
ACT-R Tutorial 7/17/23 Unit Two

Unit 2: Perception and Motor Actions in ACT-R

2.1 ACT-R Interacting with the World

This unit will introduce some of the mechanisms which allow ACT-R to interact with the world,
which for the purposes of the tutorial will be experiments presented via the computer. This is
made possible with the addition of perceptual and motor modules which were originally
developed by Mike Byrne as a separate system called ACT-R/PM but which are now an
integrated part of the ACT-R architecture. These additional modules provide a model with
visual, motor, auditory, and vocal capabilities based on human performance, and also include
mechanisms for interfacing those modules to the world. The auditory, motor, and vocal modules
are based upon the corresponding components of the EPIC architecture developed by David
Kieras and David Meyer, but the vision module is based on visual attention work which was done
in ACT-R. The interface to the world which we will use in the tutorial allows the model to
interact with the computer i.e. process visual items presented, press keys, and move and click the
mouse, for tasks which are created using tools built into ACT-R for generating user interfaces. It
is also possible for one to extend that interface or implement new interfaces to allow models to
interact with other environments, but that is beyond the scope of the tutorial.

2.1.1 Experiments

From this point on in the tutorial most of the models will be performing an experiment or task
which requires interacting with the world in some way. That means that now instead of just
running the model itself one will have to run the corresponding task for the model to perform
instead, and that task will handle the running of the model. All of the tasks for the tutorial models
have been written in both ANSI Common Lisp and Python 3. The tutorial will show how to run
both versions of all the tasks, and the experiment description document in each unit will provide
additional details on how those tasks are implemented. From the model’s perspective, it does not
matter whether the Lisp or Python version of the task is used, and the single model file included
with the tutorial will run with either version producing the same results.

2.2 The First Experiment

The first experiment is very simple and consists of a display in which a single letter is presented.
The participant’s task is to press the key corresponding to that letter. When any key is pressed,
the display is cleared and the experiment ends. This experiment can be run for either a human
participant or for an ACT-R model, and the model in the demo2-model.lisp file in the tutorial is
able to perform this task. If you wish to run the task for a human participant then you must have
an ACT-R experiment window viewer running to see and interact with the task, and the ACT-R
Environment includes such a viewer which will be available as long as you do not close the
Control Panel window.1

1 There is also an additional application included with the ACT-R software which will allow the experiment windows
to be used through a browser. The readme file with the ACT-R standalone software contains instructions on how to
run that if you do not want to use the ACT-R Environment application.

1

ACT-R Tutorial 7/17/23 Unit Two

2.2.1 Running the Lisp version

The first thing you will need to do to run the Lisp version of the experiment is load the
experiment code. There are two ways that can be done:

• You can use the “Load ACT-R code” button in the Environment just as you loaded the
model files in unit 1. The file is called demo2.lisp and is found in the lisp directory of the ACT-R
tutorial.

• You can call the actr-load2 function directly from prompt specifying the location of that
file. If the tutorial directory is still located with the rest of the ACT-R files from the standalone
distribution then that would look like this:

? (actr-load "ACT-R:tutorial;lisp;demo2.lisp")

When you load that file it will also load the model which can perform the task from the demo2-
model.lisp file in the tutorial/unit2 directory, and if you look at the top of the Control Panel you
will see that it says DEMO2 under “Current Model”. To run the experiment you will call the
demo2-experiment function, and it has one optional parameter which indicates whether a human
will be performing the task. As a first run you should perform the task yourself, and to do that
you will evaluate the demo2-experiment function at the prompt in the ACT-R window and pass
it a value of t (the Lisp symbol representing true):

? (demo2-experiment t)

When you enter that a window titled “Letter recognition” will appear with a letter in it (the
window may be obscured by other open windows so you may have to arrange things to ensure
you can see everything you want). When you press a key while that experiment window is the
active window the experiment window will clear and that is the end of the experiment. The letter
you typed will be returned by the demo2-experiment function.

2.2.2 Running the Python version

To run the Python version you should first run an interactive Python session on your machine
(instructions on how to do that are not part of this tutorial and you will need to consult the Python
documentation for details). For the examples in this tutorial we will assume that the directory
containing the ACT-R Python modules (the tutorial/python directory) is either the current
directory for the Python session or that it has been added to the Python search path, and we will
also assume that the Python prompt is the three character sequence “>>>”. Once your Python
session is running there are two ways you can import the module:

2The Lisp load function could also be used, but that can vary based on the specific version of the software you are
using and may require specifying the entire path instead of using the shortcut of “ACT-R:”. The actr-load function
works the same in all versions.

2

ACT-R Tutorial 7/17/23 Unit Two

• You can call the import statement directly from the Python prompt:

>>> import demo2

• If you first import the actr module instead, then you can use the “Import Python module”
button in the Environment to pick a module to be imported into Python, and for this task the file
is demo2.py in the python directory of the ACT-R tutorial.

Importing the demo2 module will also have ACT-R load the model for this task, which is found
in the demo2-model.lisp file in the tutorial/unit2 directory, and if you look at the top of the
Control Panel you will see that it now says DEMO2 under “Current Model”. To run the
experiment you will call the experiment function in the demo2 module, and it has one optional
parameter which indicates whether a human will be performing the task. As a first run you
should perform the task yourself, and to do that you will call the experiment function at the
Python prompt and pass it the value True:

>>> demo2.experiment(True)

When you enter that a window titled “Letter recognition” will appear with a letter in it (the
window may be obscured by other open windows so you may have to arrange things to ensure
you can see everything you want). When you press a key while that experiment window is the
active window the experiment window will clear and that is the end of the experiment. The letter
you typed will be returned by the experiment function.

