
Unit 1 Code Description

This document (and the _code documents in future units) will describe: any ACT-R
commands used in the unit’s models which are not described in the main unit text,
general information about the code that implements the task/experiment for the models in
that unit, how ACT-R is interfaced with the task/experiment, and additional commands
that one can use interactively when working with ACT-R (most of the information
available through the tools of the Environment can also be obtained directly from
commands). For this unit there are no tasks for the models and all of them run simply by
using the ACT-R run command. They start with a predefined goal that is specifically
placed into the goal buffer, they have a given set of declarative memories, and the result
is a modification of the goal chunk representing the processing that took place. Later
units will include tasks which have much more involved perception and action, but for
this unit all of the models have the same basic structure as shown here in a solution to the
multi-column addition model assignment from the unit1 text:
(clear-all)

(define-model tutor-model

(sgp :esc t :lf .05 :trace-detail medium)

;; Add Chunk-types here

(chunk-type addition-fact addend1 addend2 sum)
(chunk-type add-pair one1 ten1 one2 ten2 ten-ans one-ans carry)

;; Add Chunks here

(add-dm
 (fact17 isa addition-fact addend1 1 addend2 7 sum 8)
 (fact34 isa addition-fact addend1 3 addend2 4 sum 7)
 (fact67 isa addition-fact addend1 6 addend2 7 sum 13)
 (fact103 isa addition-fact addend1 10 addend2 3 sum 13)
 (goal isa add-pair ten1 3 one1 6 ten2 4 one2 7))

;; Add productions here

(p start-pair
 =goal>
 ISA add-pair
 one1 =num1
 one2 =num2
 one-ans nil
==>
 =goal>
 one-ans busy
 +retrieval>
 ISA addition-fact
 addend1 =num1
 addend2 =num2)

(p add-ones
 =goal>
 ISA add-pair

 one-ans busy
 one1 =num1
 one2 =num2
 =retrieval>
 ISA addition-fact
 addend1 =num1
 addend2 =num2
 sum =sum
==>
 =goal>
 one-ans =sum
 carry busy
 +retrieval>
 ISA addition-fact
 addend1 10
 sum =sum)

(p process-carry
 =goal>
 ISA add-pair
 ten1 =num1
 ten2 =num2
 carry busy
 one-ans =ones
 =retrieval>
 ISA addition-fact
 addend1 10
 sum =ones
 addend2 =remainder
==>
 =goal>
 carry 1
 ten-ans busy
 one-ans =remainder
 +retrieval>
 ISA addition-fact
 addend1 =num1
 addend2 =num2)

(p no-carry
 =goal>
 ISA add-pair
 ten1 =num1
 ten2 =num2
 one-ans =ones
 carry busy
 ?retrieval>
 buffer failure
==>
 =goal>
 carry nil
 ten-ans busy
 +retrieval>
 ISA addition-fact
 addend1 =num1
 addend2 =num2)

(p add-tens-done
 =goal>
 ISA add-pair
 ten-ans busy
 carry nil
 =retrieval>

 ISA addition-fact
 sum =sum
==>
 =goal>
 ten-ans =sum)

(p add-tens-carry
 =goal>
 ISA add-pair
 carry 1
 ten-ans busy
 =retrieval>
 ISA addition-fact
 sum =sum
==>
 =goal>
 carry nil
 +retrieval>
 ISA addition-fact
 addend1 1
 addend2 =sum)

(goal-focus goal)
)

It starts with a call to a function called clear-all followed by a call to the command
define-model. Inside the call to define-model there is a call to a command called sgp,
then all of the components of the model are defined (chunk-types, chunks, and
productions) and finally the starting goal chunk gets set using the goal-focus command.

Most of these commands were described in the main unit text, which also described some
tools in the ACT-R Environment for inspecting and debugging models. Here we will
provide some additional details for some of those commands, describe the sgp command,
and show how one can also perform some of the actions that were done using the
Environment tools from the prompt in the ACT-R window. In later units, we will also
show how those commands can be accessed remotely using the included Python module
as an example.

Additional ACT-R command details

Clear-all

The clear-all command is used to set the ACT-R software to its initial state. It removes
all of the models that are currently defined, returns the clock to time 0, and removes any
events which are on the event queue. If a model (or set of models) is contained within a
single file, then one probably should call clear-all in that file to make sure ACT-R is
initialized before defining the model components.

An additional side effect of the clear-all command is that it records the name of the file
that contains it when it is loaded. That is how the reload command and “Reload” button
in the ACT-R Environment know which file to load.

Define-model

The define-model command takes one required parameter which is the name of a new
model to create and then an arbitrary number of other parameters which are the
commands that create the initial conditions for the model. The name should be a symbol
and must be unique with respect to other models that are currently defined. When a reset
happens, all of the commands specified inside of the define-model are reevaluated for
that model in the order they were specified. Each call to define-model creates a new
model which is independent of the other models, but all of the models will run in parallel
when the run command is called.

