object and the re-

encoding process will take place if the visual buffer is empty.

:unstuff-visaul-location

This parameter lets the modeler specify whether the vision module removes the chunks which it
“stuffs” into the visual-location buffer. The default value is t which means that if a stuffed chunk is

still in the visual-location buffer and has not be modified after the :visual-onset-span time has passed

324

ACT-R7 11-Jul-17 ACT-R Reference Manual

that chunk will be erased from the buffer by the vision module. If it is set to a number then it works

similar to the setting of t except that the value of this parameter specifies the time in seconds after
which the erasing occurs instead of the :visual-onset-span parameter. If it is set to nil then the

module will not automatically remove a chunk which has been stuffed into the visual-location.

:visual-attention-latency

This parameter specifies how long a visual attention shift will take in seconds. The default value is .
085.

:visual-finst-span

This parameter controls how long a finst marker will remain on a feature. It is measured in seconds
and default to 3.0.

:visual-movement-tolerance

This parameter controls how far an object can move and still being considered the same object by the
vision module without being explicitly tracked. It is measured in degrees of visual angle and defaults
to 0.5.

:visual-num-finsts

This parameter controls how many finsts are available to the vision module. It can be set to any

positive number and defaults to 4.
:visual-onset-span

This parameter specifies how long an item recently added to the visicon will be marked as new and
also for how long a scene change notice will be available. It is measured in seconds, and the default

value is 0.5.

Visual-location buffer

The visual-location buffer is used to access the where system of the vision module as described

above. In addition to taking requests to find locations, the vision module will also place chunks into

325

ACT-R7 11-Jul-17 ACT-R Reference Manual

the visual-location buffer automatically without a model request (a process referred to as “buffer
stuffing”). Whenever there is an update to the visual scene (which is indicated to the model by

calling proc-display), if the visual-location buffer is empty or the :overstuff-visual-location parameter

is set to t and a previously “stuffed” chunk is in the visual-location buffer, a location chunk of some
visual feature may be placed into the visual-location buffer. The feature which gets “stuffed” into the
buffer is chosen based on preferences which can be set either by the modeler using the set-visloc-

default command or directly by the model with a set-visloc-default request. The default preference is

for the left-most unattended item. If the :unstuff-visual-location parameter is not nil then the module

will also automatically remove a stuffed chunk from the buffer if it is there past the indicated delay

time.

Activation spread parameter: :visual-location-activation
Default value: 0.0

Queries
‘State busy’ will always be nil.
‘State free’ will always be t.

‘State error’ will be t if the last visual-location request failed to find a matching location and it will be
nil in all other situations. Once it becomes t it will remain t until a new visual-location request is

made or a clear request is made of the visual buffer.

The visual-location buffer has an additional query that allows one to check the attended status of the

location represented by the chunk currently in the visual-location buffer.

‘Attended t’ will be t if there is a chunk in the visual-location buffer and that location currently has a

finst marker on it. Otherwise it will be nil.

‘Attended nil’ will be t if there is a chunk in the visual-location buffer and that location does not

currently have a finst marker on it. Otherwise it will be nil.

‘Attended new’ will be t if there is a chunk in the visual-location buffer, that location does not
currently have a finst marker, and that feature was added to the model’s visicon within the :visual-

onset-span. Otherwise it will be nil.

326

ACT-R7 11-Jul-17 ACT-R Reference Manual

Requests

Find location

{isa location-chunk-type}

{{modifier} valid-slot [value | variable]}*
{:nearest nearest-spec}

{:attended [t | nil | new]}

{:center [vis-loc | vis-obj]}

location-chunk-type ::= a symbol which names a chunk-type used for visual location features

modifier :=[=|-|>|<|>=|<=]

valid-slot ::= the name of a slot which is valid for the location-chunk-type if provided or any chunk
otherwise

value ::= any Lisp value, but the symbols lowest, highest and current have special meanings.

variable ::= a Lisp symbol which starts with the character &

nearest-spec ::= [vis-loc | current | current-x | current-y | current-distance | clockwise |

counterclockwise |
vis-loc ::= a chunk which represents a visual location
vis-obj ::= a chunk which represents a visual object

A find-location request to the visual-location buffer is an attempt to find an item in the visicon. All of
the items in the visicon are compared against the specification provided in the request and if there is
an item which matches that specification a chunk describing that item is placed into the visual-
location buffer. The specification given describes the properties which the item must have in order to

match. If a property is not specified then its value is not considered for the matching.

Any of the slots may be specified using any of the modifiers (-, <, >, <=, or >=) in much the same

way one specifies a retrieval request. Each of the slots may be specified any number of times. In

addition, there are some special tests which one can use that will be described below. All of the
constraints specified will be used to find a location in the visicon to be placed into the visual-location
buffer. If there is no location in the visicon which satisfies all of the constraints then the visual-

location buffer will indicate an error state and set the visual-location buffer’s failure flag.

When the slot being tested holds a number it is also possible to use the slot modifiers <, <=, >, and
>= along with specifying the value. If the value being tested or the value specified is not a number,

then those tests will result in warnings and are not considered in the matching.

327

ACT-R7 11-Jul-17 ACT-R Reference Manual

You can use the values lowest and highest in the specification of any slot which has a numeric value.
Of the features which match the other constraints the one with the numerically lowest or highest
value for that slot will then be the one found. There is one note about using lowest and highest when
more than one slot is specified in that way. First, all of the non-relative values are used to determine
the set of items to be tested for relative values. Then the relative tests are performed one at a time in

the order provided to reduce the matching set.

It is also possible to use the special value current in a slot of the request. That means the value of
the slot must be the same as the value for the location of the currently attended object (the one
attention was last shifted to with a move-attention request to the visual buffer). If the model does not
have a currently attended object (it has not yet attended to anything or has cleared its attention) then

the tests with a value of current are ignored.

An additional component of the find location requests is the ability to use variables to compare the
particular values within a feature to each other in the same way that the LHS tests of a production use
variables to match chunks. If a value for a slot in a find location request starts with the character &
then it is considered to be a variable in the request. The request variables can be combined with the

modifiers and any of the other values allowed to be used in the requests.

The :nearest request parameter can be used to find the items closest to the currently attended location
in some dimension, or closest to some other location. If there are constraints other than :nearest
specified then they are all tested first. The nearest of the locations that matches all of the other
constraints is the one that will be placed into the buffer. There are several options available for using
the :nearest request parameter. To find the location of the object nearest to the currently attended
location (computed as the straight line distance based on the screen-x, screen-y, and distance values
in the chunk) we can again use the value current. Alternatively, one can specify any location chunk
for the nearest test, and the location of the object nearest to that location will be the one returned. It
is also possible to find the locations of objects nearest to the current object along a particular axis by
specifying current-x, current-y, or current-distance. Finally, one can request locations which are
nearest in angular distance relative to an arbitrary center point using either clockwise or
counterclockwise as the nearest specification. The center point used for the calculation is the
location specified using the :center request parameter (or the location of the object if a visual object is
provided as the :center). If no :center is specified in the request then the most recent center specified
by the set-visual-center-point command is used, or the default center point of 0,0 is used if set-visual-

center-point has not been called.

328

ACT-R7 11-Jul-17 ACT-R Reference Manual

If the :attended request parameter is specified, that is used as a test of the finsts: :attended t means
that the item is currently marked with a finst, :attended nil means that it is not, and :attended new

means that it is not currently marked and it has recently been added to the visicon (within the time

specified by the :visual-onset-span parameter).

If there is more than one item which is found as a match, then the one which has been added to the
visicon most recently will be the one chosen, and if there is more than one with the same recent onset

time, then a random one of those will be chosen.

This request takes no time to return the resulting chunk and will show up with the following events
when successful:

0.050 VISION Find-location
0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION LOC1

When no location in the visicon matches the request a failure will be indicated in the trace with a

find-loc-failure event:

0.755 VISION FIND-LOC-FAILURE

When the :auto-attend parameter is set to t a move attention request will follow all successful find
location requests. The move-attention event will occur 50ms after the find-location event and the
vision module will be busy during the entire time from the find-location request until the attention

shift is completed:

0.050 VISION Find-location

0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0
0.050 VISION automatically attending VISUAL-LOCATION1-0

0.100 VISION Move-attention VISUAL-LOCATION1-0

0.185 VISION Encoding-complete VISUAL-LOCATION1-0 NIL

A fnd-location request completes immediately upon being made.

Set-visloc-default

{isa set-visloc-default-type}
set-visloc-default t

{type vis-loc-type}

{{modifier} valid-slot [value | variable]}*
{:nearest nearest-spec}

{:attended [t | nil | new]}

329

ACT-R7 11-Jul-17 ACT-R Reference Manual
{:center [vis-loc | vis-obj]}

set-visloc-default-type ::= a symbol which names a chunk-type used for setting default visual location
feature information (typically a subtype of some visual location type with
the added slot set-visloc-default)

vis-loc-type ::= a symbol which names a chunk-type used for visual location features

modifier ;= [=|-|>|<|>=]|<=]

valid-slot ::= the name of a slot which is valid for the set-visloc-default-type if provided or any chunk

otherwise

value ::= any Lisp value, but the symbols lowest, highest and current have special meanings.

variable ::= a Lisp symbol which starts with the character &

nearest-spec ::= [vis-loc | current | current-x | current-y | current-distance | clockwise |

counterclockwise |
vis-loc ::= a chunk which has represents a visual location
vis-obj ::= a chunk which represents a visual object

A set-visloc-default request allows the model to change the constraints that are used when
determining which (if any) chunk from the visicon will be stuffed into the visual-location buffer

when the screen is updated. It works the same as the set-visloc-default command described below.

The slot values provided can be specified in the same way that they can for a find location request
with two differences. The first is that this request requires the slot set-visloc-default be specified with
a value of t which is what distinguishes it from a normal find location request. The other is that a slot
named type may be specified once to indicate a chunk-type to use when constructing the specification
to be tested e.g. this request:
+visual-location>

set-visloc-default t

type block-locations
color red

would result in this test being used to find possible locations to be stuffed into the buffer:

isa block-locations
color red

This request does not directly place a chunk into the visual-location buffer. It works essentially as a
delayed request — for each future screen change this specification will be used to determine if a chunk
should be placed into the visual-location buffer. However, it does initiate an immediate check of the
visicon using the new specification which could result in a chunk being placed into the buffer at the

time of the request.

It will generate an event in the trace which looks like this:

330

ACT-R7 11-Jul-17 ACT-R Reference Manual
0.850 VISION Set-visloc-default

If a chunk is stuffed into the buffer either immediately due to this request or upon a future screen

change the trace showing that setting of the chunk in the buffer will indicate that it was unrequested:

0.850 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATIONO-0 REQUESTED NIL

A set-visloc-default request completes immediately upon being made.

Visual buffer

The visual buffer is used to access the what system of the vision module as described above. It takes
requests to attend to locations, track features, or to stop attending to items, and it will hold a chunk

representing a visual object in response to requests.

Activation spread parameter: :visual-activation
Default value: 0.0

Queries

‘State busy’ will be t between the time any visual request is started and the time it completes. It will

also be t between when an unrequested re-encoding starts and it completes. It will be nil otherwise.

‘State free’ will be nil between the time any visual request is started and the time it completes. It will

also be nil between when an unrequested re-encoding starts and it completes. It will be t otherwise.

‘State error’ will be t if the last visual request failed or nil otherwise. It will not change from t to nil
until a successful request is completed -- any of the available visual requests will reset the error state

to nil if completed.

‘Scene-change t’ will be t if there has been a detected scene change which has not been explicitly

cleared within the past :visual-onset-span seconds. Otherwise it will be nil.

‘Scene-change nil” will be t if there has not been a detected scene change within the past :visual-

onset-span seconds or such a scene change has been explicitly cleared. Otherwise it will be nil.

331

ACT-R7 11-Jul-17 ACT-R Reference Manual

‘Scene-change-value value’ will be t if value is a number and the last scene change had a proportion
of change which is greater than or equal to value. Otherwise it will be nil. This query is intended
primarily as a debugging aid so that a modeler can see the last change value via the buffer-status
command, but there may be circumstances where it would be useful to test that directly within a

model.

The visual buffer can be used to query the internal states of the vision module, but this is generally
not needed since there is no benefit to doing so since the requests cannot be “pipelined” by checking

for particular subsystems being free.
‘Preparation busy’ will be t during the execution of a clear request and it will be nil otherwise.
‘Preparation free’ will be nil during the execution of a clear request and it will be t otherwise.

‘Processor busy’ will be t between the time a move-attention request is started and the time it

completes and it will be nil otherwise.

‘Processor free’ will be nil between the time a move-attention request is started and the time it

completes and it will be t otherwise.

‘Execution busy’ will be t between the time of a move-attention or start-tracking request and its

completion as well as during an unreqgeusted re-encoding. It will be nil otherwise.

‘Execution free’ will be nil between the time of a move-attention or start-tracking request and its

completion as well as during an unreqeusted re-encoding. It will be t otherwise.

‘Last-command command’ The query will be t if command is a symbol which is the name of the last
request received by the vision module (through either the visual-location or visual buffer) or the
symbol none, otherwise it will be nil. The visual-location requests are named find-location and set-
visloc-default, and the visual requests are named move-attention, start-tracking, clear-scene-change,
and assign-finst. If there has not been a request, or a clear request has occurred then the last

command will be recorded as the symbol none.
Requests
move-attention

cmd move-attention

332

ACT-R7 11-Jul-17 ACT-R Reference Manual

screen-pos location
{scale [phrase | word]}

The move-attention request moves the vision module’s attention to the item at the location given,
which must be a chunk specifying a visual location (it must have the slots screen-x and screen-y). If
there is an item at that location, then a chunk which represents that item is placed into the visual

buffer after the attention shift time passes. If there is no item there, then the buffer is left empty and

the error state of the visual buffer is set. The scale value affects how the default devices text items
are parsed. If :optimize-visual is set to t (the default), then the basic unit is words (a sequence of
adjacent letters of the same type as described in add-word-characters), but specifying a scale of
phrase will have the module attend to an entire phrase as a single item (where a phrase is defined as
all words on the same line). If :optimize-visual is nil, then the default attention shift is to the letter
which contains the sub-letter feature which is attended, but the module can be told to look for words,

or phrases using the scale.

This results in the following events being displayed in the trace showing the move-attention event
with the location to which attention was shifted and the scale used (shown as NIL here because no

scale was specified in that request), the encoding-complete occurring after the :visual-attention-

latency time passes (in this case the default .085 seconds) also showing the location and scale from

the request, and then the buffer being set to the chunk that encodes the visual information:

0.100 VISION Move-attention LOC1-0 NIL
0.185 VISION Encoding-complete LOC1-0 NIL
0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT1

If no item is found, then the same first two events will be shown, but there will be no setting of a

chunk in the buffer and instead an event will show that no object was found:

0.185 VISION No visual-object found

and the state error query will report t and the visual buffer’s failure flag will be set.

There may also be maintenance events generated which have no trace output that have an action of
unlock-device when the move-attention request comes from a production. That is to allow the visual

scene to be processed after the request has been received — see the proc-display command.

If a move-attention request is received while the module is currently handling another request, then a

warning is printed and the current request is ignored:

333

ACT-R7 11-Jul-17 ACT-R Reference Manual

#|Warning: Attention shift requested at 0.8 while one was already in progress. |#

The timing of the encoding-complete event for this request uses the randomize-time command. So, if

the :randomize-time parameter is set to non-nil the timing on that event will be randomized

accordingly.