2.2.3 Running the model in the experiment

You can run the model through the experiment by calling the function without including the true
value that indicates a human participant. That would look like this for the two different versions:

? (demo2-experiment)

or
>>> demo2.experiment()

Regardless of which version you run, you will see the following trace of the model performing
the task:

 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
 0.000 VISION PROC-DISPLAY
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
 0.000 VISION visicon-update
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED FIND-UNATTENDED-LETTER
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED FIND-UNATTENDED-LETTER
 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

3

ACT-R Tutorial 7/17/23 Unit Two

 0.050 VISION Find-location
 0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-SELECTED ATTEND-LETTER
 0.050 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.050 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
 0.100 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.100 PROCEDURAL MODULE-REQUEST VISUAL
 0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.100 PROCEDURAL CLEAR-BUFFER VISUAL
 0.100 VISION Move-attention VISUAL-LOCATION0-1 NIL
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.185 VISION Encoding-complete VISUAL-LOCATION0-1 NIL
 0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0
 0.185 PROCEDURAL CONFLICT-RESOLUTION
 0.185 PROCEDURAL PRODUCTION-SELECTED ENCODE-LETTER
 0.185 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.185 PROCEDURAL BUFFER-READ-ACTION VISUAL
 0.185 PROCEDURAL QUERY-BUFFER-ACTION IMAGINAL
 0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
 0.235 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.235 PROCEDURAL MODULE-REQUEST IMAGINAL
 0.235 PROCEDURAL CLEAR-BUFFER VISUAL
 0.235 PROCEDURAL CLEAR-BUFFER IMAGINAL
 0.235 PROCEDURAL CONFLICT-RESOLUTION
 0.435 IMAGINAL SET-BUFFER-CHUNK-FROM-SPEC IMAGINAL
 0.435 PROCEDURAL CONFLICT-RESOLUTION
 0.435 PROCEDURAL PRODUCTION-SELECTED RESPOND
 0.435 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.435 PROCEDURAL BUFFER-READ-ACTION IMAGINAL
 0.435 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
 0.485 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.485 PROCEDURAL MODULE-REQUEST MANUAL
 0.485 PROCEDURAL CLEAR-BUFFER IMAGINAL
 0.485 PROCEDURAL CLEAR-BUFFER MANUAL
 0.485 MOTOR PRESS-KEY KEY V
 0.485 PROCEDURAL CONFLICT-RESOLUTION
 0.735 MOTOR PREPARATION-COMPLETE 0.485
 0.735 PROCEDURAL CONFLICT-RESOLUTION
 0.785 MOTOR INITIATION-COMPLETE 0.485
 0.785 PROCEDURAL CONFLICT-RESOLUTION
 0.885 KEYBOARD output-key DEMO2 v
 0.885 VISION PROC-DISPLAY
 0.885 VISION visicon-update
 0.885 PROCEDURAL CONFLICT-RESOLUTION
 0.970 VISION Encoding-complete VISUAL-LOCATION0-1 NIL
 0.970 VISION No visual-object found
 0.970 PROCEDURAL CONFLICT-RESOLUTION
 1.035 MOTOR FINISH-MOVEMENT 0.485
 1.035 PROCEDURAL CONFLICT-RESOLUTION
 1.035 ------ Stopped because no events left to process

Unlike the previous unit where we had to run the model using the Run button on the Control
Panel, the code which implements this experiment automatically runs the model to do the task. It
is not necessary that it operate that way, but it is often convenient to build the experiments for the

4

ACT-R Tutorial 7/17/23 Unit Two

models to do so, particularly in tasks like those used in later units where we will be running the
models through the experiments many times to collect performance measures.

Looking at that trace we see production firing being intermixed with actions of the vision,
imaginal, and motor modules as the model encodes the stimulus and issues a response. If you
watch the window while the model is performing the task you will also see a red circle drawn.
That is a debugging aid which indicates the model’s current point of visual attention, and can be
turned off if you do not want to see it. You may also notice that the task always presents the
letter “V”. That is done so that it always generates the same trace. In the following sections we
will look at how the model perceives the letter being presented, how it issues a response, and then
briefly discuss some parameters in ACT-R that control things like the attention marker and the
pseudo-random number generator.

2.3 Control and Representation

Before looking at the details of the new modules used in this unit we will first look at a difference
in how the information for the task is represented compared to the unit 1 models. If you open the
demo2-model.lisp file and look at the model definition you will find two chunk-types created for
this model:

(chunk-type read-letters step)
(chunk-type array letter)

The chunk-type read-letters specifies one slot which is called step and will be used to track the
current task state for the model. The other chunk-type, array, also has only one slot, which is
called letter, and will hold a representation of the letter which is seen by the model.

In unit 1, the chunk that was placed into the goal buffer had slots which held all of the
information relevant to performing the task. That approach is how ACT-R models were typically
built in older versions of the architecture, but now a more distributed representation of the
model’s task information across two buffers is the recommended approach to modeling with
ACT-R. The goal buffer should be used to hold control information – the internal representation
of what the model is doing and where it is in the task. A different buffer, the imaginal buffer,
should be used to hold a chunk which contains the information needed to perform the task. In the
demo2 model, the goal buffer will hold a chunk based on the read-letters chunk-type, and the
imaginal buffer will hold a chunk based on the array chunk-type.

2.3.1 The Step Slot

In this model, the step slot of the chunk in the goal buffer will maintain information about what
the model is doing, and it is used to explicitly indicate which productions are appropriate at any
time. This is often done when writing ACT-R models because it provides an easy means of
specifying an ordering of the productions and it can make it easier to understand the way the
model operates by looking at the productions. It is however not always necessary to do so, and
there are other means by which the same control flow can be accomplished. In fact, as we will
see in a later unit there can be consequences to keeping extra information in a buffer. However,

5

ACT-R Tutorial 7/17/23 Unit Two

because it does make the production sequencing in a model clearer you will see a slot named step
(or something similar) in many of the models in the tutorial. As an additional challenge for this
unit, you should try to modify the demo2 model so that it works without needing to maintain an
explicit step marker and thus not need to use the goal buffer at all.

