
Multiple Models

• More than one model can be defined

– Define-model

– Clear-all removes all models

• All models run when ACT-R runs

– same clock

• Each is independent of the others

– Only share the clock

Differences in output

• Models are indicated in warnings and the trace

> (load "ACT-R:examples;unit-1-together-1-mp.lisp")

; Loading ACT-R:examples;unit-1-together-1-mp.lisp

(C:\Users\db30\Desktop\actr7\examples\unit-1-together-1-mp.lisp)

#|Warning (in model SEMANTIC): Creating chunk CATEGORY with no slots |#

#|Warning (in model SEMANTIC): Creating chunk PENDING with no slots |#

#|Warning (in model SEMANTIC): Creating chunk YES with no slots |#

#|Warning (in model SEMANTIC): Creating chunk NO with no slots |#

T

> (run 1)

 0.000 COUNT GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL

 0.000 SEMANTIC GOAL SET-BUFFER-CHUNK GOAL G1 NIL

 0.000 ADDITION GOAL SET-BUFFER-CHUNK GOAL SECOND-GOAL NIL

 0.000 COUNT PROCEDURAL CONFLICT-RESOLUTION

 0.000 COUNT PROCEDURAL PRODUCTION-SELECTED START

 0.000 COUNT PROCEDURAL BUFFER-READ-ACTION GOAL

 0.000 SEMANTIC PROCEDURAL CONFLICT-RESOLUTION

 ...

Working with them

• Have to indicate which model

> (dm)

#|Warning: get-module called with no current model. |#

#|Warning: No declarative memory module found |#

• Lisp: current-model, with-model, and with-model-eval commands
– With-model uses the specific name given
– With-model-eval evaluates the expression for name

• Python: actr.current_model and actr.set_current_model

? (with-model count (dm))

FIRST-GOAL-0

 START 2

 END 4

 COUNT 4

…

? (let ((model 'count))

 (with-model-eval model

 (dm)))

…

? (with-model count

 (current-model))

COUNT

>>> actr.set_current_model('count')

>>> actr.dm()

FIRST-GOAL-0

 START 2

 END 4

 COUNT 4

…

>>> actr.current_model()

'count'

The Environment

• Current model selection

• Windows indicate which model

Creating multiple identical models

• Specify the model code in a list

(defparameter *model-code*

 '((sgp :v t)

 (p do-nothing

 ==>

)))

• Use define-model-fct to create the models

(define-model-fct 'model1 *model-code*)

(define-model-fct 'model2 *model-code*)

(define-model-fct 'model3 *model-code*)

Implementing a task

• Consider the level of abstraction

– Necessary and convenient

• Determine the model interactions

– How does it perceive and act

• How will it be run

Continuous running

• Easy to stop and start
• Monitor for the actions

– Output-key (zbrodoff unit 4)
– Output-speech (subitizing unit 3)
– Move-cursor & Click-mouse

• Scheduled events
– Sperling unit 3

• Use button action functions
– Bst unit 6

• Run the model(s) until task over

Run-until-condition

• Instead of specifying a time to run, specify a function that indicates when
to stop running

? (run-until-condition 'game-over)

> actr.run_until_condition("done")

• Possible gotcha

– Model isn’t doing things right and loops forever
– Add a time limit and/or a safety stop button

(defun game-over (time)

 (or *safety-stop* *game-over* (> time 1000000)))

def is_game_over(time):

 return (safety_stop or game_over or (time > 1000000))

• Downside
– Run-until-condition can be slower because it calls the test fn a lot

Schedule a break event to stop ACT-R

• Run model(s) very long time

• When task complete schedule a break event

– Probably also still want a safety stop

 (schedule-break-relative 0)

 actr.schedule_break_relative(0)