A move-attention request is completed when the encoding-complete event happens if the request was
valid, or completed immediately if the request could not be processed because of invalid information

or because there was already a move-attention request ongoing.

start-tracking

cmd start-tracking

The start-tracking request will make the vision module continue to “track” an item in the visicon as it
moves and/or changes over time until the tracking is terminated. If there is an item currently attended
by the vision module, then the start-tracking request will keep the vision module’s attention focused
on that item. Both the visual-location and visual buffers will be updated with changes to that item
and if the buffers are empty new chunks will be placed into them representing any changes. The
execution state will be busy while the model is tracking. This will show up in the trace as a start-
tracking event and there will be subsequent set-buffer-chunk and mod-buffer chunk events to update
the visual-location and visual buffers as necessary (note that the setting is marked as requested nil

because the chunks are not a direct result of the request):

0.185 VISION Start-tracking

0.185 VISION SET-BUFFER-CHUNK VISUAL-LOCATION LOC3 REQUESTED NIL
0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT1 REQUESTED NIL

0.700 VISION MOD-BUFFER-CHUNK VISUAL-LOCATION

0.700 VISION MOD-BUFFER-CHUNK VISUAL

1.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION LOC11 REQUESTED NIL
1.000 VISION SET-BUFFER-CHUNK VISUAL TEXT5 REQUESTED NIL

If a request to start-tracking is made when there is no currently attended item a warning will be

displayed and the module will not become busy:

#|Warning: Request to track object but nothing is currently being attended. |[#

There is one minor issue which may be important in the model when using tracking. For the visual-

location buffer to be updated it must either be empty when the start-tracking request is made, it must

334

ACT-R7 11-Jul-17 ACT-R Reference Manual

contain the visual-location chunk which was used when the object was first attended, or it must
contain the chunk which matches the screen-pos slot of the chunk in the visual buffer. However,
buffer stuffing may place a different chunk into that buffer between the attention shift and the starting
of tracking. Thus, if one wants to make sure that both buffers will be updated with tracking there
should also be a -visual-location> action in the production which makes the start-tracking request or
an =visual-location> action to keep the current chunk (assuming the current chunk matches the object

to be tracked).

If the tracked object no longer appears in the visicon then the module will stop updating the buffers.
If the :tracking-clear parameter is set to t then the module will not attempt to re-encode a new visual
object, but if :tracking-clear is set to nil then the re-encoding will occur at the last location of the

object being tracked.
A start-tracking request is completed immediately upon receipt by the vision module.

clear

[cmd clear | clear t]

A clear request can be used to make the vision module stop attending to any currently attended object
which will stop the re-encoding from occurring until a new item is attended. A clear request will also
stop the tracking of an item, clear the error flags if set for either of the vision module’s buffers, and
clear the change scene notice if one is set. A clear request will make the preparation state busy for
50ms.

Here are the events which will show for a clear request.

1.455 VISION CLEAR

1.505 VISION CHANGE-STATE LAST NONE PREP FREE

Note, that after the clear request is done the last-command recorded by the module will be none and

not clear — the clear effectively clears the history of its own request as well.

When the clear event occurs the request is considered complete, and any other requests which may

have been pending for the module will also be considered complete.

clear-scene-change

cmd clear-scene-change

335

ACT-R7 11-Jul-17 ACT-R Reference Manual

A clear-scene-change request can be used to clear any pending scene change notice from the module.
It will not affect any other operation of the module. A clear-scene-change request will take no time

and does not make any of the module’s stages busy.

Here is the event which will show in the trace for a clear-scene-change request.

0.485 VISION CLEAR-SCENE-CHANGE

A clear-scene-change request is completed immediately upon receipt by the vision module.
assign-finst

cmd assign-finst
[object obj | location loc]

The assign-finst request can be used to explicitly tag a visual item as having been attended with a
finst. The item can be specified using one of the chunks previously returned by the vision module
through either buffer. If it is an object chunk returned through the visual buffer then it must be
specified using the object slot, and if it is a location chunk from the visual-location buffer it must be
specified using the location slot. It takes no time to process the request and the module will not be
marked as busy. An event like this will be shown in the trace indicating which slot was used to

assign the finst:

0.100 VISION ASSIGN-FINST #<VISION-MODULE> OBJECT NIL LOCATION VISUAL-LOCATIONO-0-0

If the chunk provided represents an item in the current visicon then that item will have a finst marker
placed on it in the same way as if it had been explicitly attended. If the item does not represent a

feature in the visicon then a warning is printed and no action is performed:

#|Warning: X does not name an object or feature in the current visicon. No finst created. |
#
This request does not affect the status of any of the module’s queries other than last-command.

An assign-finst request is completed immediately upon receipt by the vision module.

clear-all-finsts

cmd clear-all-finsts

336

ACT-R7 11-Jul-17 ACT-R Reference Manual

A clear-all-finsts request can be used to clear all of the finst markers from the vision module. It will

take no time and does not make any of the module’s stages busy.

Here is the event which will show in the trace for a clear-all-finsts request.

0.485 VISION CLEAR-ALL-FINSTS

A clear-all-finsts request is completed immediately upon receipt by the vision module.

Chunks & Chunk-types

The vision module creates several chunk-types which may be used in creating visual location and

visual object chunks as well as chunk-types for the requests which it accepts:

(chunk-type visual-location screen-x screen-y distance kind color value height

(chunk-type

(chunk-type

(chunk-type
(chunk-type
(chunk-type
(chunk-type
(chunk-type
(chunk-type
(chunk-type

(chunk-type

(chunk-type
(chunk-type

(chunk-type
(chunk-type
(chunk-type
(chunk-type

width size)
(char-primitive (:include visual-location)) (kind char-primitive)
left right)
(set-visloc-default (:include visual-location)) (set-visloc-default t) type)

visual-object screen-pos value status color height width)

(text (:include visual-object)) (text t))

(empty-space (:include visual-object)) (empty-space t))

(oval (:include visual-object)) (oval t))

(cursor (:include visual-object)) (cursor t))

(1line (:include visual-object)) (line t) endl-x endl-y end2-x end2-y)
(phrase! (:include visual-object)) (phrase! t) objects words colors)

color color)

vision-command cmd)
(move-attention (:include vision-command)) (cmd move-attention)

screen-pos scale)
(start-tracking (:include vision-command)) (cmd start-tracking))
(assign-finst (:include vision-command)) (cmd assign-finst) object location)
(clear-scene-change (:include vision-command)) (cmd clear-scene-change))
(clear-all-finsts (:include vision-command)) (cmd clear-all-finsts))

It creates many chunks which are used in the specification of requests, in the creation of visual
objects, and for the names of the requests if they are not already chunks. All of these chunks are

marked as immutable if created by the vision module:

(define-chunks

(lowest name lowest)

(highest name highest)

(current name current)

(current-x name current-x)
(current-distance name current-distance)
(current-y name current-y)

(clockwise name clockwise)
(counterclockwise name counterclockwise)

337

ACT-R7 11-Jul-17 ACT-R Reference Manual

(external name external)

(internal name internal)

(text name text)

(box name box)

(line name line)

(oval name oval)

(char-primitive name char-primitive)

(new name new)

(find-location name find-location)
(move-attention isa move-attention)
(assign-finst isa assign-finst)
(start-tracking isa start-tracking)
(clear-scene-change isa clear-scene-change)
(set-visloc-default isa set-visloc-default)
(clear-all-finsts isa clear-all-finsts))

The module also defines a set of chunks to name colors if chunks with those names do not exist, and

it marks the chunks it creates as immutable:

(define-chunks
(black color black)
(red color red)
(blue color blue)
(green color green)
(white color white)
(magenta color magenta)
(yellow color yellow)
(cyan color cyan)
(dark-green color dark-green)
(dark-red color dark-red)
(dark-cyan color dark-cyan)
(dark-blue color dark-blue)
(dark-magenta color dark-magenta)
(dark-yellow color dark-yellow)
(light-gray color light-gray)
(dark-gray color dark-gray)
(gray color gray)
(pink color pink)
(light-blue color light-blue)
(purple color purple)
(brown color brown))

Commands

proc-display

Syntax:

proc-display {:clear clear} -> [visicon-count | nil]
Arguments and Values:

clear ::= a generalized boolean which specifies whether to consider the visual scene to be all new
visicon-count ::= the number of features which are in the visicon

Description:

338

ACT-R7 11-Jul-17 ACT-R Reference Manual

The proc-display command is used to have the vision module of the current model in the current
meta-process process the visual display of the currently installed device. This will create a new set of
features for the visicon of the current model. By default or if the clear parameter is provided as nil,
then objects which are considered to be the same as those which were in the previous visicon will
retain their finsts. If the clear parameter is provided as non-nil, then all objects are considered to be
new items. Calling proc-display will trigger the where system to possibly stuff the visual-location
buffer. It also triggers the what system to re-encode the currently attended item. It returns the
number of items in the visicon unless there is no current model, no current meta-process, or no device

installed for the current model in which case a warning is printed and nil is retuned.

If proc-display is called between the selection and firing of a production which is going to make a
request to the visual buffer the vision module will delay the processing of the display until after the
request has been received. If multiple calls to proc-display for a model are made at the same
simulation time a model warning will be printed and the processing of all calls after the first one at
that time will be postponed until the model has been run to provide an opportunity for the changes

from that first call to be handled.

Because the vision module does not account for perception times one can adjust the timing of when
the proc-display function is called relative to when visual changes occur in the device to account for
that if needed. That is done in the sperling model of unit 3 in the tutorial to account for persistence of
vision — the screen blanks after 50ms, but the proc-display is postponed for approximately a second to

allow the vision module to continue attending to items.

Examples:

\%

(proc-display)

\

(proc-display :clear t)
3

1> (proc-display)
1

2E> (proc-display)

#|Warning: Proc-display should not be called more than once at the same ACT-R time. [#
NIL

E> (proc-display)

#|Warning: Cannot process display--no device is installed. |#

NIL

E> (proc-display)

339

ACT-R7 11-Jul-17 ACT-R Reference Manual

#|Warning: proc-display called with no current model. |[#
NIL

E> (proc-display)

#|Warning: proc-display called with no current meta-process. |#
NIL

print-visicon

Syntax:

print-visicon -> nil

Description:

The print-visicon command will print out a description of the features which are currently in the
visicon of the current model in the current meta-process. Each feature will be printed on a separate
line showing several of the default parameters used for visual features: loc is the x,y position of the
item, att is whether or not it has been attended, kind is a general description of what is there, value is
a specific value which the visual object will have, color is the color of the item, and id is the name of
the chunk which represents the location of that feature. It will always return nil. If there is no current

model or current meta-process it will print out a warning instead of the visicon.

Examples:

> (print-visicon)

Loc Att Kind Value Color ID

(25 26) NEW TEXT "a" BLACK VISUAL-LOCATIONO
(35 46) NEW TEXT "b" BLACK VISUAL-LOCATION1
(45 26) NEW TEXT "p" BLACK VISUAL-LOCATION2
NIL

E> (print-visicon)
#|Warning: get-module called with no current model. |#
NIL

E> (print-visicon)
#|Warning: get-module called with no current meta-process. |#
NIL

remove-visual-finsts
Syntax:

remove-visual-finsts {:set-new set-new} {:restuff restuff} -> nil

Arguments and Values:

340

ACT-R7 11-Jul-17 ACT-R Reference Manual

set-new ::= a generalized boolean which specifies whether to set all visual features to the new state
restuff ::= a generalized boolean which specifies whether to check for stuffing of the visual-location
buffer after removing the finsts

Description:

The remove-visual-finsts command is used to have the vision module of the current model in the
current meta-process remove all of the finsts from the current set of visual features in the visicon. If
the set-new keyword parameter is true then the features will all be marked as attended new and have
their onset times changed to the current time. If the set-new keyword parameter is nil (the default
value if not provided) then the features will be either attended new or attended nil based on their
original onset relative to the current time. Those which have not been on the display longer than the

module’s visual-onset-span time will be marked as attended new and the others will be marked as

attended nil. If the restuff keyword parameter is true, then it will trigger the where system to possibly
stuff the visual-location buffer after resetting the finsts. If the restuff keyword parameter is nil (the
default value if not provided) then it will not attempt to stuff the visual-location buffer. The command

always returns nil. If there is no current model or no current meta-process a warning is printed.

This command is not recommended as a plausible mechanism of the vision module, but may be
useful in creating some experimental situations which would require reprocessing the whole display

otherwise.

Examples:

1> (print-visicon)

Loc Att Kind Value Color ID
V -
(25 46) T TEXT "v!" BLACK VISUAL-LOCATIONO
NIL
2> (remove-visual-finsts)
NIL
3> (print-visicon)
Loc Att Kind Value Color ID
(25 46) NIL TEXT y" BLACK VISUAL-LOCATIONO
NIL
4> (remove-visual-finsts :set-new t)
NIL
5> (print-visicon)
Loc Att Kind Value Color ID
(25 46) NEW TEXT "v!" BLACK VISUAL-LOCATIONO
NIL

341

ACT-R7 11-Jul-17 ACT-R Reference Manual

6> (remove-visual-finsts :restuff t)

NIL

7> (run .001)
1.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATIONO-O0 REQUESTED NIL
1.000 PROCEDURAL CONFLICT-RESOLUTION
1.000 ------ Stopped because time limit reached

0.001

6

NIL

E> (remove-visual-finsts)

#|Warning: get-module called with no current model. |#

#|Warning: No vision module found. Cannot remove the visual finsts. |[#
NIL

E> (remove-visual-finsts)

#|Warning: get-module called with no current meta-process. |#
#|Warning: No vision module found. Cannot remove the visual finsts. |#
NIL

set-visloc-default

Syntax:

set-visloc-default {isa chunk-type} {{modifier} slot [value | variable]}*

{:nearest nearest-loc} {:attended [t | nil | new]} {:center [loc | obj]} -> [t | nil]
set-visloc-default-fct ({isa chunk-type} {{modifier} slot [value | variable]}*

{:nearest nearest-loc} {:attended [t | nil | new]} {:center [loc | obj]})-> [t| nil]

chunk-type ::= a symbol which names a chunk-type

modifier :=[=|-|> | <|>=|<=]

slot ::= the name of a slot which must be valid for chunk-type if it is specified

value ::= any Lisp value

variable ::= a Lisp symbol which starts with the character &

nearest-loc ::= [vis-loc | current | current-x | current-y | current-distance | clockwise |
counterclockwise |

vis-loc ::= a chunk which represents a visual location

Description:

Set-visloc-default is used to set the conditions which are tested in the visicon to determine if a chunk

should be stuffed into the visual-location buffer for the current model of the current meta-process.

The specification is the same as for a find location request to the visual-location buffer. That
specification is used to create a chunk-spec which is used with find-matching-chunks to test the
visicon chunks at each screen update using “&” as the variable-char and then filtering the results
based on any of the request parameters and/or relative slot tests (lowest or highest) which are

included in the spec.

342

ACT-R7 11-Jul-17 ACT-R Reference Manual

The default specification is given by:

(set-visloc-default screen-x lowest :attended new)

The command returns t if a new specification is set. If the specification is not valid then no change is
made and nil is returned. If there is no current model or current meta-process, then it prints a warning

and returns nil.

