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Abstract 2004), include mechanisms that reinforce a piece of
The ability to imperfectly but robustly enumerateset of :_nkfolrmatlobn after it haz t?eer;]ac;:essed, r\r;aklngenZ%naore
alternatives manifests itself in many human adésit ikely to be accessed in the future. Young (20635
However, many cognitve models have fundamental Pointed out that the lack of refraction, togethethwhose
difficulties with this task, which often leads tegknerate reinforcement mechanisms, can lead to pathological
behavior. The primary source of this problem is ¢onflict behaviors such as out-of-control looping where pieee
between mechanisms of long-term reinforcement d®d t  of knowledge becomes so active that it is constantl
need for short-term inhibition of recent items. r@nalysis retrieved at the expense of others.

of a pair of pervasive domains of human activitydé that . . .
the long-term reinforcement process is balanced Bhort- This problem has also occurred in even more serious

term inhibition. We have implemented this empirica [0 in the development of higher-level languagkat t

finding in a variation of the knowledge reinforcemhe  include implicit or explicit retrieval loops for elking
equation of the ACT-R architecture. This new meda logical conditions often involving universal qudigis
not only prevents degenerate behavior in memonrjexet, (Jones, Crossman, Lebiere, & Best, 2006; Jonesgtesh
but also emerges as a source of the power lawildistn & Crossman, 2007). Nested loops are particulaifficdlt

observed in the environment, supporting the praosthat
the power law distribution arises from the intei@ctof the
environment and cognition itself.

to deal with because they invalidate many of theeptal
attempts to deal with the problem. Of course, kgl of
processing is cognitively very difficult, and peepl
Keywords: Cognitive Architectures, Bayesian Learning,  certainly don't perform it perfectly or completebyt they
Human Memory, Power Law of Learning. usually manage to accomplish the task to some exten
. while avoiding the pathological behavior often doitad
Introduction by the cognitive models. While modelers can often
A key aspect of many cognitive tasks, includingprevent such behavior by carefully crafting theduels to
planning and game playing, involves sequentiallyimbed clever strategies reflecting their meta-kresigle of
examining and evaluating a number of possible optio the task, such knowledge engineering methods lack
Many everyday tasks also have that characteristich as cognitive plausibility.  They also contribute to eth
attempting to name all fifty states of the Unitet@dt&s, or  brittleness and lack of portability of cognitive deds when
all members of one’s research group. they are transferred to real world situations tlaak the
Such enumeration is seldom exhaustive angredictability, static nature, constrained scaled &imited
unstructured.  For instance, even (or especiallygss complexity of laboratory experiments.
grandmasters seldom evaluate more than a few patent What is needed is an understanding of the humdityabi
moves in any given position. Also, people’s apiltb  to enumerate a limited set of alternatives. Spesdif, we
enumerate large sets of objects also tends tariieti to a need to analyze the environmental, cognitive angraie
small number of items before repetition sets idesmthey constraints that allow us to balance the long-tdasire to
resort to domain-specific strategies (e.g., relying reinforce more commonly accessed items to fadditat
geographical or alphabetical order to name the&@s). future retrievals together with the short-term nezadvoid
However, as limited as this enumeration capacitghini iterated retrievals that lead to looping behavibhese
be, it also turns out to be highly pervasive armbf@matic  constraints, of course, must include those thatecémmm
for many current computational models of cognitidtany  observing human behavior. The constraints theml nee
modern cognitive architectures and frameworks, kenli be implemented in computational form that integsatéth
earlier models such as production systems (e.gthe other architectural mechanisms to provide tiugogr
McDermott & Forgy, 1978), do not include explicdrdrol  functional characteristics that allow the cognitivedels
mechanisms such as refraction, a mechanism thap display the same robustness and adaptivity, sas i
temporarily prevents the reapplication of a jusf@ened commonly exhibited by human experimental partictpan
action, such as retrieving a specific piece of rimfation.  without recourse to constant engineering on thé gfathe
Even more problematic, some of those architectiegs, modeler.
ACT-R (Anderson & Lebiere, 1998; Anderson et al.,