2.4 The Imaginal Module

The first new module we will describe in this unit is the imaginal module. This module has a
buffer called imaginal which is used to create new chunks. These chunks will be the model’s
internal representation of information – its internal image (hence the name). Like any buffer, the
chunk in the imaginal buffer can be modified by the productions to build that representation
using RHS modification actions as shown in unit 1.

An important issue with the imaginal buffer is how a chunk first gets into the buffer. Unlike the
goal buffer’s chunk which we have been creating and placing there in advance of the model
starting, the imaginal module will create the chunk for the imaginal buffer in response to a
request from a production.

All requests to the imaginal module through the imaginal buffer are requests to create a new
chunk. The imaginal module will create a new chunk using the slots and values provided in the
request and place that chunk into the imaginal buffer. An example of this is shown in the action
of the encode-letter production of the demo2 model:

(P encode-letter
 =goal>
 ISA read-letters
 step attend
 =visual>
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 step respond
 +imaginal>
 isa array
 letter =letter
)

We will come back to the condition of that production later. For now, we are interested in this
request on the RHS:

 +imaginal>
 isa array
 letter =letter

This request to the imaginal buffer will result in the imaginal module creating a chunk which has
a slot named letter that has the value of the variable =letter. We see the request and its results in
these lines of the trace:

6

ACT-R Tutorial 7/17/23 Unit Two

 0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
...
 0.235 PROCEDURAL MODULE-REQUEST IMAGINAL
...
 0.235 PROCEDURAL CLEAR-BUFFER IMAGINAL
...
 0.435 IMAGINAL SET-BUFFER-CHUNK-FROM-SPEC IMAGINAL

When the encode-letter production fires it makes that request and automatically clears the buffer
at that time as happens for all buffer requests. Then, we see that the imaginal module performs
the action set-buffer-chunk-from-spec. This is similar to the set-buffer-chunk action we have
seen previously. However, instead of setting the indicated buffer to hold a copy of a specific
chunk as is done with the set-buffer-chunk action, that buffer is being set to hold a chunk which is
based on a provided specification (shortened to spec in the action name), and in this case, that
specification is the slots and values indicated in the request to the imaginal buffer.

Something to notice in the trace is that the buffer was not immediately set to have that chunk as a
result of the request. It took .2 seconds before the chunk was made available in the buffer. This
is an important aspect of the imaginal module – it takes time to build a representation. The
amount of time that it takes the imaginal module to create a chunk is a fixed cost, and the default
time is .2 seconds (that can be changed with a parameter). In addition to the time cost, the
imaginal module is only able to create one new chunk at a time. That does not affect this model
because it is only creating the one new chunk in the imaginal buffer, but in models which require
a richer representation, that bottleneck may be a constraint on how fast the model can perform the
task. In such situations, one should first verify that the module is available to create a new chunk
before making a request. That is done with a query of the buffer on the LHS, and that is done in
the encode-letter production seen above:

 ?imaginal>
 state free

Additional information about querying modules will be described later in the unit.

In this model, the imaginal buffer will hold a chunk which contains a representation of the letter
which the model reads from the screen. For this simple task, that representation is not necessary
because the model could use the information directly from the visual buffer to do the task, but for
most tasks there will be more than one piece of information which must be acquired
incrementally which requires storing the intermediate values as it progresses. Thus, for
demonstration purposes, this model records that information in the imaginal buffer’s chunk.

2.5 The Vision Module

Many tasks involve interacting with visible stimuli and the vision module provides the model
with a means for acquiring visual information. It is designed as a system for modeling visual
attention that assumes there are lower-level perceptual processes that generate the representations
with which it operates, but it does not model those perceptual processes in detail. The experiment
generation tools in ACT-R create tasks which can provide representations of text, lines, and

7

ACT-R Tutorial 7/17/23 Unit Two

button features from the displays it creates to the vision module. The ability to provide visual
feature information to the vision module is also available to modelers for creating new visual
features, but that is beyond the scope of the tutorial.

The vision module has two buffers. There is a visual buffer that holds a chunk which represents
an object in the visual scene and a visual-location buffer that holds a chunk which represents the
location of an object in the visual scene. In the demo2 model, visual actions are performed in the
productions find-unattended-letter and attend-letter.

2.5.1 Visual-Location buffer

The find-unattended-letter production applies whenever the goal buffer’s chunk has the value
start in the step slot (which is the value in the step slot of the chunk initially placed into the goal
buffer):

(P find-unattended-letter
 =goal>
 ISA read-letters
 step start
 ==>
 +visual-location>
 :attended nil
 =goal>
 step find-location
)

It makes a request of the visual-location buffer and it changes the goal buffer chunk’s step slot to
the value find-location. It is important to note that those values for the setp slot of the goal buffer
chunk are arbitrary. The values used in this model were chosen to help make clear what the
model is doing, but the model would continue to operate the same if all of the corresponding
references were consistently changed to other values instead.

A visual-location request asks the vision module to find the location of an object in its visual
scene that meets the specified requirements, build a chunk to represent the location of that object
if one exists, and place that chunk in the visual-location buffer.

The following portion of the trace reflects the actions performed by this production:

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-UNATTENDED-LETTER
 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.050 VISION Find-location
 0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0

We see the notice of the visual-location request and the automatic clearing of the visual-location
buffer due to the request being made by the production. Then the vision module reports that it is
finding a location, and after that it places a chunk into the buffer. Notice that there was no time

8

ACT-R Tutorial 7/17/23 Unit Two

involved in handling the request – all of those actions took place at time 0.050 seconds. The
visual-location requests always finish immediately which reflects the assumption that there is a
perceptual system within the vision module operating in parallel with the procedural module that
can make these visual features immediately available.