Examples:

\

(set-visloc-default isa visual-location screen-x lowest :attended new)
T

> (set-visloc-default-fct '(isa visual-location color blue :nearest current))
T

E> (set-visloc-default isa bad-type)

#|Warning: Element after isa in define-chunk-spec isn't a chunk-type. (ISA BAD-TYPE) |#
#|Warning: Invalid chunk specification. Default not changed. |#

NIL

E> (set-visloc-default)

#|Warning: No current model. Cannot set visloc defaults. |#

NIL

E> (set-visloc-default)

#|Warning: No current meta-process. Cannot set visloc defaults. |#
NIL

add-word-characters

Syntax:
add-word-characters char* -> [word-char-list | nil]
Arguments and Values:

char ::= a character to be added to those used in the construction of words
word-char-list ::= a list of all the characters which have been specified with add-word-characters

Description:

The add-word-characters command can be used to adjust how the text items are divided into words
by the default text processing mechanisms of the provided devices for the current model in the
current meta-process. By default, text is broken into words as collections of sequential characters
which are either all alphanumericp or all not alphanumericp. Thus, this text string “one--word”

3« 3

would be broken into three separate visual items “one”, >~ and “word”. This command allows one

343

ACT-R7 11-Jul-17 ACT-R Reference Manual

to specify additional characters to group with the alphanumerics. Thus, if #\- were added using this

command that string would instead be processed as a single word for the visual representation.

Add-word-characters takes any number of characters to add to those grouped with the alphanumerics.
If there is a current model it returns a list of all the additional characters which have been added using
this command for that model. If there is no current model or current meta-process then a warning is

printed and nil is returned.

Any characters added with this command are removed when the model is reset. Thus, this command

should probably be included in the model’s definition.

Examples:

These examples assume that the model has a currently installed device that was created with the
open-exp-window command which is described in the AGI manual along with the add-text-to-exp-
window command used here to create text items.

1> (add-text-to-exp-window :text "split_on--dash+only")

#<STATIC-TEXT-VDI @ #x2539c3fa>

2> (proc-display)

7
3> (print-visicon)

Loc Att Kind Value Color ID

(19 6) NEW TEXT "split" BLACK VISUAL-LOCATIONO
(40 6) NEW TEXT " BLACK VISUAL-LOCATION1
(50 6) NEW TEXT "on" BLACK VISUAL-LOCATION2
(64 6) NEW TEXT ro-n BLACK VISUAL-LOCATION3
(85 6) NEW TEXT "dash" BLACK VISUAL-LOCATION4
(103 6) NEW TEXT hyn BLACK VISUAL-LOCATIONS
(120 6) NEW TEXT "only" BLACK VISUAL-LOCATIONG6
NIL

1> (add-word-characters #_ #\+)
(#\+ #_)

2> (add-text-to-exp-window :text "split_on--dash+only")
#<STATIC-TEXT-VDI @ #x2541925a>

3> (proc-display)

3

4> (print-visicon)

Loc Att Kind Value Color ID

(29 6) NEW TEXT "split_on" BLACK VISUAL-LOCATIONO
(64 6) NEW TEXT "o BLACK VISUAL-LOCATION1
(1603 6) NEW TEXT "dash+only" BLACK VISUAL-LOCATIONZ2
NIL

E> (add-word-characters)

344

ACT-R7 11-Jul-17 ACT-R Reference Manual

#|Warning: get-module called with no current model. |#

#|Warning: No vision module available could not add new word characters. |[#
NIL

E> (add-word-characters)

#|Warning: get-module called with no current meta-process. |#

#|Warning: No vision module available could not add new word characters. |#
NIL

set-visual-center-point

Syntax:
set-visual-center-point x y -> [loc | nil]
Arguments and Values:

x ::= a number indicating the x coordinate of the screen center
y ::= a number indicating the y coordinate of the screen center
loc ::= a vector of the current center point in the order x y

Description:

The set-visual-center-point command is used to specify the center point used for the current model in
the current meta-process when determining the nearest location for a request that specifies :nearest as
clockwise or counterclockwise and which does not also specify a center with the :center request
parameter. The x and y values provided must be numbers and they specify the coordinates of the
center to use. The default center point is 0,0 if this command is not used. If x and y are both
numbers then that point is used as the center and a vector of those values is returned. If either x or y
is not a number or if there is no current model or current meta-process then a warning is printed and

nil is returned.

Examples:

> (set-visual-center-point 100 75)
#(100 75)

E> (set-visual-center-point 10 :not-a-number)
#|Warning: X and Y values must be numbers for set-visual-center-point. |#
NIL

E> (set-visual-center-point 10 40)

#|Warning: get-module called with no current model. |#

#|Warning: No vision module available so cannot set center point. |#
NIL

E> (set-visual-center-point 100 100)

#|Warning: get-module called with no current meta-process. |#
#|Warning: No vision module available so cannot set center point. |#

345

ACT-R7 11-Jul-17 ACT-R Reference Manual

NIL

set-char-feature-set

Syntax:

set-char-feature-set name -> [t | nil]
Arguments and Values:

name ::= the name of a character feature set
Description:

The set-char-feature-set command is used to change the set of sub-letter features which are added to
the visicon for text items when the :optimize-visual parameter is set to nil. It requires one parameter
which is the name given to a feature set that has been created. There are four different feature sets
available. Others can be constructed, but there is no documentation on that at this time (see the
“framework/vision-categorization.lisp” file for the code that creates the current ones). The four
feature sets which exist are named :RM-ORIG, :RM-CLEAN, :GIBSON, and :BRIGGS-HOCEVAR.
Those are based on the features from McClelland & Rummelhart (1981), a slightly modified version
of those features, Gibson (1969), and Briggs & Hocevar (1975) respectively. The default set is the
:RM-ORIG set.

If the name provided does not name an existing feature set or there is no current model or current

meta-process then a warning is printed and nil is returned.

Examples:

> (set-char-feature-set :rm-orig)
T

E> (set-char-feature-set :bad)
#|Warning: Feature set :BAD is unknown |#
NIL

E> (set-char-feature-set :rm-orig)
#|Warning: No current model. Cannot set a char feature set. |#
NIL

E> (set-char-feature-set :rm-orig)

#|Warning: No current meta-process. Cannot set a char feature set. |#
NIL

346

ACT-R7 11-Jul-17 ACT-R Reference Manual
show-visicon-history

Syntax:

show-visicon-history {start {end}} -> [history | nil]

Arguments and Values:

start ::= a time in seconds or nil

end ::= a time in seconds which is greater-than or equal to the start time (if specified) or nil
history ::= ((time visicon-string*)*)

time ::= a time in milliseconds

visicon-string ::= a string containing the output from print-visicon at the time time

Description:

The show-visicon-history command can be used to see saved output from print-visicon for the current

model in the current meta-process if the :save-visicon-history parameter is set to t. It will print

output to the command trace showing each time at which there was a different visicon output and the
visicon at that time between the times indicated by start and end (inclusive). If the start time is
omitted or nil then a start time of 0 will be used, and if the end time is omitted or nil then the end
time will effectively be the current model time. It will return a list of times (in milliseconds) and
strings containing the visicon output at those times if the parameters provided are valid and there is a

current model and current meta-process.

If either the start or end time is not a number or nil or there is no current model or current meta-

process then a warning is printed and nil is returned.

Examples:

These examples are based on running the sperling model from unit 3 of the ACT-R tutorial using this
call (do-sperling-trial .15) and with the :save-visicon-history parameter enabled.

> (show-visicon-history)

Time: 0.0

Loc Att Kind Value Color ID

(81 112) NEW TEXT y" BLACK VISUAL-LOCATIONO
(81 162) NEW TEXT "c" BLACK VISUAL-LOCATION4
(81 212) NEW TEXT w" BLACK VISUAL-LOCATIONS8
(131 112) NEW TEXT "n" BLACK VISUAL-LOCATION1
(131 162) NEW TEXT "r" BLACK VISUAL-LOCATIONS
(131 212) NEW TEXT "y BLACK VISUAL-LOCATION9
(181 112) NEW TEXT "t BLACK VISUAL-LOCATION2
(181 162) NEW TEXT y" BLACK VISUAL-LOCATIONG6
(181 212) NEW TEXT "g" BLACK VISUAL-LOCATION10
(231 112) NEW TEXT "z" BLACK VISUAL-LOCATION3

347

ACT-R 7

(231 162) NEW
(231 212) NEW
Time: 0.135
Loc Att
(81 112) NEW
(81162) T

(81 212) NEW
(131 112) NEW
(131 162) NEW
(131 212) NEW
(181 112) NEW
(181 162) NEW
(181 212) NEW
(231 112) NEW
(231 162) NEW
(231 212) NEW
Time: 0.32

Loc Att
(81 112) NEW
(81162) T

(81 212) NEW
(131 112) T
(131 162) NEW
(131 212) NEW
(181 112) NEW
(181 162) NEW
(181 212) NEW
(231 112) NEW
(231 162) NEW
(231 212) NEW
Time: 0.505
Loc Att
(81 112) NIL
(81162) T
(81212) T
(131 112) T
(131 162) NIL
(131 212) NIL
(181 112) NIL
(181 162) NIL
(181 212) NIL
(231 112) NIL
(231 162) NIL
(231 212) NIL
Time: 0.69

Loc Att
(81112) T

(81162) T
(81212) T
(131 112) T
(131 162) NIL
(131 212) NIL
(181 112) NIL
(181 162) NIL
(181 212) NIL
(231 112) NIL
(231 162) NIL

11-Jul-17

ACT-R Reference Manual

VISUAL-LOCATION7

VISUAL-LOCATION11

VISUAL-LOCATIONG
VISUAL-LOCATION4
VISUAL-LOCATIONS
VISUAL-LOCATION1
VISUAL-LOCATIONS
VISUAL-LOCATION9
VISUAL-LOCATION2
VISUAL-LOCATIONG

VISUAL-LOCATION1O

VISUAL-LOCATION3
VISUAL-LOCATION7

VISUAL-LOCATION11

VISUAL-LOCATIONG
VISUAL-LOCATION4
VISUAL-LOCATIONS
VISUAL-LOCATION1
VISUAL-LOCATIONS
VISUAL-LOCATION9S
VISUAL-LOCATION2
VISUAL-LOCATIONG

VISUAL-LOCATION10O

VISUAL-LOCATION3
VISUAL-LOCATION7

VISUAL-LOCATION11

VISUAL-LOCATIONO
VISUAL-LOCATION4
VISUAL-LOCATIONS
VISUAL-LOCATION1
VISUAL-LOCATIONS
VISUAL-LOCATION9
VISUAL-LOCATION2
VISUAL-LOCATIONG

VISUAL-LOCATION10O

VISUAL-LOCATION3
VISUAL-LOCATION7

VISUAL-LOCATION11

VISUAL-LOCATIONG
VISUAL-LOCATION4
VISUAL-LOCATIONS
VISUAL-LOCATION1
VISUAL-LOCATIONS
VISUAL-LOCATION9
VISUAL-LOCATION2
VISUAL-LOCATIONG

VISUAL-LOCATION1O

VISUAL-LOCATION3
VISUAL-LOCATION7

348

NIL

Att

NIL

NIL
NIL
NIL
NIL
NIL
NIL
NIL

TEXT

> (show-visicon-history .9)

Time: 0.975
Loc

> (show-visicon-history nil .1)

Time: 0.0
Loc

Att

Att
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW

11-Jul-17

\llv\ll
\IIC\II
\llw\ll
\lln\ll
\llr\ll
\llj\ll
\llt\ll
\lly\ll
\llg\ll
\IIZ\II
\ll k\ll
\llf\ll

ACT-R Reference Manual

VISUAL-LOCATION11

VISUAL-LOCATIONG
VISUAL-LOCATION4
VISUAL-LOCATIONS
VISUAL-LOCATION1
VISUAL-LOCATIONS
VISUAL-LOCATION9
VISUAL-LOCATIONZ
VISUAL-LOCATIONG6
VISUAL-LOCATION10O
VISUAL-LOCATION3
VISUAL-LOCATION7
VISUAL-LOCATION11

VISUAL-LOCATIONG
VISUAL-LOCATION4
VISUAL-LOCATIONS
VISUAL-LOCATION1
VISUAL-LOCATIONS
VISUAL-LOCATION9S
VISUAL-LOCATION2
VISUAL-LOCATIONG
VISUAL-LOCATION1O
VISUAL-LOCATION3
VISUAL-LOCATION7
VISUAL-LOCATION11

VISUAL-LOCATIONG
VISUAL-LOCATION4
VISUAL-LOCATIONS
VISUAL-LOCATION1
VISUAL-LOCATIONS
VISUAL-LOCATION9
VISUAL-LOCATIONZ2
VISUAL-LOCATIONG
VISUAL-LOCATION1O
VISUAL-LOCATION3
VISUAL-LOCATION7
VISUAL-LOCATION11

349

ACT-R7 11-Jul-17 ACT-R Reference Manual

((® "Loc Att Kind Value Color ID

(81 112) NEW TEXT ASAANS BLACK VISUAL-LOCATIONO

(81 162) NEW TEXT \"c\" BLACK VISUAL-LOCATION4

(81 212) NEW TEXT \"w\" BLACK VISUAL-LOCATIONS

(131 112) NEW TEXT \'"n\" BLACK VISUAL-LOCATION1

(131 162) NEW TEXT \"r\" BLACK VISUAL-LOCATIONS

(131 212) NEW TEXT \"F\" BLACK VISUAL-LOCATION9

(181 112) NEW TEXT A"\ BLACK VISUAL-LOCATIONZ2

(181 162) NEW TEXT \"y\" BLACK VISUAL-LOCATIONG

(181 212) NEW TEXT \"g\" BLACK VISUAL-LOCATION1O
(231 112) NEW TEXT \"z\" BLACK VISUAL-LOCATION3

(231 162) NEW TEXT \"K\" BLACK VISUAL-LOCATION7

(231 212) NEW TEXT AR AN BLACK VISUAL-LOCATION11
n

)

E> (show-visicon-history t)
#|Warning: Start value for show-visicon-history must be a number or nil, but given T |#
NIL

E> (show-visicon-history nil t)
#|Warning: End value for show-visicon-history must be a number or nil, but given T |[#
NIL

E> (show-visicon-history 1 0)

#|Warning: End value for show-visicon-history must be greater-than or equal to the start
value, but given start=1.0 and end=0.0 |#

NIL

E> (show-visicon-history)

#|Warning: get-module called with no current model. |#

#|Warning: No perceptual history module available cannot show visicon history |#
NIL

E> (show-visicon-history)

#|Warning: get-module called with no current meta-process. |#

#|Warning: No perceptual history module available cannot show visicon history |#
NIL

350

ACT-R7 11-Jul-17 ACT-R Reference Manual

Audio module

The audio module provides a model with rudimentary audio perception abilities and is very similar to
the vision module. It has both a what and where system and two buffers which accept requests. It has
a store of audio events called the audicon, and those are transformed into chunks which the model

can use by requesting an attention shift to a particular event.

Auditory world

Unlike the visual portion of the device, there is no support for hearing real sounds generated by the
computer. Instead, all of the sounds for the model must be simulated using the commands described
later. There are commands for generating pure tones, spoken digits, spoken words, and a general
command which allows one to specify all of the components of the sound directly. In addition, the

model will also hear its own speech which it generates using the speech module.

Sound events occur over time and are not immediately available for processing in the audicon. There
are several attributes to a sound event which describe it and control the timing of the model’s access

to the sound.

Here are the attributes of a sound event:

* Onset: The time at which the sound began.
* Duration: The amount of time that the sound is present.
* Content delay: The amount of time between a sound’s onset and when the content of the

sound is accessible to the auditory system. No information can be extracted before this time

has passed.

* Recode time: The amount of time (after the content is available) that it takes for the auditory
system to construct a representation of the sound.

* Content: The value which will be made available to the model once the sound is attended.

* Kind: The basic description of the type of sound. The given commands create kinds of tone,
digit, word, and speech.

* Location: An indication of where the sound originated. The built-in options are external for

sounds generated by the simulated sound commands, self for words the model speaks, and

351

ACT-R7 11-Jul-17 ACT-R Reference Manual

internal for words the model subvocalizes. Other values may be provided when creating

custom sounds with the commands described below.

The sound events are only available in the audicon for a short time before they decay. After a sound

event ends and the decay time elapses, the sound event is removed from the audicon.