Environment Analysis As observed, the relation is largely invariant @frpus,
with statistically insignificant variations for weshort lags
f:especially 1, which reflects infrequent word réfets).
or lags of 10 or more, the curve is roughly linéar. the
odds decrease as a power law of lag as in thenatigi
analysis. However, for short lags, the odds ofeapance
gradually deviate from the power-law, with a précips
decline for immediate word repetitions (i.e. lag=1Jhis
(Sireviation can be interpreted as an inhibition adimein the
vironment that should be reflected in the appater
cognitive mechanisms, inasmuch as it is the opgosit
dynamic to the current short-term reinforcement.

Following the rational analysis approach (Andersk990),
we view the environment as the primary shaper o
cognition. Indeed, it was the analysis of Andersn
Schooler (1991) that led to the reinforcement meism
in ACT-R that is largely responsible for the degete
behavior described above. The primary insight rdt t
analysis was that the odds of an item appearingiany
common contexts such as email correspondence
newspaper headlines increased as a power law
frequency and decreased as a power law of recembg.
latter, in particular, provides a boost in actigatiafter an
item is accessed, leading to a much higher prabaloif
immediate subsequent retrieval unless that item i
specifically excluded, such as through explicithanking
conditions on retrievals or tagging by a mecharngsich as

a declarative version of visual finsts (PylyshyB389). It is 0.1 -
fair to ask what we might add to the prior analysfs
Anderson and Schooler. Significantly, that analyssed
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domains that were not directly relevant to (or #ieaily E 8.0 2 ——is

excluded data related to) the short time scalemtefest y —it

here. Therefore, we will follow the same ratioanablysis L. :" :‘;

methodology in analyzing domains involving the his

consecutive access of large numbers of items, dher

than exclude items processed at short intervalswille 0.0001

focus on them. We have selected two such dombs t Lag

are pervasive in human activity and provide largeants Figure 2: Odds of 10 most common words

of regular data for such an analysis: language ga%ing

and arithmetic computations. We performed a more detailed analysis to rule bet t
possibility that this result was an artifact of mraatical

L anguage rules or irregular words. Figure 2 establishest tie

To be able to draw broad and robust conclusions, wRattern holds for the ten most common words, alwéh
analyzed a broad array of text corpuses, from eniic additional noise resulting from the smaller samﬂlpe.
book chapter and proposal (about 30K words each) t§hose words should probably be excluded because the
classic books such as Dickens’ “A Christmas Cafabout syntactic roles are usually dlstlr\ct|ve enough egun in
100K words) and Joyce's “Ulysses” (about 300K wdrds procedural rather tha_m declarative proces_smgh@fytare
and a large section of a reference book, the Eopgdia  Processed at all — articles are often not lexiqaicessed).
Britannica (about 300K words). Figure 1 plots dugls of AN important question is whether this pattern hétidess
a given word appearing a certain number of wortar és ~ €OMMon words, and whether the period of |nh|b|§|sn
previous appearance (a.k.a. lag), averaged ovewatis sensﬂwg to word frequency. To answer that qoastive
of each text. The plot is on a log-log scale idesrto categorized the words by frequency of appearance.

easily display the expected power-law relations.
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Figure 1: Odds of appearance as a function of lag Figure 3: Odds by word frequency in Ulysses



Figure 3 and 4 present a frequency analysis wherglsv  rely upon our validated cognitive model of the tiifiee
were grouped into five quintiles according to theirlearning of arithmetic facts, and in particular its
frequency in the two largest texts. The curvesdach assumptions about the distribution and frequency of

quintile are parallel, capturing the frequency efffe(other  arithmetic facts.
than for the first quintile of most common wordslabg
lagsf. Both figures, but especially figure 4 (and one
would expect Britannica to be more regular and les
linguistically idiosyncratic than Ulysses), estahlithat the