If you run the model through the task again and step through the model’s actions using the
Stepper you can use the “Buffers” tool to see that the chunk visual-location0-1 will be in the
visual-location buffer after that last event:

VISUAL-LOCATION: VISUAL-LOCATION0-1 [VISUAL-LOCATION0]
VISUAL-LOCATION0-1
 KIND TEXT
 VALUE TEXT
 COLOR BLACK
 HEIGHT 10
 WIDTH 7
 SCREEN-X 430
 SCREEN-Y 456
 DISTANCE 1080
 SIZE 0.19999999

There are a lot of slots in the chunk placed into the visual-location buffer, and when making the
request to find a location any of those slots can be used to constrain the results. However, we will
not need to do so for this unit and instead rely upon the ability of the vision module to remember
visual features it has previously attended. Unit 3 will look in more detail at those slots and how
to construct visual-location requests to search for items.

2.5.1.1 The attended request parameter

If we look at the request which was made of the visual-location buffer in the find-unattended-
letter production:
 +visual-location>
 :attended nil

we see that all it consists of is “:attended nil” in the request. This :attended specification is
called a request parameter. It is similar to specifying a slot in the request, but it does not
correspond to a slot in any chunk or chunk-type specification in the model. Request parameters
always start with the “:” character which is what distinguishes it from a slot. They can be
provided in a request to a buffer regardless of any chunk-type that is specified (or when no
chunk-type is specified as is the case here), and they are used to supply additional information to
the module about a request.

For a visual-location request one can use the :attended request parameter to specify whether the
vision module should try to find the location of an object which the model has previously looked
at (attended to) or not. If it is specified as nil, then the request is for a location which the model
has not attended, and if it is specified as t, then the request is for a location which has been

9

ACT-R Tutorial 7/17/23 Unit Two

attended previously. There is also a third option, new, which means that the model has not
attended to the location and that the object has also recently appeared in the visual scene.

2.5.2 The attend-letter production

The attend-letter production applies when the goal step is find-location, there is a chunk in the
visual-location buffer, and the vision module is not currently active with respect to the visual
buffer:
(P attend-letter
 =goal>
 ISA read-letters
 step find-location
 =visual-location>
 ?visual>
 state free
==>
 +visual>
 cmd move-attention
 screen-pos =visual-location
 =goal>
 step attend
)

On the LHS of this production are two tests that have not been used in previous models. The first
of those is a test of the visual-location buffer which has no constraints specified for the slots of
the chunk in that buffer. All that is necessary for this production is that there is a chunk in the
buffer – the details of its slots and values do not matter. The other is a query of the visual buffer.

2.5.3 Testing a module’s state

On the LHS of attend-letter a query is made of the visual buffer to test that the state of the
vision module is free. All buffers will respond to a query for their module’s state and the
possible values for that query are busy or free3. The test of state free is a check to make sure the
buffer being queried is available for a new request through the indicated buffer. If the state is
free, then it is safe to issue a new request through that buffer, but if it is busy then it is usually
not safe to do so.

You can use the “Buffers” tool in the Control Panel to see the current status of a buffer's queries
in addition to the chunk it contains. If you press the button labeled “Status” at the top right on the
buffer viewer, that will change the information shown from the contents of the buffer to its status
information. That shows the standard queries for each buffer along with the current value (either
t or nil) for such a query at this time as well as any additional queries which may be specific to
that buffer (details on all of the queries for each buffer can be found in the reference manual).

3There is a third state query which modules will respond to called error, but that is rarely used since different
modules use it to indicate different situations. The buffer failure query described in unit 1 is the more reliable and
consistent test of a request to a buffer failing.

10

ACT-R Tutorial 7/17/23 Unit Two

2.5.3.1 Jamming a module

Typically, a module is only able to handle one request to a buffer at a time, and that is the case for
both the imaginal and visual buffers which require some time to produce a result. Since all of
the model’s modules operate in parallel it might be possible for the procedural module to select a
production which makes a request to a module that is still working on a previous request. If a
production were to fire at such a point and issue a request to a module which is currently busy
and only able to handle one request at a time, that is referred to as “jamming” the module. When
a module is jammed, it will output a warning message in the trace to let you know what has
happened. What a module does when jammed varies from module to module. Some modules
ignore the new request, whereas others abandon the previous request and start the new one. As a
general practice it is best to avoid jamming modules.

Note that we did not query the state of the visual-location buffer in the find-unattended-letter
production before issuing the visual-location request. That is because we know that those
requests always complete immediately and thus the state of the vision module for the visual-
location buffer is always free. We did however test the state of the imaginal module before
making the request to the imaginal buffer in the encode-letter production. That query is not
really necessary in this model because that is the only request to the imaginal module in the
model and that production will not fire again because of the change to the goal buffer chunk’s
step slot. Thus there is no risk of jamming the imaginal module in this model, but omitting
queries which appear to be unnecessary can be a risky practice. It is always a good idea to query
the state in every production that makes a request that could potentially jam a module even if you
think that it will not happen because of the structure of the other productions in the model. Doing
so makes it clear to anyone else who may read the model, and it also protects you from problems
if you decide later to apply that model to a different task where the assumption which avoids the
jamming no longer holds.

2.5.3.2 Strict Safety

In fact, like the strict harvesting mechanism described in unit 1 for automatically clearing buffers,
there is also a “strict safety” mechanism which will automatically add a query for state free to a
production that makes a request to a buffer which does not already have a query for that buffer
(except for the goal, retrieval, and visual-location buffers which do not lead to jamming). That
automatic query should prevent jamming in most cases, but explicitly adding queries to
productions is still the recommended approach for readability of the model. The models in the
tutorial will all include explicit queries and not rely upon the strict safety mechanism.