The Where System

The where system takes requests through the aural-location buffer. A request to the aural-location
buffer specifies a set of constraints to test against the detectable events in the audicon. If there is a
sound event in the audicon that meets those constraints, then a chunk representing that sound event is
placed in the aural-location buffer. If multiple objects meet the constraints, then one will be picked
randomly. If there are no sound events which meet the constraints, then the buffer will be left empty
and the state error query to the aural-location buffer will be true and the buffer’s failure flag will be

set.

Like the vision and declarative modules, the audio module maintains a set of finsts which mark items
that have been attended, and the attended status of an audio event can be a constraint in a request to
the aural-location buffer. However, unlike those other modules, because the audicon is already time
limited (audio events decay on their own) there is no limit on the number or duration of the auditory

finsts.

The What System

The what system takes requests through the aural buffer. Its primary use is to attend to audio events
which have been found using the where system. A request to the what system requires a chunk
representing an audio event. In response to the request, the what system will shift aural attention to

that audio event, process the sound, and place a chunk representing that sound into the aural buffer.

Like the vision module, the assumption behind the aural module is that the sound chunks placed into
the aural buffer as a result of an attention operation are episodic representations of the sounds. Thus,
a sound chunk with content "3" represents a memory of hearing the number "3" being spoken, not the

semantic THREE used in arithmetic—a declarative retrieval would be necessary to make that

mapping.

Parameters

352

ACT-R7 11-Jul-17 ACT-R Reference Manual

:digit-detect-delay

This parameter controls the content delay time given to digit sounds created with the new-digit-sound

command. It is measured in seconds. It can be set to any non-negative value and the default is 0.3.
:digit-duration

This parameter controls the duration given to digit sounds created with the new-digit-sound command

in seconds. It can be set to any non-negative number and the default is 0.6.
:digit-recode-delay

This parameter controls the recode time given to digit sounds created with the new-digit-sound

command in seconds. It is also the time that it takes for a failure to encode to occur when an audio

event is no longer available. It can be set to any non-negative number and the default is 0.5.

:overstuff-aural-location

This parameter controls whether the module can “stuff” a new chunk into the buffer when there is
already a previously stuffed chunk in the buffer. The default value is nil which means that it will not
overwrite a previously stuffed chunk when new information becomes available, but if it is set to t
then it may overwrite a chunk which was stuffed into the aural-location buffer when new auditory

information is available.

:save-audicon-history

This parameter is not technically in the audio module, but in a module called perceptual-history.
However, since its purpose is to store information from the audio module it is included here instead
of a separate section. If this parameter is set to t then all of the audicon information as displayed by

print-audicon will be recorded each time it changes. The show-audicon-history command can be

used to view that recorded information. The default value is nil.

:sound-decay-time

This parameter controls how long sound events will stay in the audicon measured in seconds. It can

be set to any non-negative number and the default is 3.0.

353

ACT-R7 11-Jul-17 ACT-R Reference Manual

:tone-detect-delay

This parameter controls the content delay time given to tone sounds created with the new-tone-sound

command in seconds. It can be set to any non-negative number and the default is 0.05.

:tone-recode-delay

This parameter controls the recode time given to tone sounds created with the new-tone-sound

command in seconds. It can be set to any non-negative number and the default is 0.285.

:unstuff-aural-location

This parameter lets the modeler specify whether the audio module removes the chunks which it
“stuffs” into the aural-location buffer. The default value is nil which means that the module will not
automatically remove a chunk which has been stuffed into the aural-location buffer. If it is set to t
then if a stuffed chunk is still in the aural-location buffer and has not be modified after the :sound-

decay-time time has passed that chunk will be erased from the buffer by the audio module. If it is set

to a number then it works similar to the setting of t except that the value of this parameter specifies

the time in seconds after which the erasing occurs instead of the :sound-decay-time parameter.

Aural-location buffer

The aural-location buffer is used to access the where system of the audio module as described above.
In addition to taking requests to find sounds, the audio module will also place chunks into the aural-
location buffer automatically without a model request (a process referred to as “buffer stuffing”).
Whenever there is a new sound available to the model, if the aural-location buffer is empty or the

:overstuff-aural-location parameter is t and there is a previously stuffed chunk in the aural-location

buffer, an audio-event chunk of a feature from the audicon may be placed into the aural-location
buffer. The feature which gets “stuffed” into the buffer is chosen based on preferences which can be

set by the modeler using the set-audloc-default command or by the model with a set-audloc-default

request. The default preference is for any unattended item in the audicon to be stuffed into the buffer.

If the :unstuff-aural-location parameter is not nil then the module will also automatically remove a

stuffed chunk from the buffer if it is there past the indicated delay time.

354

ACT-R7 11-Jul-17 ACT-R Reference Manual
Activation spread parameter: :aural-location-activation

Default value: 0.0

Queries

‘State busy’ will always be nil.
‘State free’ will always be t.

‘State error’ will be t if the last aural-location request failed to find a matching audio-event and it will
be nil in all other situations. Once it becomes t it will remain t until a new aural-location request is

made or the explicit clear request is made of the aural buffer.

The aural-location buffer has two additional queries that allows one to check the attended and

finished status of the audio-event represented by the chunk in the aural-location buffer.

‘Attended t’ will be t if there is a chunk in the aural-location buffer and that audio-event currently has

a finst marker on it. Otherwise it will be nil.

‘Attended nil’ will be t if there is a chunk in the aural-location buffer and that location does not

currently have a finst marker on it. Otherwise it will be nil.

‘Finished t” will be t if there is a chunk in the aural-location buffer and that audio-event has finished

playing (its offset time has been reached or passed). Otherwise it will be nil.

‘Finished nil’ will be t if there is a chunk in the aural-location buffer and that audio-event has not

finished playing (its offset time has not been reached yet). Otherwise it will be nil.

Requests

find-sound

{isa audio-event-chunk-type}

{{modifier} valid-slot [value | variable]}*
{:attended [t | nil]}

{:finished [t | nil]}

audio-event-chunk-type ::= a symbol which names a chunk-type used for audio event features
modifier ;= [=|-|>|<|>=]|<=]

355

ACT-R7 11-Jul-17 ACT-R Reference Manual

valid-slot ::= the name of a slot which is valid for the audio-event-chunk-type if provided or any
chunk otherwise

value ::= any Lisp value, but the symbols lowest and highest have special meanings

variable ::= a Lisp symbol which starts with the character &

A find-sound request is an attempt to find an audio event in the audicon. All of the items in the
audicon are compared against the values provided in the request and if there is an item which is
detectable and matches that specification an audio-event chunk describing that item is placed into the
aural-location buffer. The specification given describes the properties which the item must have in

order to match. If a property is not specified then its value is not considered for the matching

Any of the slots may be specified using any of the modifiers (-, <, >, <=, or >=) in much the same

way one specifies a retrieval request. Each of the slots may be specified any number of times. In
addition, there are some special tests which one can use that will be described below. All of the
constraints specified will be used to find an audio event in the audicon to be placed into the aural-
location buffer. If there is no audio event in the audicon which satisfies all of the constraints then the

aural-location buffer will indicate an error state and its failure flag will be set.

When the slot being tested holds a number it is also possible to use the slot modifiers <, <=, >, and
>= along with specifying the value. If the value being tested or the value specified is not a number,

then those tests will result in warnings and are not considered in the matching.

You can use the values lowest and highest in the specification of any slot which has a numeric value.
Of the features which match the other constraints the one with the numerically lowest or highest
value for that slot will then be the one found. There is one note about using lowest and highest when
more than one slot is specified in that way. First, all of the non-relative values are used to determine
the set of items to be tested for relative values. Then the relative tests are performed one at a time in

the order provided to reduce the matching set.

An additional component of the find-sound requests is the ability to use variables to compare the
particular values within a feature to each other in the same way that the LHS tests of a production use
variables to match chunks. If a value for a slot in a find-sound request starts with the character &
then it is considered to be a variable in the request. The request variables can be combined with the

modifiers and any of the other values allowed to be used in the requests.

356

ACT-R7 11-Jul-17 ACT-R Reference Manual

If the attended value is specified, that is used as a test with the auditory finsts: :attended t means that
the item is currently marked with a finst (has been attended) and :attended nil means that it is not

marked (has not been attended).

The finished value can be used to test whether or not the sound is still 'playing' or not. That is
determined by the offset time of the sound. If the current time is greater-than or equal to the offset
time of the sound then it is considered to be finished, but if the current time is less-than the offset

time of the sound it is not finished.

If there is more than one item which is found as a match then a random one of those will be chosen.
This request takes no time to return the resulting chunk and will show up with the following events
when successful:

0.100 AUDIO FIND-SOUND
0.100 AUDIO SET-BUFFER-CHUNK AURAL-LOCATION AUDIO-EVENTO

If no sound event which matches the request is found then the buffer will be left empty and the state
error query of the buffer will be true. That will result in a find-sound-failure event showing up in the

trace:

0.050 AUDIO find-sound-failure

The aural-location buffer may be set to a chunk even without a request being made. If the aural-
location buffer is empty and a new sound event becomes detectable an audio-event chunk which
represents it may be stuffed into the aural-location buffer. This is the event which will be generated in

the trace indicating a chunk being set without being requested:
0.060 AUDIO SET-BUFFER-CHUNK AURAL-LOCATION AUDIO-EVENT® REQUESTED NIL

If a sound event which is not yet finished is placed into the aural-location buffer it will not have
values for its offset or duration slots since the sound is still playing. If that audio event is attended
with a request to the aural buffer and remains in the aural-location buffer until the sound is completed
then those slots will be updated to contain the appropriate values with an event that will look like this

in the trace:

0.500 AUDIO AUDIO-EVENT-ENDED AUDIO-EVENTO

A find-sound request completes immediately when the request is made.

357

ACT-R7 11-Jul-17 ACT-R Reference Manual

set-audloc-default

{isa audio-default-chunk-type}
set-audloc-default t

{{modifier} valid-slot [value | variable]}*
{:attended [t | nil]}
{:finished [t | nil]}

audio-default-chunk-type ::= a symbol which names a chunk-type used for audio event features

modifier ::=[=|-|>|<|>=|<=]

valid-slot ::= the name of a slot which is valid for the audio-default-chunk-type if provided or any
chunk otherwise

value ::= any Lisp value, but the symbols lowest and highest have special meanings

variable ::= a Lisp symbol which starts with the character &

A set-audloc-default request allows the model to change the constraints that are used when
determining which (if any) chunk from the audicon will be stuffed into the aural-location buffer when

an audio event becomes detectable. It works the same as the set-audloc-default command.

The slot values provided can be specified in the same way that they can for a find-sound request with
the only difference bein that this request requires the slot set-audloc-default be specified with a value

of t which is what distinguishes it from a normal find-sound request.

This request does not directly place a chunk into the aural-location buffer. It works essentially as a
delayed request — each time a new audio event becomes detectable this specification will be used to

determine if a chunk should be placed into the aural-location buffer.

It will generate an event in the trace which looks like this:

0.050 AUDIO SET-AUDLOC-DEFAULT

A set-audloc-default request completes immediately when the request is made.

Aural buffer

The aural buffer is used to access the what system of the audio module as described above. It takes
requests to attend to audio events. It attends to the event and creates a chunk to encode it which is

placed into the aural buffer.

Activation spread parameter: :aural-activation

358

ACT-R7 11-Jul-17 ACT-R Reference Manual

Default value: 0.0

Queries

‘State busy’ will be t between the time any aural request is started and the time it completes. It will be

nil otherwise.

‘State free’ will be nil between the time any aural request is started and the time it completes. It will

be t otherwise.

‘State error’ will be t if the last aural request failed or nil otherwise. It will not change from t to nil

until a successful request is completed — either an attend sound or a clear request will reset it.

The aural buffer can be used to query the internal states of the audio module, but this is generally not
needed since there is no benefit to doing so since the requests cannot be “pipelined” by checking for

particular subsystems being free.

‘Preparation busy’ will be t during the time of a clear request and its completion and during an attend
sound request if the sound is not yet available (the detect time has not passed since its entry into the

audicon) and it will be nil otherwise.

‘Preparation free’ will be nil during the time of a clear request and its completion and during an
attend sound request if the sound is not yet available (the detect time has not passed since its entry

into the audicon) and it will be t otherwise.
‘Processor busy’ will always be nil.
‘Processor free’ will always be t.

‘Execution busy’ will be t between the start and end of an attend sound request. It will be nil

otherwise.

‘Execution free’ will be nil between the start and end of an attend sound request. It will be t

otherwise.

‘Last-command command’ command should be a symbol which corresponds to one of the audio

module’s requests for either buffer, or the symbol none. The query will be t if that is the name of the

359

ACT-R7 11-Jul-17 ACT-R Reference Manual

last request received by the audio module otherwise it will be nil. Note that it is requests to the
module in general which are tested, not just requests to the aural buffer. The possible command
value are find-sound, set-audloc-default, sound, or none (representing that there has been no requests

made since the module was last cleared).

Requests

clear

[cmd clear | clear t]

A clear request can be sent to clear the error flags of both of the audio module’s buffers. A clear
request will make the preparation state busy for 50ms. These events will show in the trace for a clear

request to the aural buffer:

0.485 AUDIO CLEAR

0.535 AUDIO CHANGE-STATE LAST NONE PREP FREE

Note, that after the clear request completes the last-command recorded by the module will be none

and not clear — a clear request effectively clears the history of its own request as well.

When the clear event occurs the request is considered complete, and any other requests which may

have been pending for the module will also be considered complete.

attend sound

event audio-event
audio-event ::= a chunk which represents an audio event usually provided by the aural-location buffer

An attend sound request moves the audio module’s attention to the sound event provided. If that
sound event is still available in the audicon then it will be marked as attended and a chunk which
represents that sound will be placed into the aural buffer after the sound event’s recode time has
passed. The resulting chunk will be constructed from the featues of the audio event and any

additional features specifed when it was created. Its kind slot will have the same value as the audio-

360

ACT-R7 11-Jul-17 ACT-R Reference Manual

event that was used to attend to it. Its content slot will be set with the details of the sound. Its event
slot will be the name of the original sound event chunk from the audicon, and any additional slots

specified when creating the sound action will also be set.

This results in the following events being displayed in the trace showing the attention shift event with
the audio-event listed, the audio-encoding-complete occurring after the sound event’s recode time
passes (in this case the default .285 seconds for a tone sound), and then the buffer being set to the

sound chunk that encodes the visual information:

0.150 AUDIO ATTEND-SOUND AUDIO-EVENTO-1
0.435 AUDIO AUDIO-ENCODING-COMPLETE #<TONE-SOUND-EVT>
0.435 AUDIO SET-BUFFER-CHUNK AURAL TONEO

If there is no corresponding sound available in the audicon, then the buffer is left empty, the error
state is set to t, and the buffer’s failure flag is set. This event will show that no object was found after
taking the amount of time required to recode a digit (the time to fail is always the same regardless of

the type of sound the event represents):

0.585 AUDIO ATTEND-SOUND AUDIO-EVENTO-1

1.085 AUDIO attend-sound-failure

If a sound request is received while the module is currently handling another sound request, then a

warning is printed and the newer request is ignored:

#|Warning: Auditory attention shift requested at 0.6 while one was already in progress. |#

The timing of the audio-encoding-complete and attend-sound-failure events for this request use the

randomize-time command. Thus, if the :randomize-time parameter is set to non-nil the timing on

those events will be randomized accordingly.

An attend sound request is completed when the audio-encoding-complete event happens if the request
was valid, when the attend-sound-failure event happens if the request did not succeed, or immediately
if the request could not be processed because of invalid information or because there was already a

request ongoing.