To avoid being overly dependepon
those assumptions, however, we studied in partichie
statistical requests generated for one type of(faminting)
$y another type (addition). This allowed us tdeetf both
the statistics (in terms of the distribution of &idch

inhibition effect is not dependent on word frequenc problems) and the structure of the domain in teofnthe
Rather, the maximum odds of appearance occur afagnd requests for counting facts generated in solvinditimh

of 8-10 for all word frequencies. This is an esistpiece
of data in constraining the implementation of this
environmental constraint in an architectural me&ran
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Figure 4: Odds by word frequency in Britannica

Arithmetic

Just as the original analysis by Anderson and Sehbad
demonstrated the long-term statistical patterns awvange

of domains, it is essential for us to show thatshert-term
inhibition trends found in the language corpuses aso
present in other environments. As a second donvein,
have chosen arithmetic facts for a number of remigois a
regular domain that like language is shaped by bio¢h
everyday world and formal schooling; it is a seovirfial
domain that is relatively well-understood; and s &
domain that we have studied and modeled ourselve
(Lebiere, 1998). Arithmetic knowledge, for exampie
decomposed in a hierarchy of types, starting withnting
facts and on to addition and multiplication. Each
subsequent level of the hierarchy is taught sedplnt
(i.e., children first learn to count, then add, rthe
multiply...) and depends upon the previous ones fol
reconstructing the current ones (i.e., additionrdyyeated
counting, multiplication by repeated addition, etc)
Unfortunately, knowledge of the actual statistical
distributions of access to arithmetic knowledge nist

directly available in the same form as the language

corpuses. Textbooks provide one source of knoveleldgt
this source is relatively incomplete. Instead,deeided to

! This reflects, as discussed previously, the spayiatactic
role of the most common words that makes them hitikély to
appear regularly and can be ignored for our purpose

problems by backup computation. Figure 5 displdngs

odds of a counting fact being accessed as a funofiche

lag since the previous access:
1
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Figure 5: Odds of access to counting fact as atifumof
lag in addition by repeated counting problems

All the same patterns evident in Figure 1 are presm
initial inhibition for short lags, maximum odds gitly
short of a lag of about 8-10, then the typical povesv
decay beyond that. As for the language corpuses, w
decided to break down these aggregate odds into
subcategories depending upon the frequencies ofattie
accessed. Figure 6 presents the odds for fivetibpsrof
decreasing frequencies.
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Figure 6: Odds of counting facts by quintiles

Again, the same patterns as in Figure 3 and 4 rasept
here as well: the curves for each quintile have dame
characteristics as the aggregate curves, the maxiodds
are reached at the same lags, and the curves agalyo
parallel except for one. In the language corpugesmost
frequent quintile was the one exhibiting a diffarpattern



(a more steeply diving tail) because of the diffiguo
produce text at long lags without mentioning vesynenon
words (e.g., articles). In the arithmetic corpte curve
for the least frequent counting facts is the onleilEting a
different pattern (a flattening tail) because a fawe, large
counting facts repeat at significantly longer lagse they
only occur in a few, infrequent addition facts. rFo
instance, in the 10x10 addition table, the countiagt
stating that 18 follows 17 will only be needed foe most
rare addition fact, 9+9, since the main statistefé¢ct on
fact distribution is that frequency decreases witte.

Computational | mplementation

We now turn to implementing those findings in amitige
architecture and combine the resulting mechanisti wi
other, existing mechanisms to determine their auigon.
We selected the ACT-R cognitive architecture fois th
implementation, although the resulting mechanisiwukh
be applicable to other architectures.
previously, ACT-R currently uses a number of teqoes
to prevent out-of-control retrieval loops resultifigom
short-term boosts in activation. A full discussioithose
techniques is beyond the scope of this paper,dgardless
it seemed that the solution to the problem shoaydn the
same location as its source, namely in the equal@rived
by Anderson & Schooler (1991) that describes thenliag
of the activation value of memory chunks as a fiomcof
history, specifically:

B =log) t;*
j=1

The summation over all past n references to a chiunk
implement the power law of practice while the decdy
each referencpas a function of time since referericand

Base-L evel Learning Equation

As mentioneq

inhibition component as well as different ways of
combining the traditional reinforcement and the new
inhibition factors. We have found the followingiioto be
the most suitable in terms of both its functionedgerties
and its ability to reproduce the data:

—d
n ~ t s
B = |ngtj Y~ log 1+ [E"J New BLL Equation
=

The “1+” component of the new term is necessaméke
sure that it has a strictly inhibitory effect, ithe sum is
also greater than 1 meaning that the log is alvpagitive.
One can see that the new inhibitory term addedm#as
to the reinforcement term in being a power-law geaa
term. However, this term only takes into accounet tnost
recent reference. Two new parameters have beem:adde
short-term decay ratds and a time scaling parametgr
Figure 7 displays the effect of this new term oa Hase-
level activation and the effect of the new paramsetelhe
irst curve (BLL) displays the standard base-lewetve,
linear in log-log space. The second curve (PL(QA0B
displays the new base-level learning with a shemt
decay rate of 0.75 (compared to the standard deteyof
0.5) and a time-scaling parameter of 10. The preffect
seems to be generated but too weakly. The thirdecu
(PL(1.0;10)) shows the effect of increased decaytten
short-term inhibition, with a probability of retxial at lag 1
roughly equal to that at lag 100, and a peak ardagdO,
as generally observed in the data of Figure 1. fhivel
curve (PL(1.0;5)) shows that decreasing the timairsg
parameter from 10 to 5 effectively moves that pfakn
around lag 10 to around lag 5. It seems that #rarpeters
of the second curve (short-term decay of 1.0 anuk ti
scaling constant of 10) are about right. The fihab
curves (PL(3;1.0;10) and PL(2;1.0;10)) show theeffof

decay rated implements power law decay. However, asassuming multiple past references (3 and 2 timenasy,

our analysis shows, those effects are only valier danger
time intervals, as exemplified by the linear trémdhe log-
scale graph of odds of appearance as a functitagafince
the last appearance (e.g., see Figure 1 and 5helshort
run, within a lag of 5 to 10 appearances, thereais
substantial decrease in odds of appearance théd teu
captured by a short-term inhibition mechanism. sTéifect
is precisely what we are looking for to prevent-ofit
control reinforcement where retrieval leads torgdashort-
term activation boost, which in turn leads to meatgieval,
and so on until the system ends up completely de&dt.
A short-term inhibition component in the base-level
activation learning equation would actually resaltower
activation for the next retrieval(s), which wouldepent
the same chunk from being retrieved again and gther
chunks a chance of being retrieved instead. Bhéxactly
the functionality needed to implement many key grat
of behavior (e.g. Jones, Lebiere & Crossman, 2@0i¢h
as the ability of evaluating a set of alternatives.

We experimented with a number of different possible

variations of the base-level learning equation |uding

power-law and exponential decay for the short-term

respectively) as the original curve. One can e the
power law of practice is maintained at long lags
(significantly above 10) while the difference is
significantly reduced at short lags. The peak #sp
seems to increase slightly with practice. All dfese
effects reproduce the data quite well (see preiiguses).
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Figure 7: Inhibition effect of new base-level leéam



This new equation allows for multiple interpretaso The
main issue is identifying a neural construct teisrt can be
associated with. The most direct interpretatiomlgdoe to
associate it with short-term depotentiation knowimtibit

a neuron for a short period of time after its fifinUnder
that view, the short-term decay rate is simply haot
instance on a very small time scale of past prdposa

development of larger, smarter and more complexeisod
capable of unanticipated (reasonable) behavior.

We therefore put the new base-level learning mashan
to a stringent test of robustness. Since the probs out-
of-control retrieval loops, and the traditional @n is a
combination of chunk tagging (or finsts) with
corresponding constraints on retrieval, we focuseda

introduce multiple decay rates in long-term memorymodel of free recall (unconstrained by the envirenth

corresponding to different time scales (Andersangtiram
& Douglass, 1999), albeit here of an inhibitoryurat But
another interpretation would be to associate thiststerm
inhibition of recently accessed information withs it
presence in short-term memory rather than its acaes
long-term memory. Under that interpretation, whst
preventing the chunk from being retrieved from ldagnm

memory is not that it couldn't be accessed thendt, b With our

instead that it is still active in short-term memowhere

access is much quicker and can therefore preemgt thetrieval emerged.

process of retrieval from long-term memory. Thersh
term decay rate is therefore the rate of decayhantderm
memory, which is usually assumed to be much fakismn
that of long-term memory (e.g., Ridderinkhof ef a004).