2.5.4 Chunk-type for the visual-location buffer

You may have noticed that we did not specify a chunk-type with either the request to the visual-
location buffer in the find-unattended-letter production or its testing in the condition of the
attend-letter production. That was because we didn’t specify any slots in either of those places
(recall that :attended is a request parameter and not a slot) thus there is no need to specify a
chunk-type for verification that the slots used are correct. If we did need to request or test
specific features with the visual-location buffer there is a chunk-type named visual-location

11

ACT-R Tutorial 7/17/23 Unit Two

which one can use to do so which has the slots shown above for the chunk in the visual-location
buffer.

2.5.5 Visual buffer

On the RHS of the attend-letter production it makes a request of the visual buffer which
specifies two slots: cmd and screen-pos:

 +visual>
 cmd move-attention
 screen-pos =visual-location

Unlike the other buffers which we have seen so far, the visual buffer is capable of performing
different actions in response to a request. The cmd slot in a request to the visual buffer indicates
which specific action is being requested. In this request that is the value move-attention which
indicates that the production is asking the vision module to move its attention to some location,
create a chunk which encodes the object that is there, and place that chunk into the visual buffer.
The location to which the module should move its attention is specified in the screen-pos (short
for screen-position) slot of the request. In this production, that location is the chunk that is in the
visual-location buffer (remember that the condition specifying a buffer test also binds the
variable naming the buffer to the chunk it contains). The following portion of the trace shows
this request and the results:

 0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
...
 0.100 PROCEDURAL MODULE-REQUEST VISUAL
...
 0.100 PROCEDURAL CLEAR-BUFFER VISUAL
 0.100 VISION Move-attention VISUAL-LOCATION0-1 NIL
...
 0.185 VISION Encoding-complete VISUAL-LOCATION0-1 NIL
 0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0

The request to move-attention is made at time 0.100 seconds and the vision module reports
receiving that request at that time as well. Then 0.085 seconds pass before the vision module
reports that it has completed encoding the object at that location, and it places a chunk into the
visual buffer at time 0.185 seconds. Those 85 ms represent the time to shift attention and create
the chunk representing the visual object. Altogether, counting the two production firings (one to
request the location and one to harvest the result and request the attention shift) and the 85 ms to
execute the attention shift and object encoding, it takes 185 ms to create the chunk that encodes
the letter on the screen.

If you step through the model you will find this chunk in the visual buffer after those actions
have occurred:

VISUAL: VISUAL-CHUNK0 [TEXT0]
VISUAL-CHUNK0
 SCREEN-POS VISUAL-LOCATION0-0
 VALUE "V"

12

ACT-R Tutorial 7/17/23 Unit Two

 COLOR BLACK
 HEIGHT 10
 WIDTH 7
 TEXT T

Most of the chunks created for the visual buffer by the vision module are going to have a
common set of slots. Those will include the screen-pos slot which holds the location chunk
which represents where the object is located (which will typically have the same information as
the location to which attention was moved) and then color, height, and width slots which hold
information about the visual features of the object that was attended. In addition, depending on
the details of the object which was attended, other slots may provide more details. When the
object is text from an experiment window, like this one, the value slot will hold a string that
contains the text encoded from the screen. We will describe some of the chunk-types that specify
the slots for visual items below.

After a chunk has been placed in the visual buffer the model harvests that chunk with the encode-
letter production:

(P encode-letter
 =goal>
 ISA read-letters
 step attend
 =visual>
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 step respond
 +imaginal>
 isa array
 letter =letter
)

It makes a request to the imaginal buffer to create a new chunk which will hold a representation
of the letter as was described in the section above on the imaginal module.

2.5.6 Chunk-types for the visual buffer

As with the visual-location buffer you may have noticed that we also didn’t specify a chunk-type
with the request of the visual buffer in the attend-letter production or the harvesting of the
chunk in the encode-letter production. Unlike the visual-location buffer, there actually are slots
specified in both of those cases for the visual buffer. Thus, for added safety we should have
specified a chunk-type in both of those places to validate the slots being used.

For the chunks placed into the visual buffer by the vision module there is a chunk-type called
visual-object which specifies the slots: screen-pos, value, status, color, height, and width. For the
objects which the vision module encodes from the experiment window interface the visual-object
chunk-type is always an acceptable choice. Therefore a safer specification of the encode-letter
production would include the chunk-type declaration shown here in red:

13

ACT-R Tutorial 7/17/23 Unit Two

(P encode-letter
 =goal>
 ISA read-letters
 step attend
 =visual>
 ISA visual-object
 value =letter
 ?imaginal>
 state free
==>
...
)

For the request to the visual buffer there are a couple of options available for how to include a
chunk-type declaration to verify the slots. The first option is to use the chunk-type named vision-
command which includes all of the slots for all of the requests which can be made to the visual
buffer:

 +visual>
 isa vision-command
 cmd move-attention
 screen-pos =visual-location

Because that contains slots for all of the different requests which the visual buffer can handle it is
not as safe as a more specific chunk-type which only contains the slots for the specific command
being used. For the move-attention command there is another chunk-type called move-attention
which only contains the slots that are valid for the move-attention request. Therefore, a more
specific declaration for the request to the visual buffer for the vision module to move attention to
an object would be:

 +visual>
 isa move-attention
 cmd move-attention
 screen-pos =visual-location

Specifying move-attention twice in that request looks a little awkward, and later in the tutorial we
will describe a way to avoid that redundancy and still maintain the safety of the chunk-type
declaration.

2.5.7 Other Vision module actions

If you look closely at the trace you will find that there are seven other events which are attributed
to the vision module that we have not yet described:

 0.000 VISION PROC-DISPLAY
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
 0.000 VISION visicon-update
...
 0.885 VISION PROC-DISPLAY

14

ACT-R Tutorial 7/17/23 Unit Two

 0.885 VISION visicon-update
...
 0.970 VISION Encoding-complete VISUAL-LOCATION0-1 NIL
 0.970 VISION No visual-object found

These actions represent activity which the vision module has performed without being requested
to do so. The ones which indicate actions of proc-display and visicon-update are notices of
internal updates which may be useful for the modeler to know, but are not directly relevant to the
model itself. The proc-display actions indicate that something has happened which has caused the
vision module to reprocess the information which is available to it. The one at time 0 happens
because that is when the model first begins to interact with the display, and the one at time .885
occurs because when the model pressed the key the screen was erased. Those are followed at the
same times (though not necessarily immediately) by actions which say visicon-update. The
visicon-update action is an indication that the reprocessing of the visual information resulted in
an actual change to the information available in the vision module.

