
Unit 8 Code Description

The example models for this unit either have no experiment code or are driven mostly by code 
that has been described in a previous unit, and the assignment task is similar to code from other 
unit tasks.  Thus there isn't really much to discuss about those.  There are a few new commands 
used which will be described, and there is a new mechanism used in this unit's Building Sticks  
model which allows it avoids using a !bind! to do a calculation which will be described.

Extending chunks from code

One of the new commands used in the assignment task code is  extend-possible-slots, and is 
found in the create-example-memories function in Lisp and create_example_memories function 
in Python.  Those functions are responsible for adding the chunks which represent the studied 
items  to  the  model’s  declarative  memory using slot  names  for  the  features  from a  globally 
defined list of slots.  Since those slot names can be specified arbitrarily by the modeler, the code 
needs to  make sure that the model  will  accept  them as valid  slot  names  before creating the 
chunks since they may not have been specified in any of the model’s chunk-types.  That is what 
the  extend-possible-slots  and  extend_possible_slots  functions  do.   They  have  one  required 
parameter and one optional parameter.  The required parameter is the name of a slot to add to 
those which can be used in any chunk without having to create a new chunk-type to provide the 
slot.  The optional parameter indicates whether or not to print a warning if the slot which is 
provided has already been used to name a slot.  If the optional parameter is specified as non-true 
(nil for Lisp or False/None for Python) then no warning is provided when a previously named 
slot is specified, otherwise it will print such warnings.

Calling commands from the model definition

You may also notice looking at the code for the assignment that the create-example-memories 
and create_example_memories functions are added as ACT-R commands.  That is done so that 
they can be called in the model’s definition to generate those initial chunks for the model every 
time that it is reset.

In the starting model file for the assignment you will find this line:
  (call-act-r-command "create-example-memories") 

The call-act-r-command command can be used in a model definition to call any command which 
has been added to ACT-R.  It requires one parameter which is the string that names the command 
and any number of additional parameters can be provided which will be passed to that command 
when it is called.  In this case the command requires no parameters and thus none are given.

Instead of using call-act-r-command,  it  is  also possible  when initially  adding a  command to 
specify a  name which can  be used directly  in  the model  definition  like  the built-in  ACT-R 
commands, but there are some additional complications with doing that and how to do so will 
not be described in the tutorial.



The Imaginal-action buffer

The imaginal  module  has a second buffer called  imaginal-action  which can be used by the 
modeler  to  make requests  that  perform custom actions.   Those actions  are  typically  used to 
modify the chunk in the imaginal buffer, replace the chunk in the imaginal buffer with a new 
one,  or  clear  the  imaginal  buffer  and report  an  error,  but  may  perform any other  arbitrary 
calculation desired.  Those requests can also take time during which the imaginal module will be 
marked  as  busy.   Note  however,  the  imaginal-action buffer  is  not  intended  to  be  used  for 
holding a chunk.  The imaginal buffer is the cognitive interface for the imaginal module and the 
imaginal-action buffer exists for the purpose of allowing modelers to create  new operations 
which can manipulate the imaginal buffer.

There are two types of requests which can be made to the  imaginal-action buffer which are 
referred to as a generic action and a simple action.  The model for the Building Sticks task in this 
unit  uses a simple action with no extra  information to create  a new chunk for the imaginal 
buffer.  The generic action is more powerful in terms of what it can do and for either the generic 
or simple action it is possible to provide additional details in the request.  Those capabilities 
however require more care and programming from the modeler in handling the action and are 
beyond the scope of the tutorial.  Users interested in using those capabilities should consult the 
reference manual for details.

