
Unit 4 Code Description

There are only a couple of new commands used in the models for this unit and one of
them, set-all-base-levels, was discussed in the unit text leaving little to describe in this text
in that regard. However, the zbrodoff experiment uses a different approach to running the
model compared to the paired associate task and all of the previous units’ tasks. Thus, we
will start by describing the differences between those approaches, and then cover the new
commands and some other topics related to building tasks for models.

Task and model integration options

So far you have seen what can be described as an iterative or “trial at a time” approach to
writing the experiments for models. The experiments run by executing some setup code
for a trial, running the model to completion on that trial, recording a result and then
repeating that process for the next trial until all the trials are done. That style is a
commonly used approach, but it has some drawbacks which you may have encountered.
For instance, when running an experiment it is not possible to stop it using the Stop button
in the Stepper tool of the ACT-R Environment because the Stop button only stops the
current “run” of ACT-R, but it cannot affect the code which is making those calls to run
things. Instead you have to terminate the execution of the task somehow, which can be
difficult if it wasn’t written with a way to do so.1 For models with few trials or that get
reset on each trial that may not be a significant issue, but for large experiments or models
that need to learn from trial to trial that can make things difficult to work with, particularly
if there is a problem with the model on a later trial that forces one to abandon a very long
run by terminating the experiment code which likely doesn’t have any way to continue
from where the model left off for debugging or investigating the problem.

An alternative way to write the experiments is with a more event-driven approach. The
system which runs the ACT-R models is a general discrete-event simulation system which
can be used to run other things as well, like an experiment for a model (or a person if
precise timing information isn’t required). Calling one of the ACT-R running commands
causes all of the events which have been created to be executed in either a simulated time
or real time sequence. Up to now those events have been mostly generated by the model,
e.g. production firing, memory retrieval, and key presses, or by ACT-R commands like
goal-focus. However, as was seen in the sperling task, arbitrary events can also be
scheduled to execute at particular simulated times. One can also use the interface events
generated by the model (like output-key) to do things other than just record the response.
By scheduling events to occur at appropriate times and putting some of the control into
the functions that handle the model’s actions the experiment can run “with” the model
instead of “around” it. Such an experiment only needs to call the run function one time to
complete the whole experiment instead of once (or more) per trial.

Having the model running in an event-driven experiment with a single call to run typically
allows for more interactive control of the task as a whole. The Stepper tool in the

1 Hitting control-C or some other interrupt key in a Lisp running ACT-R may stop things, but if it’s the
ACT-R system code that is interrupted instead of the task code then it may cause problems for running
ACT-R and require exiting and restarting.

Environment will also pause on user scheduled events and the Stop button will stop the
whole experiment if it is being driven by the events that are run. That allows one to see
exactly what is happening at specific points in the experiment without having to abort the
experiment function. Additionally, to continue after stopping all one needs to do is usually
call run again to have the model and the experiment continue from where they left off
since the events are still scheduled to occur at the appropriate times. It can also make
writing the model itself easier because one doesn’t have to make sure that the model
“knows” when to stop for the task code to update and can just focus on having it respond
to the events that occur as they occur instead of as a sequence of separate interactions.

The paired associate task in this unit is written using the iterative approach, like the tasks
in the previous units, and the experiment code should be fairly easy to follow based on the
experience with the previous tasks. The zbrodoff task is written as an event-driven
experiment and it also requires recording more information since the block and addend
need to be recorded along with the response and time. To help with understanding the
code for that experiment we will provide some additional information here to describe
those details.

Zbrodoff Experiment Code Details

To keep track of the extra information needed for the zbrodoff experiment the task code
creates a structure/class (Lisp/Python) to hold the information. Then, to make the running
easier it creates an instance for each of the trials to present in advance with the relevant
presentation information, and to make it easier to stop and resume the task it records that
information in a global variable so that it is not lost if the task code or model stops
unexpectedly.

To run using the event-driven approach, there are basically two significant differences
between this task and the others you've seen in the tutorial. The first difference between
how this experiment runs relative to the others is that it only needs to call the ACT-R run
command once to run all of the trials of the task. That call appears in the collect-
responses/collect_responses function and runs the model for up to 10 seconds per trial to
be presented (which should be sufficient time to perform all of the trials). The advantage
of only calling run once, along with recording the trials to present and the collected data in
global variables, means that if the task is interrupted then it can be resumed simply by
calling the collect-responses/collect_responses function again and the data will still be
available when it is done (just calling run will not be sufficient since the collect-
responses/collect_responses function removes the output-key monitor and that needs to be
restored). The other difference is that instead of presenting the information to the model
from a loop in the code that's also calling run (as previous experiments have done) it starts
the next trial when the model responds – the output-key event is the trigger to perform the
update not a model that stops running when a trial is complete. In this task that just
requires the function that is monitoring output-key to handle the presentation for the next
trial in addition to recording the current response and time. Essentially, the code is still
doing the same operations, but the difference is in where the “looping” happens – in an
explicit loop in the code or a loop driven by the actions of the participant. While it may
seem a little more complicated to implement, the savings from writing the experiment in
this style are often worth the effort because it simplifies creating the model (since it

doesn't have to “know” when to stop running) and getting it to do the task properly (since
you can pickup where it left off in the task when there's a problem instead of having to
start over).