The other event at time 0 is the result of a mechanism in the vision module which we will not
discuss until the next tutorial unit, so for now you should just ignore it. The actions at time .970
will be described in the next section.

2.5.8 Visual Re-encoding

The two lines in the trace of the model at time .970 performed by the vision module were not the
result of a request in a production:

 0.970 VISION Encoding-complete VISUAL-LOCATION0-1 NIL
 0.970 VISION No visual-object found

The first of those is an encoding-complete action as we saw above when the module was
requested to move-attention to a location. This encoding-complete is triggered by the proc-
display which occurred at time 0.885 in response to the screen being cleared after the key press.
If the vision module is attending to a location when it reprocesses the visual scene it will
automatically re-encode the information at the attended location to encode any changes that may
have occurred there. This re-encoding takes 85 ms just as an explicit request to attend an item
does. If the visual-object chunk representing that item is still in the visual buffer it will be
updated to reflect any changes. If there is no longer a visual item on the display at the location
where the model is attending (as is the case here) then the trace will show a line indicating that no
object was found. That will result in the vision module noting a failure in the visual buffer.

While this automatic re-encoding process of the vision module is a useful component of the
module, it does require that you be careful when writing models that process changing displays.
In particular, since the module is busy while the re-encoding is occurring, the vision module
cannot handle a new attention shift. This is one reason why it is important to query the visual
state before all visual requests to avoid jamming the vision module – there may be activity other
than that which is requested explicitly by the productions.

15

ACT-R Tutorial 7/17/23 Unit Two

2.6 Learning New Chunks

This process of seeking the location of an object in one production, switching attention to the
object in a second production, and harvesting the object in a third production is a common
process in ACT-R models for handling perceptual information. Something to keep in mind about
that processing is that this is one way in which ACT-R can acquire new declarative chunks. As
was noted in the previous unit, the declarative memory module stores the chunks which are
cleared from buffers, and that includes the perceptual buffers. Thus, as those perceptual chunks
are cleared from their buffers, they will be recorded in the model’s declarative memory.

2.7 The Motor Module

When we speak of motor actions in ACT-R we are only concerned with hand movements. It is
possible to extend the motor module to other modes of action, but the provided motor module is
built around controlling a pair of hands. In this unit the model will only be performing finger
presses on a virtual keyboard, but there are also actions available for the model’s hands to use a
virtual mouse or joystick. It is also possible for the modeler to create additional motor
capabilities and new devices to interact with, but that is beyond the scope of the tutorial.

The buffer for interacting with the motor module is called the manual buffer. Unlike other
buffers however, the manual buffer will not have any chunks placed into it by its module. It is
only used to issue commands and to query the state of the motor module. As with the vision
module, you should always check to make sure that the motor module is free before making any
requests to avoid jamming it. The manual buffer query to test the state of the module works the
same as the one described for the vision module:

?manual>
 state free

That query will be true when the module is available.

The motor module actually has a more complex set of internal states than just free or busy
because there are multiple stages in performing the motor actions. By testing those internal states
it is possible to make a new request to the motor module before the previous one has fully
completed if it does not conflict with the ongoing action. However we will not be discussing the
details of those internal states in the tutorial, and testing the overall state of the module will be
sufficient for performing all of the tasks used in the tutorial.

The respond production from the demo2 model shows the manual buffer in use:

(P respond
 =goal>
 ISA read-letters
 step respond
 =imaginal>
 isa array
 letter =letter

16

ACT-R Tutorial 7/17/23 Unit Two

 ?manual>
 state free
==>
 =goal>
 step done
 +manual>
 cmd press-key
 key =letter
)

This production fires when the letter slot of the chunk in the imaginal buffer has a value, the goal
buffer chunk’s step slot has the value respond, and the manual buffer indicates that the motor
module is free. A request is made to press the key corresponding to the letter from the letter slot
of the chunk in the imaginal buffer and the step slot of the chunk in the goal buffer is changed to
done.
Because there are many different actions which the motor module is able to perform, when
making a request to the manual buffer a slot named cmd is used to indicate which action to
perform. The press-key action used here assumes that the model’s hands are located over the
home row on the keyboard (which they are by default when using the provided experiment
interface). From that position a press-key request will move the appropriate finger to touch type
the character specified in the key slot of the request and then return that finger to the home row
position.
Here are the events related to the manual buffer request from that production firing:

 0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
...
 0.485 PROCEDURAL MODULE-REQUEST MANUAL
...
 0.485 PROCEDURAL CLEAR-BUFFER MANUAL
 0.485 MOTOR PRESS-KEY KEY V
...
 0.735 MOTOR PREPARATION-COMPLETE 0.485
...
 0.785 MOTOR INITIATION-COMPLETE 0.485
...
 0.885 KEYBOARD output-key DEMO2 v
...
 1.035 MOTOR FINISH-MOVEMENT 0.485

When the production is fired at time 0.485 seconds a request is made to press the key, the buffer
is automatically cleared4, and the motor module indicates that it has received a request to press
the “v” key. However, it takes 250ms to prepare the features of the movement (preparation-
complete), 50ms to initiate the action (initiation-complete), another 100ms until the key is actual
struck and detected by the keyboard (output-key), and finally it takes another 150ms for the
finger to return to the home row and be ready to move again (finish-movement). Thus the time of
the key press is at 0.885 seconds, however the motor module is still busy until time 1.035
seconds. The numbers shown after the motor actions of preparation-complete, initiation-
complete, and finish-movement are the time of the request to which they correspond for
reference. The press-key request does not model the typing skills of an expert typist, but it does

4Even though the motor module does not put chunks into its buffer, the procedural module still performs the clear
action since it treats all buffers the same because it does not know the details of how other modules operate.