Chunks & Chunk-types

361

ACT-R7 11-Jul-17 ACT-R Reference Manual

The audio module creates chunk-types which are used for creating and requesting audio event and

attended sound chunks, and also a type for making a set-audloc-default request:

(chunk-type audio-event onset offset duration pitch kind location id)
(chunk-type (set-audloc-default (:include audio-event)) (set-audloc-default t))
(chunk-type sound kind content event)

It creates several chunks which are used in the specification of requests, in the creation of audio
events, the creation of sound chunks, and for the names of the requests if they are not already chunks.

All of these chunks are marked as immutable if created by the audio module:

(define-chunks
(digit isa chunk)
(speech isa chunk)
(tone isa chunk)
(word isa chunk)
(highest isa chunk)
(lowest isa chunk)
(sound isa chunk)
(find-sound isa chunk)
(set-audloc-default isa chunk)
(internal isa chunk)
(external isa chunk)
(self isa chunk)
(high isa chunk)
(middle isa chunk)
(low isa chunk))

Commands

new-digit-sound/new-tone-sound/new-other-sound/new-word-sound

Syntax:

new-digit-sound digit {[onset | onset time-in-ms]} -> [t | nil]
new-tone-sound freq duration {Jonset | onset time-in-ms]} -> [t | nil]
new-word-sound word {[onset | onset location | onset location time-in-ms]} -> [t | nil]
new-other-sound content duration delay recode {[onset | onset location | onset location kind |
onset location kind time-in-ms |
onset location kind time-in-ms feature*|} -> [t | nil]

Arguments and Values:

digit ::= a number representing the digit to be heard

onset ::= a number which is the time at which the sound will begin in seconds or milliseconds

time-in-ms ::= a generalized boolean which indicates the units used for the onset

freq ::= a number representing the frequency of the tone to be heard

duration ::= a number which is the amount of time between the onset and when the sound stops in
seconds

word ::= a string which is the word (or words) which will be heard

362

ACT-R7 11-Jul-17 ACT-R Reference Manual

location ::= any Lisp value which will be the audio event’s location slot value

content ::= any Lisp value which is the content for the attended sound chunk

delay ::= a number which is the content delay for the sound in seconds

recode ::= a number which is the recode time for the sound in seconds

kind ::= a symbol which will be used as the value for the kind slot of both chunks
feature ::= ([:evt | :sound | :both] slot value)

slot ::= a symbol which will be used as a slot name in the chunk indicated by the feature
value::= a symbol which will be used as the value for the corresponding slot

Description:

The new-*-sound commands are used to create new sound events for the audicon of the current
model in the current meta-process. A newly created audio event will be placed into the audicon at the
onset time of the sound event with the other properties of that audio event being set based on which
command was used to create it. If the time-in-ms parameter is specified as non-nil then a provided
onset time is measured in milliseconds, and if it is not provided or nil the provided onset time will be

measured in seconds. Here is how those values are set based on the command:

new-digit-sound

Onset: as provided or the current time if not provided

Duration: set using randomize-time on the value of :digit-duration

Content delay: set using randomize-time on the value of :digit-detect-delay
Recode time: the value of :digit-recode-delay

Content: the provided digit

Kind: digit

Location: external

new-tone-sound

Onset: as provided or the current time if not provided

Duration: as provided

Content delay: set set using randomize-time on the value of :tone-detect-delay
Recode time: the value of :tone-recode-delay

Content: the provided frequency

Kind: tone

Location: external

new-word-sound

Onset: as provided or the current time if not provided

Duration: computed using the get-articulation-time command of the speech module
Content delay: set using randomize-time on the value of :digit-detect-delay

Recode time: the maximum between the duration/2 and the duration - .15 seconds
Content: the provided string

Kind: word

363

ACT-R7 11-Jul-17 ACT-R Reference Manual
Location: as provided, or external if not provided
new-other-sound

Onset: as provided or the current time if not provided

Duration: as provided

Content delay: as provided

Recode time: as provided

Content: as provided

Kind: as provided, or speech if not provided

Location: as provided, or external if not provided

Other slots: the event and/or sound chunk will have additional slots set as provided

Each new sound will generate a maintenance event which will not be shown in the trace. It will have
an action of stuff-sound-buffer and no parameters. It will occur at the time the sound event becomes
detectable, and this is where the testing is done to determine whether or not a new sound should be

stuffed into the aural-location buffer.

If a sound is successfully created and added to the audicon of the model then t is returned. If there is
no current model or meta-process or an invalid parameter is provided a warning will be displayed and

nil will be returned.

Examples:

\

(new-tone-sound 400 .75)

\%

(new-tone-sound 400 .5 1000 t)

> (new-digit-sound 6 1.0)

T

> (new-word-sound "Hello" .25 'left)

T

> (new-other-sound 'new-content .5 .2 .15 (mp-time) 'external 'other nil '(:both value t)
'(:evt volume large))

T

E> (new-tone-sound 100 .5 'not-a-time)
#|Warning: Onset must be a number. No new tone sound created. |#
NIL

E> (new-tone-sound 'high .2)
#|Warning: Freq must be a number. No new tone sound created. |#
NIL

E> (new-digit-sound 3)

#|Warning: No current model found. Cannot create a new sound. |#
NIL

364

ACT-R7

11-Jul-17

E> (new-digit-sound 1)

#|Warning: No meta-

NIL

print-audicon

Syntax:

print-audicon -> nil

Description:

process found.

ACT-R Reference Manual

Cannot create a new sound.

| #

The print-audicon command will print out a description of the features which are currently in the

audicon of the current model of the current meta-process. Each feature will be printed on a separate

line showing several of the default characteristics of the sound event. It will always return nil. If

there is no current model or current meta-process then it will print out a warning instead.

Examples:

1> (new-tone-sound
T

2> (new-word-sound
T

3> (print-audicon)

400 .5)

"Hi" 1.0 'external)

Sound event Att Detectable Kind
AUDIO-EVENTO NIL NIL TONE
NIL

4> (run-full-time 1.0)

1.0

6

NIL

5> (print-audicon)

Sound event Att Detectable Kind
AUDIO-EVENTO NIL T TONE
AUDIO-EVENT1 NIL NIL WORD

NIL

E> (print-audicon)

#|wWarning: get-module called with no current model.

#|Warning: No audio module found |#

NIL

E> (print-audicon)

Content

Content

location

EXTERNAL

location

EXTERNAL
EXTERNAL

| #

#|Warning: get-module called with no current meta-process. |#
#|Warning: No audio module found |#

NIL

Sound ID

offset

Sound ID

365

ACT-R7 11-Jul-17 ACT-R Reference Manual

set-audloc-default

Syntax:

set-audloc-default {isa chunk-type} {{modifier} slot [value | variable]}*
{:attended [t | nil]} {:finished [t | nil]}-> [t] nil]

set-audloc-default-fct ({isa chunk-type} {{modifier} slot [value | variable]}*
{:attended [t | nil]} {:finished [t | nil]}) -> [t | nil]

chunk-type ::= a symbol which names a chunk-type

modifier :=[= |-|> | <|>=|<=]

slot ::= the name of a slot which must be valid for chunk-type if it is specified
value ::= any Lisp value

variable ::= a Lisp symbol which starts with the character &

Description:

The set-audloc-default command is used to set the specification used when testing the items in the
audicon to determine if an audio event chunk should be stuffed into the aural-location buffer for the
current model of the current meta-process. The parameters provided are used to create a chunk-spec
that will be tested against the set of chunks in the audicon using find-matching-chunks after it has

been filtered for attended and/or finished items. The default specification is given set with:

(set-audloc-default :attended nil)

The command returns t if a new specification is set. If there is no current model or current meta-
process then it prints a warning and returns nil. If the parameters provided do not properly represent

a valid chunk-spec then no changes are made to the current default spec and nil is returned.

Examples:

> (set-audloc-default isa audio-event onset lowest kind tone)
T

> (set-audloc-default-fct (list '- 'location 'self))
T

E> (set-audloc-default isa sound slot)

#|Warning: Chunks extended with slot SLOT during a chunk-spec definition. |#
#|Warning: Invalid specs in call to define-chunk-spec - not enough arguments |#
#|Warning: Invalid chunk specification. Default audloc not changed. |#

NIL

E> (set-audloc-default :attended t :attended nil)

#|Warning: The :attended and :finished specification for set-audloc-default can only be
specified at most once. [#

#|Warning: Audloc defaults not changed. |#

NIL

366

ACT-R7 11-Jul-17 ACT-R Reference Manual

E> (set-audloc-default)

#|Warning: No current model. Cannot set audloc defaults. |#
NIL

E> (set-audloc-default)

#|Warning: No current meta-process. Cannot set audloc defaults. |[#
NIL

show-audicon-history

Syntax:

show-audicon-history {start {end}} -> [history | nil]

Arguments and Values:

start ::= a time in seconds or nil

end ::= a time in seconds which is greater-than or equal to the start time (if specified) or nil
history ::= ((time audicon-string*)*)

time ::= a time in milliseconds
audicon-string ::= a string containing the output from print-audicon at the time time

Description:

The show-audicon-history command can be used to see saved output from print-audicon for the

current model in the current meta-process if the :save-audicon-history parameter is set to t. It will
print output to the command trace showing each time at which there was a different audicon output
and the audicon at that time between the times indicated by start and end (inclusive). If the start time
is omitted or nil then a start time of 0 will be used, and if the end time is omitted or nil then the end
time will effectively be the current model time. It will return a list of times (in milliseconds) and
strings containing the audicon output at those times if the parameters provided are valid and there is a

current model and current meta-process.

If either the start or end time is not a number or nil or there is no current model or current meta-

process then a warning is printed and nil is returned.

Examples:

These examples are based on running the sperling model from unit 3 of the ACT-R tutorial using this
call (do-sperling-trial .15) and with the :save-audicon-history parameter enabled.

> (show-audicon-history)
Time: 0.0
Sound event Att Detectable Kind Content location onset offset Sound ID

ACT-R7 11-Jul-17 ACT-R Reference Manual

géﬂﬁa 2@2nt Att Detectable Kind Content location onset offset Sound ID
AUDIO-EVENTO NIL T TONE 1000 EXTERNAL 1560 650 TONE®
Time: 0.285

Sound event Att Detectable Kind Content location onset offset Sound ID
AUDIO-EVENTO T T TONE 1000 EXTERNAL 156 650 TONE®
((® "Sound event Att Detectable Kind Content location onset

offset Sound ID

> (show-audicon-history .25)

Time: 0.285

Sound event Att Detectable Kind Content location onset offset Sound ID
AUDIO-EVENTO T T TONE 1000 EXTERNAL 150 650 TONEO
((285 "Sound event Att Detectable Kind Content location onset

offset Sound ID

AUDIO-EVENTO T T TONE 1000 EXTERNAL 150
650 TONEO

"))

> (show-audicon-history 0 .1)

Time: 0.0
Sound event Att Detectable Kind Content location onset offset Sound ID
((® "Sound event Att Detectable Kind Content location onset

offset Sound ID

E> (show-audicon-history t)
#|Warning: Start value for show-audicon-history must be a number or nil, but given T |#
NIL

E> (show-audicon-history 0 t)
#|Warning: End value for show-audicon-history must be a number or nil, but given T |[#
NIL

E> (show-audicon-history 1 0)

#|Warning: End value for show-audicon-history must be greater-than or equal to the start
value, but given start=1.0 and end=0.0 |#

NIL

E> (show-audicon-history)
#|Warning: get-module called with no current model. |#
#|Warning: No perceptual history module available cannot show audicon history |#

E> (show-audicon-history)

#|Warning: get-module called with no current meta-process. |#

#|Warning: No perceptual history module available cannot show audicon history |#
NIL

368

ACT-R 7 11-Jul-17 ACT-R Reference Manual

369

ACT-R7 11-Jul-17 ACT-R Reference Manual

Motor module

The motor module functions as a model’s hands. It is conceptually based on EPIC's Manual Motor
Processor (Kieras & Meyer, 1996) and is quite similar in many respects. It provides a model with the
ability to operate a virtual keyboard and mouse by default, but it is possible to extend the actions and
devices with which the model can interact. It has one buffer through which it accepts requests and it

does not generate any chunks in response.

Physical world

The model’s hands are assumed to be operating a keyboard having this two-dimensional layout:

2 8 9 1011 12 13 14 15 16 17 18 19 20 21 22

1]
O O 3 2 e G O 2 0 2 e 0 2

The mouse has one button and is controlled by the model’s right hand when used (considered to be
located at location (28 2) relative to the keyboard layout shown above). The default devices accept
the input from the model’s virtual keyboard and mouse and pass it along as if it was from a real user
(including moving the actual mouse cursor for some devices). By default, the model’s hands start at
the home row positions — left and right index fingers positions over the F and J keys respectively,
with the other fingers positioned over the correspondingly adjacent keys and the thumbs placed two
rows down and one row “in” from the index fingers. The model’s starting hand positions default to
the same as the corresponding index fingers. Thus, the starting position for the left hand is (4 4) and

for the right hand is (7 4).

Operation

In general, movement requests require specification of a movement type, called a style (which is

specified by the cmd slot of the request) and one or more parameters, such as the hand/finger that is

370

ACT-R7 11-Jul-17 ACT-R Reference Manual

to make the movement. The motor module includes several movement styles based on EPIC's Motor

Processor. They are:

« Punch. This is a simple downstroke followed by an upstroke of a finger, for pressing a key
that is already directly below a given finger.

« Peck. This is a directed movement of a finger to a location followed by a keystroke, all as one
continuous movement.

« Peck-recoil. Same as "peck" above, but the finger moves back to the location at which it
started its movement.

« Ply. Moves a device (e.g. a mouse) to a given location in space.

« Point-hand. Moves the hand to a new location.

There are also higher level actions which are built out of these basic movement styles. For example,
there is a move-cursor style which is translated into a “ply" movement for the right hand, and a press-
key style which translates the key to be pressed into either a "punch" or a "peck-recoil" for the

appropriate hand and finger with the assumption that the hands are starting from the home position.

The motor module does not place any chunks into its buffer in response to requests. The buffer
should always be empty, and it is the state of the module that is most important to the model in this
case. As described above for all the perceptual and motor modules, the motor module has three
internal states: preparation, processor, and execution. When a request is received by the motor
module, it goes through three phases: preparation, initiation, and execution which correspond to those

internal states.

In the preparation phase, it builds a list of "features" which guide the actual movement. The amount
of time that preparation takes depends on the number of features that need to be prepared - the more
that need to be prepared, the longer it takes. The motor module maintains a history of the last set of
features that it prepared. The actual number of features that need to be prepared depends upon two
things: the complexity of the movement to be made and the difference between that movement and
the previous movement. On one end of the scale, the motor module is simply repeating the previous
movement, then all the relevant features will already be prepared and do not require preparation. On
the other end, a request could specify a movement that requires five features (the most for any of the
included styles) which do not overlap with the features in the motor module's history, in which case

all five features would need to be prepared.

Movement features are organized into a hierarchy, with the movement style at the top of the
hierarchy. If the movement style changes, then all of the features required for a movement must be

prepared. If the movement styles are the same but the hand for the movement differs, all features at

371

ACT-R7 11-Jul-17 ACT-R Reference Manual

and below the hand level require preparation. All actions will have a style and a hand, but below that
the features vary by style. If the action requires a finger, then it is the next level in the hierarchy.

Any other features for an action are considered equal and at the bottom of the hierarchy.

When feature preparation is complete, the motor module makes the specified movement. The first 50
ms (by default) of the movement is movement initiation. During this interval, the preparation state
becomes free and the processor and execution states become busy. After initiation ends, the processor
state becomes free. The amount of time that a movement takes to execute depends on the type and
possibly the distance the movement will traverse. Simple movements have a minimum execution
time and more complex movements (such as pointing with the mouse) have a longer execution time

based on Fitts’s Law.