New Commands

Run-full-time/run_full_time – this function takes one required parameter which is the
time to run a model in seconds and an optional parameter to indicate whether to run the
model in step with real time. The model will run until the requested amount of time passes
whether or not there is something for the model to do i.e. it guarantees that the model will
be advanced by the requested amount of time. If the optional parameter is provided and is
a true value, then the model is advanced in step with real time instead of being allowed to
run as fast as possible in its own simulated time, and if a number is provided as the
optional parameter then that sets the scale to use for advancing model time relative to real
time.

print-warning and print_warning can be used for outputting information in the ACT-R
warning trace. The Python function takes a single parameter which is a string and prints
that as an ACT-R warning message. The Lisp version is a little more powerful, but if
given a string2 will print it as an ACT-R warning message. The additional capability of the
Lisp version is that it can take additional parameters and will use the Lisp format function
to process the string and parameters to create the output.

AGI command defaults

Two of the commands which we have seen in previous units are used slightly differently in
the zbrodoff experiment. Previously when clear-exp-window was used we passed it the
window to clear, but if you look at the code for these tasks it is not passed any
parameters. If there is only one window opened by the AGI then most of the commands
will default to working with that window and it does not need to be provided. Thus, this
experiment assumes that there is only one open window and doesn’t pass one to the clear-
exp-window command. Similarly, when using add-text-to-exp-window (and other similar
functions for buttons and lines which will be used later in the tutorial) the first parameter
can be specified as nil (Lisp) or None (Python) to indicate that the default window should
be used instead of specifying one. If there are multiple windows open when a call is made
that indicates using the default window it will result in a warning and nothing will happen.

The :ncnar Parameter

As was mentioned in the main text there is a new parameter being set in the models for
this unit - :ncnar (normalize chunk names after run). This parameter toggles whether or
not the system cleans up the references to merged chunks’ names. If the parameter is set
to t, which is the default, then the system will ensure that every slot of a chunk in the
model which has a chunk as the value references the “true name” of the chunk in the slot
i.e. the name of the original chunk in DM with which any copies have been merged. That

2As long as that string does not contain any ~ characters since those are special markers for formatting
text using the Lisp format function.

operation can make debugging easier for the modeler because all of the slot values will be
consistent with the chunks shown to be in DM. However, if a model generates a lot of
chunks and/or it makes many calls to one of the ACT-R commands to “run” the model it
can take time to maintain that consistency. Thus it can be beneficial to turn this parameter
off by setting it to nil when model debugging is complete and one just wants to collect the
results or when the real time needed to run a model is important. For the models in the
tutorial, leaving it enabled will typically not result in much of a run time increase (the
paired model is the worst performer in this respect running around 8% slower with it
enabled and the zbrodoff model is about 5% slower when normalizing the chunk names),
but for tasks with more chunks in DM and/or more calls to run ACT-R one may find the
savings from turning it off to be more significant.

Monitoring function notes

As discussed with the unit 2 code, functions that are called as monitors are evaluated in
separate threads and may require additional protection on changes to items which are also
accessed outside of that function. What wasn’t mentioned at that time is that when ACT-
R is running to generate those actions there is some protection because the actions
performed in the model are not evaluated in parallel – the events are evaluated one at a
time. Therefore, when a monitor for output-key is called because the model pressed a
key, you do not need to worry about threading issues between the monitoring function
and other functions which are called as events by ACT-R or the code which called run, but
that is still a potential problem when a person is performing the task since the person
could press the key in parallel with any of the code which is running the task while the
monitor is active.

However, there is another issue to consider, and that is whether any functions that are
used in the monitoring function themselves have threading issues. In particular, when
running a model you need to be careful about the ACT-R commands that are used since
even though ACT-R will only evaluate one event at a time ACT-R itself is still “running”.
Most of the ACT-R commands presented in the tutorial are safe to use while ACT-R is
running, in particular all of the AGI commands for creating and manipulating windows are
safe, but commands which run ACT-R cannot be used while it is already running and the
commands for resetting and reloading a model cannot be used while it is still running. If
you are using other ACT-R commands which are not described in the tutorial you will
want to check the reference manual to verify that they are safe for use while ACT-R is
running, and if you’re using the Lisp version it is strongly recommended that you not call
any undocumented ACT-R functions since you won’t know if they are safe to use.

	Unit 4 Code Description
	Task and model integration options
	Zbrodoff Experiment Code Details
	New Commands
	AGI command defaults
	The :ncnar Parameter
	Monitoring function notes