Simple two player game

• 6 spaces in a line

• Players’ pieces start at opposite ends facing each
other

• Alternating turns, each can move forward 1 or 2
spaces

• A player wins when landing on or passing opponent

1 2

Many ways to implement

• No interface, goal modification

• No window, but visual information

• One window both players press buttons

• One window players speak the move

• Two windows, one per model

No windows explicit goal chunks

• Like the 1-hit blackjack task

• All information provided in a goal chunk

– Including which player

• Each player gets a new goal when it needs to
make a move and when game over

• Use a !eval! to indicate its action

Pros and cons

• No GUI code

• Model states set externally

• Chunk manipulation code

– Modifying while model using it could be confusing

No window but still visual info

• Provide custom visicon features directly

– Can contain any info needed

• Model will press keys to indicate move

Add/delete/modify visicon-features

• Specify the visual-location and visual object
chunks’ slot values

• Location must have position info

– Screen-x and screen-y (default)

• Anything else is up to the modeler

Adding visicon feature example
• Directly specify the chunks for the location and object

– Single value goes to both chunks (except position info)
– Two values: first goes to location chunk and second to object chunk

• Visicon holds object’s value – searchable in a visual-location request

(add-visicon-features ̀ (isa (player-loc player) screen-x 0 screen-y 0 name ,player1 position (nil 0) turn (nil t))
 `(isa (player-loc player) screen-x 100 screen-y 0 name ,player2 position (nil 5)))

actr.add_visicon_features(['isa',['player-loc','player'],'screen-x',0,'screen-y',0,'name',player1,'position',[False,p1_position], 'turn',[False,True]],
 ['isa',['player-loc','player'], 'screen-x',100,'screen-y',0,'name',player2, 'position',[False,p2_position]])

 (chunk-type (player-loc (:include visual-location)) name position turn result)
 (chunk-type (player (:include visual-object)) name position turn result)

Name Att Loc Kind Position Name Size Turn

----------- --- ------------ ------ -------- ------ ---- ----

PLAYER-LOC0 NEW (0 0 1080) PLAYER 0 MODEL1 1.0 T

PLAYER-LOC1 NEW (100 0 1080) PLAYER 5 MODEL2 1.0

Pros and cons

• No ACT-R GUI code

• May need interface device

– Can add to model definition

(install-device '("motor" "keyboard"))

• Need to manage visicon features

– Vision module handles “safe” updating of visicon

One game board

• One window with buttons

– Both models install the same device

• Click on the button to make a move

• Current player’s space is highlighted to
indicate turn (red or blue)

1 2

Model

• Needs to know its color

• Detect its turn

• Find a button to press

• Press the button

• Process the end state

Know its color

• Could create different red and blue models

• If identical models “tell” them at the start

– Different goal chunks one approach

(with-model-eval player1

 (define-chunks (goal isa play my-color red))

 (goal-focus goal))

(with-model-eval player2

 (define-chunks (goal isa play my-color blue))

 (goal-focus goal))

Detecting its turn

• When its color button appears

• Use buffer stuffing of visual-location
information

• Have it only stuff the critical item

– Set-visloc-defaults (unit 3 code document)

• Only available in model definition

 (set-visloc-default kind oval - color white - color blue)

Finding and pressing buttons

• Unit 6 Bst task

• Visual-location request

 +visual-location>

 kind oval

 ...

• Manual move-cursor and click-mouse actions

 +manual>

 cmd move-cursor

 loc =visual-location

 +manual>

 cmd click-mouse

Processing the end state

• Run-until-condition

– Stops the models when result is true

• Schedule an event to give the model(s) time to process it

Pros and cons

• Single GUI not too difficult to implement

• Specific models or need to know how to play
both sides

• All information available to both players

Two game boards

• Two interface windows

– One per model

• Provide egocentric perspective

Pros and Cons

• Interface code a little more complicated

• Models see same interface as either player

• Allows for hidden information

One window no buttons

• One window for both players

• Only display position number

– Color coded by player

• Say “one” or “two” to make the move

• The game speaks the starting player’s name

Having the models talk to each other

• Speaking unit 3 subitize task

+vocal>

 cmd speak

 string ...

• Output-speech monitor can create sounds for other
models
– New-word-sound / new_word_sound

• Similar to new-tone-sound in unit 3 sperling code

• Set-audloc-default
– Similar to set-visloc-default
– Own speech has location of self

(set-audloc-default - location self :attended nil)

Pros and cons

• Simple GUI code

• Model state driven by percepts

• Processing speech in model and task may be
difficult