Fitts’s Law
T =b*log,(D/W +0.5)

T := the time of the movement in seconds

b := a parameter dependent on the type of motor action
D := the distance to the target

W := the width of the target

The motor module can only prepare one movement at a time (though it can be preparing features for
one movement while executing another movement). If the motor module is in the process of
preparing a movement and another request is sent, the later request will be ignored and the motor
module is said to be "jammed." When the module is jammed it will output a warning to indicate when

the jamming occurred like this:

#|Warning: Module :MOTOR jammed at time 0.68 |#

The way to avoid jamming, as with all modules, is to test the state of the module before making a
request. Testing that state free is true will avoid jamming the module, but it is possible to issue motor
requests faster than that — because the state will not be free until the previous request has been
completed. Instead, one only needs to test that the preparation state is free to be able to issue a new
request to the motor module. A slightly more conservative approach would be to test the processor

state because it is still busy during the initiation time of the last movement request.

Finally, it is possible to prepare movements in advance without executing them, and then execute

them later. For instance, let's say the model is a subject doing a simple reaction time task: whenever

372

ACT-R7 11-Jul-17 ACT-R Reference Manual

anything appears on the screen, press the key under the right index finger. The time at which
something will appear is unknown, but to minimize the model’s response time, the movement to

press the key could be prepared in advance and then executed as soon as the visual object is detected.

Parameters

:cursor-noise

If this is set to nil (which is the default) then the mouse movements made by the model will be to the
exact pixel location requested. If it is set to t then there will be noise added to the location to which

the cursor is moved.

:default-target-width

This is the effective width, in degrees visual angle, of targets with undefined widths when computing

the Fitts’s law computation. The default value is 1.0.

:incremental-mouse-moves

When set to t, this will update the mouse location approximately every 50 ms when it is in motion.
When set to nil (which is the default value) it will update the mouse location only at the end of each
mouse move. If it is set to a number then that is considered as a time in seconds between the updates
and replaces the time of .05 used when it is set to t. The incremental positions are calculated along

the line between the old and new points using a minimum jerk velocity profile.
:min-fitts-time

The minimum movement time in seconds required to perform an aimed movement (one for which the

Fitts’s law timing is applied). The default value is 0.1.

:motor-burst-time

This is the minimum time required for the execution of any motor module movement in seconds. the

default is .05.

:motor-feature-prep-time

373

ACT-R7 11-Jul-17 ACT-R Reference Manual

The time in seconds that it takes to prepare each movement feature. The default is .05.
:motor-initiation-time

This is the length of the initiation time for motor actions in seconds. The default is .05.
:peck-fitts-coeff

The b coefficient in the Fitts's law equation for the timing of peck style movements. The default is .
075.

Manual Buffer

The motor module does not place any chunks into the manual buffer - it is only used for requests.

Almost all of the timing for the requests to the manual buffer (everything except for a clear request)

are randomized using randomize-time.

Activation spread parameter: :manual-activation
Default value: 0.0
Queries:

‘State busy’ will be t when any of the internal states of the module (listed below) also report as being
busy. Essentially, it will be t while there is any request to the manual buffer that has not yet

completed. It will be nil otherwise.

‘State free’ will be t when all of the internal states of the module (listed below) also report as being
free. Essentially, it will be t only when all requests to the manual buffer have completed. It will be nil

otherwise.
‘State error’ will always be nil.

Unlike the perceptual modules, the internal states of the motor module may be useful to track in a

model because it is possible to send new requests while the module is partially busy. Only the

374

ACT-R7 11-Jul-17 ACT-R Reference Manual

preparation stage of the module needs to be free to avoid jamming in most situations. For each
request that is received the module will progress through three stages as described above: preparation,

initiation, and execution.

‘Preparation busy’ will be t after a request has been received and until it completes the preparation of
the features needed for that request which depends on how many features there are and whether or

not they overlap with the last features prepared. It will be nil otherwise.

‘Preparation free’ will be nil after a request has been received and until it completes the preparation
of the features needed for that request which depends on how many features there are and whether or

not they overlap with the last features prepared. It will be t otherwise.

‘Processor busy’ will be t while preparation is busy and will continue to be t after the features have

been prepared until the additional initiation time (set with the :motor-initiation-time parameter) has

passed. It will be nil otherwise.

‘Processor free’ will be nil while preparation is busy and will continue to be nil after the features

have been prepared until the additional initiation time (set with the :motor-initiation-time parameter)

has passed. It will be t otherwise.

‘Execution busy’ will be t once the preparation of a request’s features has completed and will remain

t until the time necessary to complete the action has passed. It will be nil otherwise.

‘Execution free’ will be nil once the preparation of a request’s features has completed and will

remain nil until the time necessary to complete the action has passed. It will be t otherwise.

‘Last-command command’ command should be a symbol which corresponds to one of the manual
buffer’s requests or the symbol none. The query will be t if that is the name of the last request

received by the manual buffer otherwise it will be nil.

Here is a summary indicating the state transitions for a single movement request assuming that the

module is entirely free at the start of the request:

Preparation state Processor state Execution state When

FREE FREE FREE Before event arrives
BUSY BUSY FREE When event is received
FREE BUSY BUSY After preparation of movement

375

ACT-R7 11-Jul-17 ACT-R Reference Manual

FREE FREE BUSY After initiation movement
FREE FREE FREE When movement is complete
Requests

clear

[cmd clear | clear t]

A clear request can be sent to clear the history of prepared features. A clear request varies from the
other requests in that it will make only make the preparation state busy for 50ms and not the
processor or execution states. These events will show in the trace for a clear request to the manual
buffer:

0.050 MOTOR CLEAR

0.160 MOTOR CHANGE-STATE LAST NONE PREP FREE

Note, that after the clear request completes the last-command recorded by the module will be none

and not clear — the clear has effectively cleared the history of its own request as well.

When the clear event occurs the request is considered complete, and any other requests which may

have been pending for the module will also be considered complete.

punch

cmd punch

hand [left | right]

finger [index | middle | ring | pinkie | thumb |
This request will execute a punch action for the specified finger on the specified hand. This will
result in pressing the key that is directly under that finger (or the mouse button if it is the right index
finger and the hand is currently located on the mouse). The time to execute this action is controlled
by the initiation and burst times set for the module. These are the actions which will be shown in the
trace for a punch action indicating the request being received, the preparation of the features

completing, the initiation time having passed, the actual striking of the key which is under that finger

376

ACT-R7 11-Jul-17 ACT-R Reference Manual

currently (showing the coordinates on the virtual keyboard), and the time to finish the execution of

the action (returning the finger to a position where it is ready to act again):

0.050 MOTOR PUNCH HAND LEFT FINGER INDEX
é:é@@ MOTOR PREPARATION-COMPLETE

é:éSO MOTOR INITIATION-COMPLETE

é:éﬁ@ MOTOR OUTPUT-KEY #(4 4)

é:éSO MOTOR FINISH-MOVEMENT

The punch request is considered complete when the finish-movement event occurs, or immediately

upon request by the module if the parameters are invalid or the module is jammed.

click-mouse
cmd click-mouse

If the model’s right hand is located on the virtual mouse, then this request will result in a punch
action (as described above) by the right index finger pressing the primary mouse button. These are
the events which one will see for such an action showing the progression through the stages of the
motor module and the pressing of the mouse button (which is considered to be located at (28 2)

relative to the virtual keyboard):

0.050 MOTOR CLICK-MOUSE

é:é@@ MOTOR PREPARATION-COMPLETE
é:éSO MOTOR INITIATION-COMPLETE
é:éGO MOTOR OUTPUT-KEY #(28 2)
é:éSO MOTOR FINISH-MOVEMENT

If the model’s right hand is not on the virtual mouse then a warning will be printed and no action

taken:

#|Warning: CLICK-MOUSE requested when hand not at mouse! |#

The click-mouse request is considered complete when the finish-movement event occurs, or
immediately upon request by the module if the parameters are invalid, the hand is not on the mouse,

or the module is jammed.

377

ACT-R7 11-Jul-17 ACT-R Reference Manual

peck

cmd peck

hand [left | right]

finger [index | middle | ring | pinkie | thumb]
r distance

theta direction

This request will result in the model making a peck style movement with the indicated finger and
hand. That finger will be moved the specified distance and direction from where it currently is and
then press the key at that new location. The finger will then remain over that new key until moved
elsewhere. The distance is measured in “keys” on the virtual keyboard which is the distance between
two adjacent keys in the same row or the same column. The direction is an angle measured in radians
with 0 being movement along the x axis to the right and increasing with clockwise rotation. The time
taken to execute this action is controlled by Fitts’s law as described above. These are the events
which one will see for such an action showing the progression through the stages of the motor
module and the pressing of the corresponding key location on the virtual keyboard (in this case

moving one key to the right from the default home location):

0.050 MOTOR PECK HAND LEFT FINGER INDEX R 1 THETA O
C:):éOO MOTOR PREPARATION-COMPLETE

C:):éSO MOTOR INITIATION-COMPLETE

C:):él‘rSO MOTOR OUTPUT-KEY #(5 4)

C:):éOO MOTOR FINISH-MOVEMENT

There are no constraints on how far or in which direction a model’s finger can move relative to the
other fingers. Thus, at this time, the model may be able to make finger movements which would be

impossible for a real person to make and it is up to the modeler to consider such issues.

If the movement takes the model’s finger to an invalid location for a key then it effectively presses a

key with the value nil and a warning will be printed:
#|Warning: Invalid key location pressed #(4 7) |#

The peck request is considered complete when the finish-movement event occurs, or immediately

upon request by the module if the parameters are invalid or the module is jammed.

peck-recoil

378

ACT-R7 11-Jul-17 ACT-R Reference Manual

cmd peck-recoil

hand [left | right]

finger [index | middle | ring | pinkie | thumb]
r distance

theta direction

A peck-recoil is effectively the same as a peck, except that the finger is returned to where it started
after the key has been pressed. The indicated finger on the specified hand is moved the specified
distance and direction from where it currently is and then it presses the key at that new location. The
finger will then return to where it was prior to the peck-recoil request. The distance is measured in
“keys” on the virtual keyboard which is the distance between two adjacent keys in the same row or
the same column. The direction is an angle measured in radians with 0 being movement along the x
axis to the right and increasing with clockwise rotation. The time taken to move the finger is
controlled by Fitts’s law as described above. These are the events which one will see for such an
action showing the progression through the stages of the motor module and the pressing of the
corresponding key location on the virtual keyboard (in this case moving one key up from the default

home location):

0.050 MOTOR PECK-RECOIL HAND LEFT FINGER INDEX R 1 THETA -1.57
é:é@@ MOTOR PREPARATION-COMPLETE

é:éSO MOTOR INITIATION-COMPLETE

6:450 MOTOR OUTPUT-KEY #(4 3)

é:é@@ MOTOR FINISH-MOVEMENT

There are no constraints on how far or in which direction a model’s finger can move relative to the
other fingers. Thus, at this time, the model may be able to make finger movements which would be

impossible for a real person to make and it is up to the modeler to consider such issues.

If the movement takes the model’s finger to an invalid location for a key then it effectively presses a

key with the value nil and a warning will be printed:

#|Warning: Invalid key location pressed #(4 7) |#

The peck-recoil request is considered complete when the finish-movement event occurs, or

immediately upon request by the module if the parameters are invalid or the module is jammed.

379

ACT-R7 11-Jul-17 ACT-R Reference Manual

press-key

cmd press-key

key key
The press-key request is essentially a programming convenience for modeling typing. It assumes that
the model’s hands are in the home position or that the right hand is on the keypad and translates the
specified key into either a punch or a peck-recoil request as needed to press that key. The key can be
specified using either a symbol or string that specifies the name of a key to press. It should be the
single character for the alpha-numeric keys or one of these symbols for the punctuation and special
keys: space, backquote, tab, comma, period (or dot), semicolon, slash, hyphen, quote, return,
backslash, or delete. For the keypad keys, the valid key names are: clear, keypad-=, keypad-/,
keypad-*, keypad-7, keypad-8, keypad-9, keypad-minus, keypad-4, keypad-5, keypad-6, keypad-
plus, keypad-1, keypad-2, keypad-3, keypad-0, keypad-period, and enter.

If the model’s hands are not in the appropriate location for the request (either the home row or the
keypad depending on the key), then the model will strike the wrong key. This request does not
represent an ACT-R theory of typing. An ideal theory of typing would be based on a model learning
how to type - the model would have to look at the keyboard to determine where each key is, then
acquire chunks that encode which keys map to which locations, through practice it would learn
specific productions that handle these, and would also involve learning in the motor system itself.
Until such time as a mechanism like that is implemented, press-key should be able to handle basic

typing actions for modeling a moderately skilled touch typist.

Here are the events which will show in the trace for a press-key request indicating the key that was
specified, the progression through the stages of the action, and indicating the location of the key

which was pressed:

0.050 MOTOR PRESS-KEY COMMA
(:):éOG) MOTOR PREPARATION-COMPLETE
(:):éSG) MOTOR INITIATION-COMPLETE
(:):2150 MOTOR OUTPUT-KEY #(8 5)
(:):éOG) MOTOR FINISH-MOVEMENT

If an invalid key is specified then a warning is printed and no action is taken:

380

ACT-R7 11-Jul-17 ACT-R Reference Manual

0.050 MOTOR PRESS-KEY BAD-KEY
#|Warning: No press-key mapping available for key BAD-KEY. |#

The press-key request is considered complete when the finish-movement event occurs, or

immediately upon request by the module if the parameters are invalid or the module is jammed.

move-cursor

cmd move-cursor

[object object | loc location]

{device [mouse | joystick-1 | joystick-2]}
This request will result in a ply style movement of the model’s right hand if it is currently located on
the mouse. That ply will move the cursor to either the object (which must be a chunk which
represents a visual object) or location (which must be a chunk which represents a visual location)
specified taking time based on Fitts's Law. If device is not specified then the assumption is that the
cursor is positioned with a mouse, but if one of the joystick values is specified that indicates the
pointing is done with either a first or second order joystick respectively which increases the Fitts’s
coefficient for the movement. The coefficient is multiplied by 2 for a first-order joystick and by 4 for

a second-order joystick.

If the :cursor-noise parameter is nil then the cursor will be positioned exactly at the coordinates

provided by the location given or the coordinates of the location of the object provided. If :cursor-
noise is t then a very simplified noise component is added to the target point to determine where the
cursor is moved. An offset distance is computed using the effective width of the target — it’s width
along the vector of approach as used in the Fitts’s Law calculation. The offset is computed using the
act-r-noise command with an s value that results in it being on the object (along the approach vector)
96% of the time. That offset is applied in a random direction from the target chosen from a uniform

distribution.

