
Unit 3 Code Description

The experiments  in  this  unit  are  more  complicated  than those in the previous unit.   They involve 
collecting data and comparing it to existing experimental results and collecting vocal output from a 
model.  Many of the ACT-R commands involved were described with the last unit’s tasks.  The new 
commands  used  will  be described in  this  document  along with  more information  on creating  and 
running tasks, the parameters for adjusting finsts in the vision and declarative modules, buffer stuffing 
as it relates to the visual-location buffer, and a note about using the experiment files after changing 
them.

New ACT-R commands

open-exp-window and open_exp_window. This was introduced in the last unit.  Here we see it getting 
passed a keyword parameter which was not done in the last unit.  That parameter is a flag as to whether 
the window should be visible or virtual.  If the visible parameter has a true value (as appropriate for the 
language) then a real window will be displayed, and that is the default if not provided (which is how 
the previous unit used it).  If it is not true (again as appropriate) then a virtual window will be used and 
that will be demonstrated below in the section on running the experiments faster. 

new-tone-sound and new_tone_sound.  This function takes 2 required parameters and a third optional 
parameter.  The first parameter is the frequency of a tone to be presented to the model which should be 
a number.   The second is the duration of that tone measured in seconds.  If the third parameter is 
specified then it indicates at what time the tone is to be presented (measured in seconds), and if it is 
omitted then the tone is to be presented immediately.  At that requested time a tone sound will be made 
available to the model’s auditory module with the requested frequency and duration.

schedule-event-relative and schedule_event_relative. This function takes 2 required parameters and 
several keyword parameters (only two of which will be described here).  It is used to schedule ACT-R 
commands to be called during the running of the system.  The first parameter specifies an offset from 
the current ACT-R time at which the function should be called and is measured in seconds (by default). 
The second parameter is the name of the ACT-R command to call specified in a string.  The parameters 
to pass to that command are provided as a list using the keyword parameter params. If no parameters  
are provided then no parameters  are passed to that command.   If one wants to set  the time using 
milliseconds  instead  of  seconds then  the keyword  parameter  time-in-ms  in  Lisp or  time_in_ms in 
Python needs to be specified with a true value.   By scheduling commands to be called during the 
running of the model it is possible to have actions occur without having to stop the running model to do 
so  which  often  makes  writing  experiments  much  easier,  and  can  also  make  debugging  a  broken 
model/task easier because the ACT-R stepper will pause on those scheduled actions in the same way it 
will for other model actions.

In the sperling experiment we use this to  have the clear-exp-window command  called to erase the 
display while the task is running.  If you set the :trace-detail level of the model to high (not low which 



is how it is initially set) then you will actually see this command being executed in the trace on a line 
like this:

 
     0.941   NONE                   clear-exp-window (vision exp-window Sperling Experiment) 

Since this was not generated by one of the ACT-R modules it specifies “NONE” where the module 
name is normally shown and then it shows the command which was evaluated and the parameter it was 
passed, which in this case is the representation of the experiment window.

correlation. This function takes 2 required parameters which must be equal length lists of numbers. 
This function computes the correlation between the two lists of numbers.  That correlation value is 
returned.   There  is  an  optional  third  parameter  which  indicates  whether  or  not  to  also  print  the 
correlation value.  If the optional parameter is true or not specified then it is output, and if it is not true 
then it does not. 

mean-deviation  and  mean_deviation.  This  function  operates  just  like  correlation,  except  that  the 
calculation performed is the root mean square deviation between the data lists.

get-time  and  get_time. This function takes an optional parameter and it returns the current time in 
milliseconds.  If the optional parameter is not specified or specified as a true value, then the current 
ACT-R simulated time is returned.  If the optional parameter is specified as a non-true value then the 
time is taken from a real time clock.

output-speech.  The output-speech command in ACT-R is very similar to the output-key command 
which  we  used  in  the  previous  unit.   The  output-speech  command  is  called  automatically  by  a 
microphone  device  (which  is  installed  automatically  when  the  AGI  window  device  is  installed) 
whenever a model performs a speak action using the vocal buffer.  The command is executed at the 
time when the sound of that speech starts to occur i.e. it is essentially the same time that would be 
recorded if we were using a microphone to detect a person’s speech output.  It is passed two values 
which are the name of the model which is speaking and the string containing the text being spoken.

Response recording note

As was mentioned in the last unit, the monitoring functions are called in a separate thread from the 
main task execution.  As will be the case throughout the tutorial we are not using any special protection 
for accessing the globally defined variables in the different threads to keep the example code simple, 
but in the subitizing experiment there is actually the possibility for a problem since we are setting two 
different variables in the monitoring function and both are used in the main thread.  Without protecting 
them it is possible for the code in the main thread to try and use them both after only one has been set 
which could result in an error.  To avoid that here we set the response-time variable first since the main 
thread is waiting for the response variable to change before it tries to use the response-time value.  That 



is  sufficient  to  avoid  problems in  this  task (we could  have  also  waited  for  both  to  be set  before  
continuing as an alternative), but the best solution would really be to use appropriate thread protection 
tools.