Behavior

The next question is to determine the effectiversdghis
mechanism in generating appropriate behavior aartagh
the overall architecture. In a simple model ofefrecall
where a number of chunks compete for retrieval evith
any constraint, this new equation has been effectv
preventing out-of-control looping and implementirey
functional, if probabilistic, version of round-rabiaccess.
This capability for declarative retrieval is similto that
exhibited by a model of procedural selection tteatrhed
production rule utilities to implement a flexiblendh
probabilistic monitoring loop (Lebiere et al,
Gradual, seamless transition from declarative texgdural
control is a hallmark of human cognition. An imfzot
benefit of this new form of the base-level learnatgiation
is to provide the activation calculus in declaratretrieval
with the same sort of inhibition available to prdoeal
selection through error-correction feedback in piatithn
rule utilities. However, it is relatively easy tchaw
robustness (or at least non-pathological behavioiger
careful control conditions as implemented by
combination of the task model and its environmenthat

2008)

The model is given a fixed set of chunks and asted
retrieve any chunk without any constraints repdgtéfdr

a large number of times). Each chunk starts withdame
initial history, and hence the same activation.e Tharrent
base-level learning mechanism would immediately lea
a loop in which the same chunk would be retrievedro
and over again while all the other ones would rgdtien.
new base-level mechanism, however,

observed that a robust and flexible process of deobin
Figure 8 displays the frequenf
free recall of each chunk as a function of eachnklsu
rank order of retrieval frequency and the total bemof
recall iterations (varying from 100 to 1000 for dftunks).
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Figure 8: Frequencies of recall as function of itemk

The results are quite intriguing. The free rebahavior
is neither the traditional degenerate winner-takear its
opposite, which would be an even distribution ofate
frequencies over all chunks. This second extreanidnd
of perfect round-robin, would be cognitively imptalie,
as subjects in free recall experiments do forgatesdems

8and retrieve some multiple times. It might alsddss than

perfectly functional, since some items might desenore

we are looking for is greater robustness that presve fraquent retrieval as a function of their charastis such

degenerate behavior even when very little or ndrobins
exerted upon the model behavior by the controlcttine

as urgency or rate of change (e.g. Lebiere et GO8R
Instead, what emerges is a distribution of freqiemnthat

provided by the modeler or by the environment ftsel gjowly grows more uneven as the number of freelireca

(including other agents). That is, we want an @eer
robustness that does not originate from the modetrol

iterations gets larger. Stronger items slowly ejaeas
some are gradually forgotten. What is more rentdekas

structure authored by the modeler or that depemils qngat the frequency distribution seems to follow fever

triggers present in the environment (e.g. in expernital
design) but instead that results directly from tognitive
architecture and its mechanisms. Having this kaid
safeguard in the architecture would greatly religkie

law observed in many natural environments, whidt ihe
core of the base-level learning equation itselfhild/this
may seem natural, it was not at all a given sirfoe,
example, the previous base-level learning equatiai

burden of the cognitive modelers and allow thegisg reflected those distributions did not giveeris them

we



but instead led to degenerate, extreme distribstion Anderson, J. R., & Lebiere, C. (1998). The Atomic

Instead, finding one possible origin of this pheeown in Components of Thought. Mahwah, NJ: Lawrence

the cognitive system itself might provide one intpat Erlbaum Associates.

piece of puzzle that has fascinated cognitive s$isisnfor ~ Anderson, J. R. & Schooler, L. J. (1991). Reflawsiof the

decades (e.g. Simon, 1955) and is increasingly edeas environment in memory. Psychological Science, B-39

resulting from an interaction of the environmentdan 408.

human cognition itself (e.g., Manin, 2008). Anderson, J. R. & Schooler, L. J. (2000). The adept

nature of memory. In E. Tulving and F. I. M. Craik
Conclusion (Eds.) Handbook of memory, 557-570. New York:
It is important to note the limitations of thesesuts. Oxford University Press.