Here are the events which show for a move-cursor action showing the module progressing through
the internal states and indicating the final position of the cursor:

0.050 MOTOR MOVE-CURSOR OBJECT NIL LOC LOC1
(:) é50 MOTOR PREPARATION-COMPLETE
(:):1.300 MOTOR INITIATION-COMPLETE
(:):6.361 MOTOR MOVE-CURSOR-ABSOLUTE #(100 200)

381

ACT-R7 11-Jul-17 ACT-R Reference Manual

0.711 MOTOR FINISH-MOVEMENT

If the :incremental-mouse-moves parameter is specified as t, then there may be multiple smaller

mouse movements leading up to the final position which are spaced approximately 50 ms apart:

0.350 MOTOR MOVE-CURSOR LOC START

6:550 MOTOR PREPARATION-COMPLETE

6:600 MOTOR INITIATION-COMPLETE

0.600 MOTOR MOVE - CURSOR-ABSOLUTE #(2 2)
é:éSO MOTOR MOVE-CURSOR-ABSOLUTE #(14 14)
é:%@@ MOTOR MOVE - CURSOR-ABSOLUTE #(37 37)
é:%SO MOTOR MOVE - CURSOR-ABSOLUTE #(63 63)
é:é@@ MOTOR MOVE - CURSOR-ABSOLUTE #(86 86)
é:éSO MOTOR MOVE - CURSOR-ABSOLUTE #(98 98)
é:é@@ MOTOR MOVE - CURSOR-ABSOLUTE #(100 100)
6:550 MOTOR FINISH-MOVEMENT

If the model’s right hand is not on the mouse a warning is printed and no action is taken:

#|Warning: MOVE-CURSOR requested when hand not at mouse! |#

The move-cursor request is considered complete when the finish-movement event occurs, or
immediately upon request by the module if the parameters are invalid, the hand is not on the mouse,

or the module is jammed.

hand-to-mouse

cmd hand-to-mouse

The hand-to-mouse request will move the model’s right hand from where ever it is to the virtual
mouse’s location using a ply style movement (the target location for the mouse is (28 2)). These are
the events which will show the action progressing through the stages of a motor action along with the

final movement indicating the distance and direction the right hand moved:

0.050 MOTOR HAND-TO-MOUSE

é:éSO MOTOR PREPARATION-COMPLETE

é:é@@ MOTOR INITIATION-COMPLETE

é:éSS MOTOR MOVE-A-HAND RIGHT 21.095022 -0.094951704

382

ACT-R7 11-Jul-17 ACT-R Reference Manual

0.603 MOTOR FINISH-MOVEMENT

If the model’s hand is already on the virtual mouse it will acknowledge the request, but no actions are
taken and the module does not become busy. There will only be the one acknowledgement event in

the trace:

0.050 MOTOR HAND-TO-MOUSE

The hand-to-mouse request is considered complete when the finish-movement event occurs, or
immediately upon request by the module if the hand is already on the mouse or the module is

jammed.

hand-to-home

cmd hand-to-home

The hand-to-home request will move the model’s right hand from where ever it is to the home
position on the virtual keyboard using a ply style movement (the target location for the home position
is (7 4)) and position all of the fingers over the appropriate keys. These are the events which will
show the action progressing through the stages of a motor action along with the final movement

indicating the distance and direction the hand moved:

0.653 MOTOR HAND-TO-HOME

é:%OS MOTOR PREPARATION-COMPLETE

é:%SS MOTOR INITIATION-COMPLETE

i:606 MOTOR MOVE-A-HAND RIGHT 21.095022 3.0466409
i:656 MOTOR FINISH-MOVEMENT

Even if the model’s hand is already at the home location it will still progress through all of the stages

of the movement to move the hand:

0.000 MOTOR HAND-TO-HOME

é:é@@ MOTOR PREPARATION-COMPLETE
é:éSO MOTOR INITIATION-COMPLETE

é:éSO MOTOR MOVE-A-HAND RIGHT 0.0 0.0
é:&@@ MOTOR FINISH-MOVEMENT

383

ACT-R7

11-Jul-17

ACT-R Reference Manual

The hand-to-home request is considered complete when the finish-movement event occurs or

immediately upon request by the module if the module is jammed.

hand-to-keypad

cmd hand-to-keypad

The hand-to-keypad request will move the model’s right hand from where ever it is to the keypad on

the virtual keyboard using a ply style movement (the target location for the keypad position is (19 4))

and position the fingers over the keys 4, 5, 6, and enter with the thumb over 0. These are the events

which will show the action progressing through the stages of a motor action along with the final

movement indicating the distance and direction the hand moved:

3.281
3.481
3.531
3.712

3.762

MOTOR

MOTOR

MOTOR

MOTOR

MOTOR

HAND-TO-KEYPAD

PREPARATION-COMPLETE

INITIATION-COMPLETE

MOVE-A-HAND RIGHT 12.0 0.0

FINISH-MOVEMENT

Even if the model’s hand is already at the keypad location it will still progress through all of the

stages of the movement to move the hand:

13.583
13.783
13.833
13.933

13.983

MOTOR

MOTOR

MOTOR

MOTOR

MOTOR

HAND-TO-KEYPAD

PREPARATION-COMPLETE

INITIATION-COMPLETE

MOVE-A-HAND RIGHT 0.0 0.0

FINISH-MOVEMENT

The hand-to-keypad request is considered complete when the finish-movement event occurs or

immediately upon request by the module if the module is jammed.

point-hand-at-key

cmd point-hand-at-key
hand [left | right]

to-key key

{offsets [standard | (finger-offset*)]}

key ::= either a symbol or string that specifies the key to which the hand should move

384

ACT-R7 11-Jul-17 ACT-R Reference Manual

finger-offset ::= (finger-name x y)

finger-name ::= [index | middle | ring | pinkie | thumb]

x ::= an integer indicating the x coordinate offset for the finger from the position of the hand
y ::= an integer indicating the y coordinate offset for the finger from the position of the hand

This request will move the hand on the virtual keyboard causing all of the fingers to be repositioned
using a ply style movement. The hand will be positioned at the coordinate of the specified key. If
the offsets slot is not specified then the fingers will have the same offset from the hand position as
they had before it was moved (any previous peck actions will still be reflected in the new positions).
If the offsets value is specifed as standard then the index finger of the specified hand will be
positioned over the indicated key and the other fingers being positioned on the keys in the same
relative positions as they would be on the home row. If specific finger offsets are provided then those
fingers will be over the keys at the specified offset from the position of the hand and fingers not

specified will have the same offset they did before the move.

The key can be specified using either a symbol or string that specifies the name of a key as the target
location for the hand. It should be the single character for the alpha-numeric keys or one of these
symbols for the punctuation and special keys: space, backquote, tab, comma, period (or dot),

semicolon, slash, hyphen, quote, return, backslash, or delete.

Here are the events which will show in the trace for a point-hand-at-key request indicating the hand
and key that were specified, the progression through the stages of the action, and indicating the

distance and direction the hand was moved:

0.050 MOTOR POINT-HAND-AT-KEY HAND LEFT TO-KEY a
é:éSO MOTOR PREPARATION-COMPLETE

é:é@@ MOTOR INITIATION-COMPLETE

é:481 MOTOR MOVE-A-HAND LEFT 3.0 3.1415927

é:éSl MOTOR FINISH-MOVEMENT

As with the hand-to-home request, even if the hand is already located over the requested key the

module will still progress through the movement stages:

0.600 MOTOR POINT-HAND-AT-KEY HAND RIGHT TO-KEY J
0.600 MOTOR PREPARATION-COMPLETE

é:éSO MOTOR INITIATION-COMPLETE

é:%SO MOTOR MOVE-A-HAND RIGHT 0.0 0.0

é:é@@ MOTOR FINISH-MOVEMENT

385

ACT-R7 11-Jul-17 ACT-R Reference Manual

If an invalid key is specified then a warning is printed and no action is taken:

0.050 MOTOR POINT-HAND-AT-KEY HAND LEFT TO-KEY BAD-KEY
#|Warning: No key mapping available for key BAD-KEY |#
The point-hand-at-key request is considered complete when the finish-movement event occurs or

immediately upon request by the module if the request is invalid or the module is jammed.

prepare

cmd prepare

style [punch | peck | peck-recoil | ply | hand-ply]
{hand [left | right] }

{finger [index | middle | ring | pinkie | thumb] }
{r distance}

{theta direction}

The prepare request can be used to have the motor module prepare but not immediately execute a set
of features. Those features are stored the same way that the features for a previously executed action
are, and thus will decrease the preparation time of a subsequent action which shares those features.
Using the execute request (described next) it is also possible to perform the action specified by the
history of features, so a prepare could be used to set up an action which one may execute later. For
instance, if you know the next motor action is going to be a punch of the right index finger, but you're

not sure when, you can prepare the movement in advance and then execute it later.

You must specify a style to prepare, and then you may specify any of the parameters that are relevant

for that style.

Here is the trace showing a preparation for a ply style action (movement of the left index finger two

keys to the right) which shows that only the preparation step occurs for a prepare request:

0.050 MOTOR PREPARE PLY HAND LEFT FINGER INDEX R 2 THETA ©

0.300 MOTOR PREPARATION-COMPLETE

If that is followed by an execute action there is no preparation step at that time, and the previously
prepared action is executed. Here is a continuation of that trace showing an execute request

occurring next:

386

ACT-R7 11-Jul-17 ACT-R Reference Manual

0.350 MOTOR EXECUTE

6:400 MOTOR INITIATION-COMPLETE

é:é@@ MOTOR MOVE-A-FINGER LEFT INDEX 2 O
é:éSO MOTOR FINISH-MOVEMENT

The prepare request is considered complete when the preparation-complete event occurs or

immediately upon request by the module if the request is invalid or the module is jammed.

execute
cmd execute

The execute request causes the model to execute the last movement which was prepared. That will
either be a movement which was specified by an explicit prepare request or the last action which was
requested. Because all of the features are already prepared there is no preparation step required as

shown in the sequence of events (in this case the last prepared features were for a click-mouse

action):
0.400 MOTOR EXECUTE
0.450 MOTOR INITIATION-COMPLETE
0.460 MOTOR OUTPUT-KEY #(28 2)
0.550 MOTOR FINISH-MOVEMENT

If there are no currently prepared features then the execute request prints a warning and no action is

taken:

#|Warning: Motor Module has no movement to EXECUTE. |#

The execute request is considered complete when the finish-movement event occurs or immediately

upon request by the module if there is no action execute or the module is jammed.

Chunks & Chunk-types

The motor module creates a chunk-type for each of the requests it accepts with the same name as the
reqgeust and which has a cmd slot with a default value set to a chunk which also has that same name
and is defined using that same chunk-type. Here are the chunk-type definitions that are executed by
the motor module:

(chunk-type motor-command (cmd "motor action"))
(chunk-type (punch (:include motor-command)) (cmd punch) hand finger)

387

ACT-R7 11-Jul-17 ACT-R Reference Manual

(chunk-type (click-mouse (:include motor-command)) (cmd click-mouse))
(chunk-type (peck (:include motor-command)) (cmd peck) hand finger r theta)
(chunk-type (peck-recoil (:include motor-command)) (cmd peck-recoil) hand finger r theta)
(chunk-type (press-key (:include motor-command)) (cmd press-key) key)
(chunk-type (move-cursor (:include motor-command)) (cmd move-cursor) object loc device)
(chunk-type (hand-to-mouse (:include motor-command)) (cmd hand-to-mouse))
(chunk-type (hand-to-home (:include motor-command)) (cmd hand-to-home))
(chunk-type (hand-to-keypad (:include motor-command)) (cmd hand-to-keypad))
(chunk-type (point-hand-at-key (:include motor-command)) (cmd point-hand-at-key)
hand to-key offsets)
(chunk-type (prepare (:include motor-command)) (cmd prepare) style hand finger r theta)
(chunk-type (execute (:include motor-command)) (cmd execute))

These are the chunks which are created if not already defined. These chunks are marked as

immutable if defined by the motor module:

(define-chunks
(punch isa punch)
(click-mouse isa click-mouse)
(peck isa peck)
(peck-recoil isa peck-recoil)
(press-key isa press-key)
(move-cursor isa move-cursor)
(hand-to-mouse isa hand-to-mouse)
(hand-to-home isa hand-to-home)
(hand-to-keypad isa hand-to-keypad)
(point-hand-at-key isa point-hand-at-key)
(prepare isa prepare)
(execute isa execute)
(left name left)
(right name right)
(index name index)
(middle name middle)
(ring name ring)
(pinkie name pinkie)
(thumb name thumb))

Commands

start-hand-at-mouse

Syntax:
start-hand-at-mouse -> [t | nil]
Description:

The start-hand-at-mouse command is used to position the right hand of the current model on the
virtual mouse instead of on the virtual keyboard which is the default location for the hand. It should
be called before running the model, and generally it would be placed into the model definition. It is
not intended for moving the model’s hand, only specifying its initial location. If the model’s hand is
successfully placed on the mouse, then t is returned. If there is no current model or current meta-

process, then no change is made, a warning is printed, and nil is returned.

388

ACT-R7 11-Jul-17 ACT-R Reference Manual

Examples:

> (start-hand-at-mouse)
T

E> (start-hand-at-mouse)

#|Warning: No current model. Cannot set hand at mouse. |#
NIL

E> (start-hand-at-mouse)

#|Warning: No current meta-process. Cannot set hand at mouse. |#
NIL

start-hand-at-keypad

Syntax:
start-hand-at-keypad -> [t | nil]
Description:

The start-hand-at-keypad command is used to position the right hand of the current model on the
virtual keyboard’s keypad with the fingers over the 4, 5, 6, and enter keys and the thumb over 0. It
should be called before running the model, and generally it would be placed into the model
definition. It is not intended for moving the model’s hand, only specifying its initial location. If the
model’s hand is successfully placed on the keypad, then t is returned. If there is no current model or

current meta-process, then no change is made, a warning is printed, and nil is returned.

Examples:

> (start-hand-at-keypad)
T

E> (start-hand-at-keypad)
#|Warning: No current model. Cannot set hand at keypad. |#
NIL

E> (start-hand-at-keypad)
#|Warning: No current meta-process. Cannot set hand at keypad. |#
NIL

set-cursor-position

Syntax:

set-cursor-position x y -> [xy-loc | nil]
set-cursor-position-fct new-loc -> [xy-loc | nil]

Arguments and Values:
x ::= a number specifying the x coordinate for the mouse cursor

389

ACT-R7 11-Jul-17 ACT-R Reference Manual

y ::= a number specifying the y coordinate for the mouse cursor
new-loc ::= a vector of two values representing a new location for the mouse cursor
xy-loc ::= a vector of two values representing the current location of the mouse cursor

Description:

The set-cursor-position command can be used to set the position of the mouse cursor for the current
device of the current model. It should not be called while the model is running to avoid conflicts
with any model generated mouse movements, but can be called before running the model or when it
is stopped. If the position of the mouse cursor is set for the device, then a vector with the current
mouse coordinates is returned. If there is no current model or no current meta-process then no

change is made, a warning is printed, and nil is returned.

Examples:

> (set-cursor-position 10 20)
#(10 20)

> (set-cursor-position-fct #(20 30))
#(20 30)

E> (set-cursor-position 10 20)

#|Warning: No current model. Cannot set cursor position. |#
NIL

E> (set-cursor-position 0 0)

#|Warning: No current meta-process. Cannot set cursor position. [#
NIL

set-hand-location

Syntax:

set-hand-location [left | right] x y -> [t | nil]
set-hand-location-fct [left | right] xy-loc -> [t | nil]

Arguments and Values:

x ::= a number specifying the starting x coordinate on the virtual keyboard for the specified hand

y ::= a number specifying the starting y coordinate on the virtual keyboard for the specified hand
xy-loc ::= a vector or list of two numbers specifying the starting x and y coordinates respectively on
the virtual keyboard for the specified hand

Description:

The set-hand-location command can be used to set the position of the specified hand of the current

model on the virtual keyboard. It should not be called while the model is running to avoid conflicts

390

ACT-R7 11-Jul-17 ACT-R Reference Manual

with any model generated hand movements, but can be called before running the model or when it is
stopped. The x and y coordinates specify the key over which the specified hand and its index finger
are placed, and the other fingers will be located relative to that location as they would for the home
row. If the position of the hand is set for the model then t is returned. If there is no current model or

current meta-process then no change is made, a warning is printed, and nil is returned.