17

ACT-R Tutorial 7/17/23 Unit Two

represent someone who is able to touch type individual letters competently without looking, at
about 40 words per minute, which is usually a sufficient mechanism for modeling average
performance in simple keyboard response tasks.

2.7.1 Motor module chunk-types

Like the visual-location and visual buffer requests the production which makes the request to the
manual buffer did not specify a chunk-type. The manual buffer request is very similar to the
request to the visual buffer. It has a slot named cmd which contains the action to perform and
then additional slots as necessary to specify details for performing that action. The options for
declaring a chunk-type in the request are also very similar to those for the visual buffer.

One option is to use the chunk-type named motor-command which includes all of the slots for all
of the requests which can be made to the manual buffer:

 +manual>
 isa motor-command
 cmd press-key
 key =letter

Another is to use a more specific chunk-type named press-key that only has the valid slots for the
press-key action (cmd and key):

 +manual>
 isa press-key
 cmd press-key
 key =letter

Again, that repetition is awkward and we will come back to that later in the tutorial.

2.8 Strict Harvesting

As mentioned in unit 1, the “strict harvesting” mechanism will implicitly clear a chunk from a
buffer if the buffer is tested on the LHS of a production and that buffer is not modified on the
RHS of the production. This mechanism is displayed in the events of the attend-letter, encode-
letter, and respond productions which harvest, but do not modify the visual-location, visual,
and imaginal buffers respectively:

 0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
...
 0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
...
 0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
...
 0.235 PROCEDURAL CLEAR-BUFFER VISUAL
...
 0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
...
 0.485 PROCEDURAL CLEAR-BUFFER IMAGINAL

18

ACT-R Tutorial 7/17/23 Unit Two

If one wants to keep a chunk in a buffer after a production fires without modifying the chunk then
it is valid to specify an empty modification to do so. For example, if one wanted to keep the
chunk in the visual buffer after encode-letter fired we would only need to add an =visual> action
to the RHS:

(P encode-letter-and-keep-chunk-in-visual-buffer
 =goal>
 ISA read-letters
 step attend
 =visual>
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 step respond
 +imaginal>
 isa array
 letter =letter
 =visual>
)

The strict harvesting mechanism also applies to the buffer failure query. A production which
makes a query for buffer failure will also result in an automatic clearing of the buffer. That is
done because clearing the buffer also clears the failure status, and having that automatically
cleared makes it easier to write a model that handles failure conditions since the query will be
false immediately after the production that tested it fires preventing it from firing again until there
is another failure.

2.9 More ACT-R Parameters

The model code description document for unit 1 introduced the sgp command for setting ACT-R
parameters. In the demo2 model the parameters are set like this:

(sgp :seed (123456 0))
(sgp :v t :show-focus t :trace-detail high)

All of these parameters are used to control how the software operates and do not affect the
model’s performance of the task. These settings are used to make this model a good example for
showing the visual and motor actions. The :trace-detail parameter was described in the unit 1
code document and setting it to high ensures that all of the details are shown in the trace. The
others are described in detail in the code document for this unit, but we will describe the :v
(verbose) parameter briefly here since it is an important one. The :v parameter controls whether
the trace of the model is output. If :v is t then the trace is displayed and if :v is set to nil the trace
is not output. The software can run significantly faster when the trace is turned off, and that will
be important in later units when we are running the models through the experiments multiple
times to collect data.

19

ACT-R Tutorial 7/17/23 Unit Two

2.10 Unit 2 Assignment

Your assignment is to write a model which uses the visual and motor capabilities introduced in
the demo2 model to perform a slightly more complex experiment. The new experiment presents
three letters on the screen, and two of those letters will be the same. The participant's task is to
press the key that corresponds to the letter that is different from the other two. The code to
perform the experiment is found in the unit2 file in the Lisp and Python directories. By default it
will load the model found in the tutorial/unit2/unit2-assignment-model.lisp file. That initial
model file only contains two chunk-type definitions and creates a chunk to indicate the initial
goal which is placed into the goal buffer.

The experiment is run very much like the demonstration experiment described earlier, and we
will repeat the detailed instructions for how to load and run an experiment again here. In future
units however we will assume that you are familiar with the process and only indicate the
functions necessary to run the experiments.

2.10.1 Running the Lisp version

The first thing you will need to do to run the Lisp version of the experiment is load the
experiment code. That can be done using the “Load ACT-R code” button in the Environment.
The file is called unit2.lisp and is found in the tutorial/lisp directory of the ACT-R software.
When you load that file it will also load the model from the unit2-assignment-model.lisp file in
the tutorial/unit2 directory, and if you look at the top of the Control Panel after loading the file
you will see that it says UNIT2 under “Current Model”. To run the experiment you will call the
unit2-experiment function, and it has one optional parameter which indicates whether a human
participant will be performing the task. As a first run you should perform the task yourself, and
to do that you will evaluate the unit2-experiment function at the prompt in the ACT-R window
and pass it a value of t (the Lisp symbol representing true):

? (unit2-experiment t)

When you enter that, a window titled “Letter difference” will appear with three letters in it.
When you press a key while that experiment window is the active window the experiment will
record your key press and determine if it is the correct response. If the response is correct unit2-
experiment will return t:

? (unit2-experiment t)
T
?

and if it is incorrect it will return nil:

? (unit2-experiment t)
NIL
?