First and foremost, full validation of this new rheaism ~Anderson, J. R., Bothell, D., Byrne, M. D., Dougla$.,
requires showing that it can account directly foegise Lebiere, C., & Qin, Y . (2004). An integrated theaf
behavioral data, which we intend to do by takingsting the mind. Psychological Review 111, (4). 1036-1060.
models of memory phenomena and removing th¢luberman, B. A., Pirolli, P., F_>|_tkow_, J.E. & Lule)_sR. M.
safeguards handcrafted into them by modelers teepte ~ (1998). Strong Regularities in World Wide Web
degenerate behaviors, and showing that previoudtsesre Surfing. Science 280 , 5360, 95-97.

preserved. Also, our rational analysis approacksdwot JOnes, R.M., Crossman, J. A, Lebiere, C., & BBst).
claim that this inhibiton mechanism created these (2006). An abstract language for cognitive modglim
environmental  effects, rather that our cognitive Proceedings of the 7th International Conference on
mechanisms have adapted to them. However, whilerot _ C0gnitive Modeling. Trieste, Italy

mechanisms (e.g. application of grammatical and’©nes, R., Lebiere, C. & Crossman, J. A. (2007).
arithmetic rules) might also be responsible for overall Comparing Modeling Idioms in ACT-R and Soar. In

cognitive performance in these tasks, the new itibib Proceedings of the 8th International Conference on
mechanism definitely facilitates that performanéenally, Cognitive Modeling. Ann Arbor, MI.

one can wonder whether those external task chaistize ~ -€Piere, C. (1998). The dynamics of cognition: AGAR
(e.g. grammatical rules against repetition, chaiteéase model of cognitive arithmetic. Ph.D. Dissertati@MU

10 arithmetic) might not have themselves evolverkflect Computer Science Dept Technical Report CMU-CS-98-
pre-existing cognitive characteristics. Such a mheiteation 186. Pittsburgh, PA. Available at http://reports-
would require modeling alternative task variantsvedl as archive.adm.cs.cmu.edu/ ,
performing the same analysis in more naturaligimgins. ~ LePiere, C., Archer, R., Warwick, W., & Schunk, D.
We have presented data that demonstrate the reduced2005) Integrating modeling and simulation into a
short-term likelihood of recent items appearingiaga the general-purpose tool. In Proceedings of the 1lth
environment and an extension to the ACT-R architect ~ ntérnational ~ Conference  on  Human-Computer
that reflects this likelihood and produces moreustb  Interaction. July 22-27, 2005. Las Vegas, NV.
behavior than it did previously. We are curremtkploring ~ Lebiere, C., Archer, R., Best, B.,, & Schunk, D. @z
a number of additional lines of study. Empiricallye aim Modeling pilot performance with an integrated task
to replicate our findings in other human environmsesuch network and cognitive architecture approach. Igl&o
as computer navigation, web environments and dpatia D- & Hooey, B. (Eds.) Human Performance Modeling in

navigation. Neurally, we aim to find correlates of Aviation. Mahwah, NJ: Erlbaum. .
inhibition in mechanisms such as short-termMcDermott, J. & Forgy, C. (1978). Production system

depotentiation. Behaviorally, we want to underdthatter conflict resolution strategies. In D. A. Watermar¥.
how this new mechanism interacts with the resthef t Hayes-Roth (Eds.)Pattern-Directed Inference Systems,
architecture and which other emergent effects ghingive 177-199. Academic Press.

rise to, such as the spacing effect. This approaderlies Manin, D.Y. (2008). Zipf's law and avoidance of essive
our belief that applying multiple constraints tekitectural synonymy. Cognitive Science, 32(7), 1075-1098.

mechanisms is the best way to satisfy both sciergfals ~ PYlyshyn, ZW. (1989). The role of location indexes
such understanding human behavior and practicalsgoa SPatial perception: A sketch of the FINST spatilex

such as developing more robust cognitive models. ‘model. Cogpnition, 32, 65-97.
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A&
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