Examples:

\%

(set-hand-location left 0 3)

\

(set-hand-location-fct 'right '(8 2))
T

E> (set-hand-location left 5 1)

#|Warning: No current model. Cannot set hand location. |#
NIL

E> (set-hand-location right 5 4)

#|Warning: No current meta-process. Cannot set hand location. |#
NIL

extend-manual-requests

Syntax:

extend-manual-requests chunk-type-def request-function -> [t | nil]
extend-manual-requests-fct chunk-type-def request-function -> [t | nil]

Arguments and Values:

chunk-type-def ::= a list with a valid definition for a new chunk-type
request-function ::= a symbol which is the name of a function to call to handle the new request

Description:

The extend-manual-requests command allows one to add new requests to those which are accepted
by the manual buffer. Extend-manual-requests only needs to be called once for each new request
being added, and it does not have to occur within the context of a model. The chunk-type-def
parameter must be a list which is valid for passing to chunk-type-fct. That chunk-type definition will
have an additional slot called cmd specified with a default value that matches the name of the chunk-
type from the defintion and then be passed to chunk-type-fct. If that chunk-type name is not also
defined as a chunk then one will be defined using that same name as the chunk-type and it will be

marked as immutable. Thus, if one were to provide this chunk-type-def value:

(new-motor-action hand finger pressure)

391

ACT-R7 11-Jul-17 ACT-R Reference Manual

This chunk-type would be defined:

(chunk-type new-motor-action hand finger pressure (cmd new-motor-action))

and this chunk would be created and marked as immutable:

(define-chunks (new-motor-action isa new-motor-action))

When a request to the manual buffer is made with the cmd slot specifying the chunk-type-name
indicated then the function specified by request-function will be called with the current model’s
motor module as the first parameter and the chunk-spec of the request as the second parameter.
There are no restrictions on what the new request may do, nor are there any default operations
performed — it is entirely up to the extension to handle all scheduling of events as necessary to change

the state of the motor module and perform the actions necessary.

Once a new request has been added it cannot be overwritten by a new request with the same name.

However, it can be removed using the remove-manual-request command and then be defined again.

If chunk-type-def is not a valid list, request-function does not name a currently defined function or
the chunk-type being specified is already used for an extension then extend-manual-requests will

print a warning, no new request extension will be made, and nil will be returned.

If successfully created, the new request will be available to all models from that point on and t will be

returned.

The recommended use of this command is to place a file which has the necessary request function
and any support code needed along with a call to extend-manual-requests into one of the directories
for which the files are loaded automatically. That way the request function is compiled with the rest
of the sources and is made available to all models right from the start. If it is called while there are

models already defined the new request will not be available to those models until they are reset.

Most of the default requests which the motor module accepts are created using extend-manual-

requests.

Examples:

These examples assume that there are functions named handle-right-click and handle-hold already
defined.

392

ACT-R7 11-Jul-17 ACT-R Reference Manual

> (extend-manual-requests (right-click) handle-right-click)
T

1> (extend-manual-requests-fct '((hold-key (:include motor-command)) key) 'handle-hold)
T

2E> (extend-manual-requests-fct '((hold-key (:include motor-command) key)) 'handle-hold)
#|Warning: Request HOLD-KEY is already an extension of the manual buffer. To redefine you
must remove it first with remove-manual-request. |#

NIL

E> (extend-manual-requests bad-type handle-right-click)

#|Warning: Invalid chunk-type specification BAD-TYPE. Manual requests not extended. |#
NIL

E> (extend-manual-requests-fct '(chord fingerl finger2) 'not-a-function)

#|Warning: NOT-A-FUNCTION does not name a function. Manual requests not extended. |#
NIL

remove—manual—request

Syntax:

remove-manual-request chunk-type-name -> [t | nil]
remove-manual-request-fct chunk-type-name -> [t | nil]

Arguments and Values:
chunk-type-name ::= a symbol which is the name of a chunk-type used to extend the manual requests
Description:

Remove-manual-request is used to remove a request that has been added to the manual buffer through
the use of extend-manual-requests. The chunk-type-name parameter should be the name of a chunk-
type which was defined with a call to extend-manual-requests. The request of that chunk-type will be
removed from the set of requests that the manual buffer will process for all models and that chunk-
type will no longer be defined in any new models (its definition will still remain in any existing

models until they are reset).

If chunk-type-name does name an extended request, then after removing the request this command
will return t. If chunk-type-name is not the name of a previously extended request then a warning

will be printed and nil will be returned.

This command is typically only needed when one is developing some extensions to the manual
module and needs to change some of the requests under development. It is not recommended for use

in other situations.

Examples:

393

ACT-R7 11-Jul-17 ACT-R Reference Manual

These examples assume that there are functions named handle-right-click and handle-hold already
defined.

1> (extend-manual-requests (right-click) handle-right-click)

2> (extend-manual-requests-fct '((hold-key (:include motor-command)) key) 'handle-hold)
3> (remove-manual-request-fct 'right-click)

4> (remove-manual-request hold-key)

5E> (remove-manual-request hold-key)
#|Warning: HOLD-KEY is not a previously extended request for the manual module. |#
NIL

E> (remove-manual-request-fct 'bad-chunk-name)

#|Warning: BAD-CHUNK-NAME is not a previously extended request for the manual module. |#
NIL

394

ACT-R7 11-Jul-17 ACT-R Reference Manual

Speech module

The speech module gives a model a rudimentary ability to speak. This system is not designed to
provide a sophisticated simulation of human speech production, but to allow a model to speak words
and short phrases for simulating verbal responses in experiments and for subvocalizing text

internally. The module has one buffer, vocal, and works in much the same way as the motor module.

The vocal world

The model’s speech output is fairly limited. When it speaks or subvocalizes it will hear its own
words through the audio module. That is the only result of subvocalizing. When the model speaks,
then the device will detect the output as well. Essentially, the device has a microphone which detects

the onset of speech and can record the content of what was said.

Operation

Like the motor module, the speech module takes requests that specify a style of action and the

appropriate attributes for that style. There are only two styles available for the speech module:

« Speak to produce normal speech output.
« Subvocalize to produce internal speech — the model speaking to itself with no external output.

The only attribute for each of those styles is a string of text to speak.

The speech module does not place any chunks into its buffer in response to the requests. The vocal
buffer should always be empty, and it is the state of the module that is most important to the model in
this case. As described above for all the perceptual and motor modules, the speech module has three
internal states: preparation, processor, and execution. How a request progresses through those states

is described in detail below.

An important thing to note is that while the vocal buffer does not receive a chunk in response to a

speech action the aural-location buffer might. Because the model hears its own speech acts the

automatic buffer stuffing of the aural-location buffer may occur as a result of a vocal request.

When a request is received by the speech module, it goes through three phases: preparation,
initiation, and execution. The amount of time that speech output preparation takes depends on the

history of previous speech acts. The speech module records the last string which it has output. If

395

ACT-R7 11-Jul-17 ACT-R Reference Manual

there is no previous string which has been spoken, then the module takes .15 seconds in preparation
(three 50ms features). If there is a previously spoken string, then the preparation time is 0 seconds if
the same string is being output again (no features to prepare) and .1 seconds if it is a different string

(two 50ms features).

After preparation is complete, the speech module makes the specified vocal output. The first 50ms of
that output is initiation. During this interval, the preparation state becomes free and the processor and
execution states become busy. After initiation ends, the processor state becomes free. It is at that
time that speech output is made available to the device and the auditory system. Note that the typical
detection delay and recoding times still apply for the encoding of sounds as described in the audio
module, but speech output though subvocalizing has a separate parameter for the detection delay and
a recoding time of 0 seconds. The amount of time that the speech takes to finish after initiation
depends on the articulation time of the string which defaults to .15 seconds per assumed syllable, but

can be changed in various ways (see the get-articulation-time command below for details).

The speech module can only prepare one output at a time. If the speech module is in the process of
preparing a movement and another request is received, the later request will be ignored and the
speech module is said to be "jammed." When the module is jammed it will output a warning

indicating when the jamming occurred like this:

#|Warning: Module :SPEECH jammed at time 0.1 |#

The way to avoid jamming, as with all modules, is to test the state of the module before making a
request. Testing that state free is true will avoid jamming the module, but it is possible to issue
speech requests faster than that — because the state will not be free until the previous output has been
completed. Instead, one usually only needs to test that the preparation state is free to be able to issue
a new request to the speech module, but a more conservative approach would be to test the processor

state because it is still busy during the initiation time of the last output request.

Parameters
:char-per-syllable

This parameter controls how the model breaks a text string into syllables and is measured in a number

of characters (see get-articulation-time for how it applies). It can be set to any positive number and

defaults to 3.

396

ACT-R7 11-Jul-17 ACT-R Reference Manual

:subvocalize-detect-delay

This parameter sets the detect delay timing for the sound events generated by a subvocalize action
(see the audio module for details on the detect delay). It is measured in seconds and can be set to any

non-negative value. It defaults to .3 (which is the same value that normal text has).

:syllable-rate

This parameter controls the time it takes the model to articulate each syllable in a text string and is

measured in seconds (see get-articulation-time below for how it applies). It can be set to any non-

negative number and defaults to 0.15.

Vocal buffer

The speech module does not place any chunks into the vocal buffer. The preparation timing for the

actions will be set using the randomize-time function, but all other action times will be fixed

regardless of the :randomize-time parameter setting.

Activation spread parameter: :vocal-activation
Default value: 0.0

Queries

‘State busy’ will be t when any of the internal states of the module (listed below) also report as being
busy. Essentially, it will be t while there is any request to the vocal buffer that has not yet completed.

It will be nil otherwise.

‘State free’ will be t when all of the internal states of the module (listed below) also report as being
free. Essentially, it will be t only when all requests to the vocal buffer have completed. It will be nil

otherwise.
‘State error’ will always be nil.

Unlike the perceptual modules, the internal states of the speech module may be useful to track in a

model because it is possible to send new requests while the module is partially busy. Only the

397

ACT-R7 11-Jul-17 ACT-R Reference Manual

preparation stage of the module needs to be free to avoid jamming. For each request that is received
the module will progress through three stages as described above: preparation, initiation, and

execution.

‘Preparation busy’ will be t after a request has been received and until it completes the preparation of
the features needed for that request which depends on how many features there are and whether or

not they overlap with the last features prepared. It will be nil otherwise.

‘Preparation free’ will be nil after a request has been received and until it completes the preparation
of the features needed for that request which depends on how many features there are and whether or

not they overlap with the last features prepared. It will be t otherwise.

‘Processor busy’ will be t while preparation is busy and will continue to be t after the features have
been prepared until the additional initiation time (fixed at .05 seconds) has passed. It will be nil

otherwise.

‘Processor free’ will be nil while preparation is busy and will continue to be nil after the features
have been prepared until the additional initiation time (fixed at .05 seconds) has passed. It will be t

otherwise.

‘Execution busy’ will be t once the preparation of a request’s features has completed and will remain

t until the time necessary to complete the action has passed. It will be nil otherwise.

‘Execution free’ will be nil once the preparation of a request’s features has completed and will

remain nil until the time necessary to complete the action has passed. It will be t otherwise.

‘Last-command command’ command should be a symbol which corresponds to one of the vocal
buffer’s requests or the symbol none. The query will be t if that is the name of the last request

received by the vocal buffer otherwise it will be nil.

Here is a summary indicating the state transitions for a single vocal request assuming that the module

is entirely free at the start of the request:

Preparation state Processor state Execution state When

FREE FREE FREE Before event arrives

BUSY BUSY FREE When event is received
FREE BUSY BUSY After preparation time
FREE FREE BUSY After initiation (.05 seconds)

398

ACT-R7 11-Jul-17 ACT-R Reference Manual

FREE FREE FREE When speech completes (articulation time)

Requests

clear

[cmd clear | clear t]

A clear request can be sent to clear the history of the last string vocalized. A clear request will make
the preparation state busy for 50ms. These events will show in the trace for a clear request to the

vocal buffer:

0.050 SPEECH CLEAR

0.100 SPEECH CHANGE-STATE LAST NONE PREP FREE

Note, that after the clear request completes the last-command recorded by the module will be none

and not clear — the clear request has effectively cleared the history of its own request as well.

When the clear event occurs the request is considered complete, and any other requests which may

have been pending for the module will also be considered complete.

speak

cmd speak
string text

A speak request causes the model to generate vocal output. The output that is made is the Lisp string
specified by text. That output is sent to the current device and thus may be heard/recorded externally.
It is also made available to the model’s audio module as a word sound with a location of self. That

may trigger buffer stuffing of the aural-location buffer.

Here are the events which will show in the trace for a speak request showing the text that is to be

output and the progression through the stages of the action:

0.050 SPEECH SPEAK TEXT Hello
0.200 SPEECH PREPARATION-COMPLETE
0.250 SPEECH INITIATION-COMPLETE

0.250 SPEECH OUTPUT-SPEECH Hello

399

ACT-R7 11-Jul-17 ACT-R Reference Manual
0.500 SPEECH FINISH-MOVEMENT
If an invalid text value is given this warning will show in the trace and no action will be taken by the
module:
#|wWarning: String slot in a speak request must be a Lisp string. |#

The speak request is considered complete when the finish-movement event occurs, or immediately

upon request by the module if the parameters are invalid or the module is jammed.

subvocalize

cmd subvocalize
string text

A subvocalize request causes the current model to generate internal speech (the model is talking to
itself). That output is not made available to the device, but it is made available to the model’s audio
module as a word sound with an internal location. That may trigger buffer stuffing of the aural-

location buffer.

Here are the events which will show in the trace for a subvocalize request showing the text that is to

be subvocalized and the progression through the stages of the action:

0.050 SPEECH SUBVOCALIZE TEXT hello
(:):éOO SPEECH PREPARATION-COMPLETE
(:):éSO SPEECH INITIATION-COMPLETE
(:):1:300 SPEECH FINISH-MOVEMENT

If an invalid text value is given this warning will show in the trace and no action will be taken by the

module:

#|Warning: String slot in a subvocalize request must be a Lisp string. |#

The subvocalize request is considered complete when the finish-movement event occurs, or

immediately upon request by the module if the parameters are invalid or the module is jammed.

Chunks & Chunk-types

The speech module creates a chunk-type for each of the requests it accepts with the same name as the

reqgeust and which has a cmd slot with a default value set to a chunk which also has that same name

400

ACT-R7 11-Jul-17 ACT-R Reference Manual

and is defined using that same chunk-type. Here are the chunk-type definitions that are executed by
the speech module:
(chunk-type speech-command (cmd "speech command"))

(chunk-type (speak (:include speech-command)) (cmd speak) string speak)
(chunk-type (subvocalize (:include speech-command)) (cmd subvocalize) string subvocalize)

These are the chunks which are created if not already defined. These chunks are marked as
immutable if defined by the speech module:
(define-chunks

(speak isa speak)

(subvocalize isa subvocalize)

(internal name internal)
(self name self))

Commands
get-articulation-time/register-articulation-time

Syntax:

get-articulation-time string {time-in-ms} -> [time | nil]
register-articulation-time string time -> [time | nil]

Arguments and Values:

string ::= a Lisp string for which a specific articulation time is required
time-in-ms ::= a generalized boolean indicating the units to use for the returned time
time ::= a non-negative number indicating the time it takes to articulate the string specified

Description:

These commands are used to get the articulation time for a text string and to set an explicit time to
articulate a string in the current model. That time will be used by the audio module as the duration of
such a string if it is heard by the model and will be the length of time that the model requires to speak

such a string using the speech module.

Register-articulation-time sets the articulation time for the provided string in the current model in
seconds. If such a value is set then time is returned. If there is no current model, no current meta-

process, or one of the parameters is invalid, then a warning is printed and nil is returned.

Get-articulation-time returns the