Here is the production from the model which uses a simple action request to the imaginal-action 
buffer:
(p encode-line-current 
    =goal> 
      isa      try-strategy 
      state    attending 
    =imaginal> 
      isa      encoding 
      goal-loc =goal-loc 
    =visual> 
      isa      line 
      width    =current-len 
    ?visual> 
      state    free 
    ?imaginal-action> 
      state    free   
  ==> 
    =imaginal> 
      length     =current-len 
    +imaginal-action> 
      action     "bst-compute-difference" 
      simple     t 
    =goal> 
      state      consider-next 
    +visual> 
      cmd        move-attention 
      screen-pos =goal-loc) 

For this task, the “bst-compute-difference” command in the code is creating a chunk which is a 
copy of the chunk currently in the imaginal buffer (which is done using the new command copy-
chunk described below) and then modifying that new copy to have a slot named difference which 
holds the length difference between the current line and the goal line.



A simple action request to the  imaginal-action buffer requires specifying a slot named action 
which must contain a string that names a valid command or a symbol naming a Lisp function, 
and a slot named simple with any value (note that nil is not a value since it indicates the absence 
of a value).  When a simple action request is made to the imaginal-action buffer the imaginal 
module performs the following sequence of actions: 

• the imaginal module is marked as busy

• if the imaginal module is currently signaling an error that error is cleared

• the named command is called with no parameters

• the imaginal buffer is cleared

Then  after  the  current  imaginal  action  time  has  passed  (default  of  200ms  and  set  with  the 
:imaginal-delay parameter) the following actions will happen:

• the imaginal module will be marked as free 

• if the call to the action command returned the name of a chunk then that chunk will be 
copied into the imaginal buffer

• If  the  call  to  the  action  command returned any other  value  the  imaginal  buffer  will 
remain  empty,  the  imaginal  module’s  error  state  will  become true,  and the  imaginal 
buffer’s failure query will be true.

Here is the segment from a trace showing the actions related to the simple-action request when 
the encode-line-current production fires:
     2.148   PROCEDURAL             PRODUCTION-FIRED ENCODE-LINE-CURRENT 
... 
     2.148   PROCEDURAL             MODULE-REQUEST IMAGINAL-ACTION 
... 
     2.148   PROCEDURAL             CLEAR-BUFFER IMAGINAL-ACTION 
... 
     2.148   IMAGINAL               CLEAR-BUFFER IMAGINAL 
... 
     2.348   IMAGINAL               SET-BUFFER-CHUNK IMAGINAL IMAGINAL-CHUNK0-0 

Except for the additional clearing of the imaginal-action buffer, which should not hold a chunk 
anyway, it performs the same actions as an imaginal buffer request to create a new chunk would.

In the conditions of the encode-line-current production a query is made to test that the imaginal-
action buffer has state free.  That query will return the same state as the imaginal buffer does. 
Both buffers pass their requests to the same module which can only perform one action at a time 
regardless of which of its buffers was used to make the request.  Thus it does not matter which 
buffer is used to test the state for the performance of the model, but to avoid a style warning 
testing the buffer for which a request is being made is preferable.

One important thing to note about a simple action request is that it will always clear the imaginal 
buffer.  That means that the chunk currently in the buffer will become an element of the model’s 
declarative memory at that time.  In this model that does not matter because it is not retrieving 
those chunks later.  However, in models where later retrieval is important, having intermediate 
chunks added to memory like that could cause problems.  In those cases, one would probably 



want to use the generic action request to extend the imaginal capabilities because it does not 
clear the buffer automatically and can be used to modify the chunk it contains.

Copy-chunk

The last new command used in this unit is copy-chunk (using its functional form in Lisp of copy-
chunk-fct).  The copy-chunk command takes one parameter which is the name of a chunk.  It  
creates a new chunk which has all  of the same slots and values as the chunk provided, and 
returns the name of that new chunk.  This command is not often needed because buffers will 
automatically copy chunks and there are ways to set buffers without creating a chunk in advance. 
In this case, because the model is using a simple imaginal-action request, the command called to 
handle that action needs to create a new chunk to return and since that chunk needs all of the 
same information as the chunk that is in the imaginal buffer it uses copy-chunk to do so.


	Unit 8 Code Description
	Extending chunks from code
	Calling commands from the model definition
	The Imaginal-action buffer
	Copy-chunk