Buffer stuffing

The buffer stuffing mechanism was introduced in this  unit,  and with regard to the  visual-location 
buffer it mentioned that one can change the default conditions that are checked to determine which 
item (if any) will be stuffed into the buffer.  The ACT-R command  which can be used to change that is 
called  set-visloc-default,  and  that  is  typically  placed  into  the  model  definition  when  a  different 
specification is needed.  The specification that you pass to it is the same as you would specify in a 
request to the visual-location buffer in a production.  Here are a few examples:

(set-visloc-default :attended new screen-x lowest)

(set-visloc-default screen-x current > screen-y 100)

(set-visloc-default kind text color red width highest)

set-visloc-default – This command sets the conditions that will be used to select the visual feature that 
gets stuffed into the visual-location buffer.  When the visual scene changes for the model (denoted by 
the proc-display event  which is  only shown when the :trace-detail  parameter  is  set  to high) if  the 
visual-location buffer  is  empty  a  visual-location  that  matches  the  conditions  specified  by  this 
command will be placed into the  visual-location buffer.  Effectively, what happens is that when the 
proc-display  event  occurs,  if  the  visual-location buffer  is  empty,  a  visual-location request  is 
automatically executed using the specification indicated with set-visloc-default.

Visual and declarative finst parameters

To adjust the number of  finsts that a model’s vision module has you can use the :visual-num-finsts 
parameter.  It can be set to any positive integer and the default value is 4.  To change the duration of  
finsts the :visual-finst-span parameter can be used.  It can be set to any positive number which specifies 
how long the vision module can maintain a finst in seconds.  The default value is 3 seconds.  The 
starting model for the subitizing assignment sets both of those parameters to 10 to make the modeling 
task easier – the model has ten finsts available and each will last for ten seconds.

The declarative module  has similar parameters that work the same way.  The number of  declarative 
finsts is set using the :declarative-num-finsts parameter, and it has a default value of 4.  The duration 
for  declarative  finsts  is  set  using  the  :declarative-finst-span  parameter,  and  the  default  value  is  3 
seconds.

Speeding up the experiments

Because it is often necessary to run a model multiple times and average the results for data comparison, 
running the model quickly can be important.  One thing that can greatly improve the time it takes to run 



the model (i.e. the real time that passes not the simulated time which the model experiences) is to have 
it interact with a virtual window instead of displaying a real window on the computer.  The virtual  
windows are an abstraction of a window interface that is internal to ACT-R, and from the model’s 
perspective there is no difference between a virtual window and a real window which is generated by 
the AGI commands.  Another significant factor with respect to how long it takes is whether or not the  
model is being run in real time mode.  In real time mode the model’s actions are synchronized with the 
actual passing of time, but when it is not in real time mode it uses its own simulated clock which can  
run much faster than real time.  Typically, when the model is running with a real window it is also 
running in real time so that one can actually watch it performing the task and to make sure the task 
display is updating appropriately.

Since it is usually very helpful to use a real window when creating a model for a task and debugging  
any problems which occur when running it all of the AGI tools for building and manipulating windows 
work exactly the same for real windows and virtual windows.  All that is necessary to switch between 
them is one parameter when the window is opened.  Thus, you can build the experiment and debug the 
model using a real window that you can see, and then with one change make the window virtual and 
run the model more quickly for data collection.  

The experiment code as provided for both of the tasks in this unit uses a real window and the model is 
run in real time mode so that you can watch it interact with that window.  

To change the  windows in  those tasks  to  virtual  windows requires  changing  the  call  to  open the 
window to specify the visible parameter as not true (nil in Lisp and False in Python).

Here are the current  lines from the sperling experiment files:

         (window (open-exp-window "Sperling Experiment" :visible t)) 

    window = actr.open_exp_window("Sperling Experiment", visible=True) 

Here in red is what would need to be changed to make those virtual windows instead:

         (window (open-exp-window "Sperling Experiment" :visible nil))

    window = actr.open_exp_window("Sperling Experiment", visible=False)

A similar change could be made in the subitize experiment from this unit.

To change the code to run the models in simulated time requires not specifying the second parameter as 
true in the call to run.

Here ares the calls that currently exists in the sperling files:

    (run 30 t) 

    actr.run(30,True)    



Removing that second parameter will run the models in simulated time instead of real time:

    (run 30)

    actr.run(30)    

Something else which can improve the time it takes to run a task is to turn off any output which it  
generates.  As was mentioned in the unit you can turn the model trace off by setting the :v parameter to 
nil.  If there is any other output in the experiment code as the task is running you will also want to 
disable that.  

For the sperling experiment the given code prints out the correct answers and model responses for each 
trial, and turning that off will help if you want to run a lot of trials to see the average performance.  In 
that code we have already added a variable which is used as a flag to control that output.  The global 
variables *show-responses* and show_responses control whether that information is printed.  In the 
given code they are set to true values, but if you change those to  nil  or  False  (respectively) it will 
suppress the output.

Adding a variable to control whether any output from the experiment is printed can be a useful thing to 
add when creating tasks for models that you want to run many times so that you can see the output  
when needed and quickly turn it off when you no longer need it.

Changing Experiment files

One last thing to note is that if you change the code in the experiment file then you will need to load 
that file again to have the changes take effect.  For the Lisp versions of the task you can simply load the 
file again to have the changes take effect,  but for Python importing the module again in the same 
session will not work.  One way to deal with that is to also import the importlib module.  That provides 
a reload function which can be used to force the module to be reimported to reflect the changes.  Here 
is an example of using that to load the sperling module again after changing it:

>>> import importlib
>>> importlib.reload(sperling)


	Unit 3 Code Description
	New ACT-R commands
	Response recording note
	Buffer stuffing
	Visual and declarative finst parameters
	Speeding up the experiments
	Changing Experiment files