20

ACT-R Tutorial 7/17/23 Unit Two

To run the model through the task you call the unit2-experiment function without providing a
parameter. With the initial model that will result in this which returns nil indicating an incorrect
response (because the model did not make a response):

? (unit2-experiment)
 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
 0.000 VISION visicon-update
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.500 PROCEDURAL CONFLICT-RESOLUTION
 0.500 ------ Stopped because no events left to process
NIL

2.10.2 Running the Python version

To run the Python version you should first run an interactive Python session on your machine
(you can use the same session used for the demonstration experiment if it is still open). Then you
can import the unit2 module which is in the tutorial/python directory of the ACT-R software. If
this is the same session you used before there will not be a notice that it has connected to ACT-R
because it is already connected:

>>> import unit2
>>>

If this is a new session then it will print the confirmation that it has connected to ACT-R:

>>> import unit2
ACT-R connection has been started.

The unit2 module will also have ACT-R load the unit2-assignment-model.lisp file from the
tutorial/unit2 directory, and if you look at the top of the Control Panel after you import the unit2
module you will see that it now says UNIT2 under “Current Model”.

Alternatively, if you have imported the actr module into Python you can use the “Import Python
module” button in the Environment to pick a module to be imported into Python, and for this task
the file is unit2.py in the python directory of the ACT-R tutorial.

To run the experiment you will call the experiment function from the unit2 module, and it has
one optional parameter which indicates whether a human participant will be performing the task.
As a first run you should perform the task yourself, and to do that you will call the experiment
function at the Python prompt and pass it the value True:

>>> unit2.experiment(True)

When you enter that a window titled “Letter difference” will appear with three letters in it. When
you press a key while that experiment window is the active window the experiment will record
your key press and determine whether it was the correct response or not. If it was correct it will
return the value True:

21

ACT-R Tutorial 7/17/23 Unit Two

>>> unit2.experiment(True)
True

If it was not correct it will return False:

>>> unit2.experiment(True)
False

To run the model through the task you call the experiment function without providing a
parameter. With the initial model that will result in this which returns False indicating an
incorrect response (because the model did not make a response):

>>> unit2.experiment()
 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
 0.000 VISION visicon-update
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.500 PROCEDURAL CONFLICT-RESOLUTION
 0.500 ------ Stopped because no events left to process
False

2.10.3 Modeling task

Your task is to write a model that always responds correctly when performing the task. In doing
this you should use the demo2 model as a guide. It reflects the way to interact with the imaginal,
vision, and motor modules and the productions it contains are similar to the productions you will
need to write. You will also need to write additional productions to read the other letters and
decide which key to press.

You are provided with a chunk-type you may use for specifying the goal chunk, and the starting
model already creates one and places it into the goal buffer. This chunk-type is the same as the
one used in the demo2 model and only contains a slot named step:

(chunk-type read-letters step)

The initial goal provided looks just like the one used in demo2:

 (goal isa read-letters step start)

There is an additional chunk-type specified which has slots for holding the three letters which can
be used for the chunk in the imaginal buffer:

(chunk-type array letter1 letter2 letter3)

22

ACT-R Tutorial 7/17/23 Unit Two

You do not have to use these chunk-types to solve the problem. If you have a different
representation you would like to use feel free to do so. There is no one “right” model for the task,
but for this assignment your model should follow the recommendation that any control
information it uses is in the goal buffer and the problem representation is kept in the imaginal
buffer. Otherwise, as long as the model is always correct at the task that is sufficient for this
assignment.

In later units we will be comparing the model’s performance to data from real experiments.
Then, how well the model fits the data can be used as a way to decide between different
representations and models, but that is not the only way to decide. Cognitive plausibility is
another important factor when modeling human performance – you want the model to do the task
in a way that is comparable to how a person does the task. A model that fits the data perfectly
using a method completely unlike a person is usually not a very useful model of the task.

23

ACT-R Tutorial 7/17/23 Unit Two

References

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level cognition
and its relation to visual attention. Human Computer Interaction, 12(4), 439-462.

Byrne, M. D., (2001). ACT-R/PM and menu selection: Applying a cognitive architecture to HCI.
International Journal of Human-Computer Studies, 55, 41-84.

Kieras, D. & Meyer, D.E. (1997). An overview of the EPIC architecture for cognition and
performance with application to human-computer interaction. Human-Computer Interaction, 12,
391-438.

24

http://act-r.psy.cmu.edu/wordpress/?post_type=publications&p=14005
http://act-r.psy.cmu.edu/wordpress/?post_type=publications&p=14005
http://www.umich.edu/~bcalab/documents/KierasMeyer1997.pdf
http://www.umich.edu/~bcalab/documents/KierasMeyer1997.pdf
http://chil.rice.edu/byrne/Pubs/byrne2001IJHCS.pdf

	Unit 2: Perception and Motor Actions in ACT-R
	2.1 ACT-R Interacting with the World
	2.1.1 Experiments

	2.2 The First Experiment
	2.2.1 Running the Lisp version
	2.2.2 Running the Python version
	2.2.3 Running the model in the experiment

	2.3 Control and Representation
	2.3.1 The Step Slot

	2.4 The Imaginal Module
	2.5 The Vision Module
	2.5.1 Visual-Location buffer
	2.5.1.1 The attended request parameter

	2.5.2 The attend-letter production
	2.5.3 Testing a module’s state
	2.5.3.1 Jamming a module
	2.5.3.2 Strict Safety

	2.5.4 Chunk-type for the visual-location buffer
	2.5.5 Visual buffer
	2.5.6 Chunk-types for the visual buffer
	2.5.7 Other Vision module actions
	2.5.8 Visual Re-encoding

	2.6 Learning New Chunks
	2.7 The Motor Module
	2.7.1 Motor module chunk-types

	2.8 Strict Harvesting
	2.9 More ACT-R Parameters
	2.10 Unit 2 Assignment
	2.10.1 Running the Lisp version
	2.10.2 Running the Python version
	2.10.3 Modeling task

	References