SGP

The sgp command is used to set or show a model's parameters (it stands for set/show
general parameters). The parameters for a model control many different things. Some
are used in equations that control the performance of the model’s cognitive modules,
others are there to help the modeler with debugging by changing the outputting of
information or the seed of the pseudorandom number generator, and others are available
to provide ways that the modeler can extend or modify internal ACT-R mechanisms. The
details of all of the parameters can be found in the reference manual.

When using sgp to set parameters the syntax is to specify a parameter and then the new
value you want to assign to that parameter. Any number of parameters and values may be
specified in a single call to sgp. All of the parameters in ACT-R begin with a “:” (in Lisp
syntax they are called keywords). All of the unit1 models have a call to sgp similar to
this:

(sgp :esc t :lf .05 :trace-detail medium)

That is setting three parameters: :esc, :lf, and :trace-detail. The first two together are
specifying that retrieval requests will always take 50ms to complete, but further details on
those are beyond the scope of this unit and will be discussed fully in later units. The third
parameter being set, :trace-detail, controls how much information is shown in the trace
when a model runs. The default value is medium, and that is also how it is being set in
the example above. The other values that it can have are high and low. When it is set to
high, effectively every action the model does shows in the trace. Here is the trace of the
two-digit addition model with :trace-detail set to high:

 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED START-PAIR
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED START-PAIR
 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK FACT67
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT67
 0.100 PROCEDURAL CONFLICT-RESOLUTION

 0.100 PROCEDURAL PRODUCTION-SELECTED ADD-ONES
 0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.100 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
 0.150 PROCEDURAL PRODUCTION-FIRED ADD-ONES
 0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.150 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE start-retrieval
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK FACT103
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT103
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.200 PROCEDURAL PRODUCTION-SELECTED PROCESS-CARRY
 0.200 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.200 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
 0.250 PROCEDURAL PRODUCTION-FIRED PROCESS-CARRY
 0.250 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.250 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 DECLARATIVE start-retrieval
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.300 DECLARATIVE RETRIEVED-CHUNK FACT34
 0.300 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT34
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.300 PROCEDURAL PRODUCTION-SELECTED ADD-TENS-CARRY
 0.300 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.300 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
 0.350 PROCEDURAL PRODUCTION-FIRED ADD-TENS-CARRY
 0.350 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.350 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.350 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.350 DECLARATIVE start-retrieval
 0.350 PROCEDURAL CONFLICT-RESOLUTION
 0.400 DECLARATIVE RETRIEVED-CHUNK FACT17
 0.400 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT17
 0.400 PROCEDURAL CONFLICT-RESOLUTION
 0.400 PROCEDURAL PRODUCTION-SELECTED ADD-TENS-DONE
 0.400 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.400 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
 0.450 PROCEDURAL PRODUCTION-FIRED ADD-TENS-DONE
 0.450 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.450 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.450 PROCEDURAL CONFLICT-RESOLUTION
 0.450 ------ Stopped because no events left to process

That can be very useful when debugging a model but it can be a bit too much at other
times. Here is the same model running with a medium level of :trace-detail (which is
the default value):

 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED START-PAIR
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK FACT67
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT67
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED ADD-ONES
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE start-retrieval

 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK FACT103
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT103
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.250 PROCEDURAL PRODUCTION-FIRED PROCESS-CARRY
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 DECLARATIVE start-retrieval
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.300 DECLARATIVE RETRIEVED-CHUNK FACT34
 0.300 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT34
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.350 PROCEDURAL PRODUCTION-FIRED ADD-TENS-CARRY
 0.350 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.350 DECLARATIVE start-retrieval
 0.350 PROCEDURAL CONFLICT-RESOLUTION
 0.400 DECLARATIVE RETRIEVED-CHUNK FACT17
 0.400 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT17
 0.400 PROCEDURAL CONFLICT-RESOLUTION
 0.450 PROCEDURAL PRODUCTION-FIRED ADD-TENS-DONE
 0.450 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.450 PROCEDURAL CONFLICT-RESOLUTION
 0.450 ------ Stopped because no events left to process

In that trace we no longer see the individual condition tests and only some of the actions
of the productions. Now, here is the same model run with a low setting for :trace-detail:

 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
 0.050 PROCEDURAL PRODUCTION-FIRED START-PAIR
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT67
 0.150 PROCEDURAL PRODUCTION-FIRED ADD-ONES
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT103
 0.250 PROCEDURAL PRODUCTION-FIRED PROCESS-CARRY
 0.300 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT34
 0.350 PROCEDURAL PRODUCTION-FIRED ADD-TENS-CARRY
 0.400 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT17
 0.450 PROCEDURAL PRODUCTION-FIRED ADD-TENS-DONE
 0.450 ------ Stopped because no events left to process

At low we only see production firings and buffer settings. The setting of :trace-detail
does not change how the model actually runs. It only affects how the trace is displayed to
the modeler and which events are available to “step” to using the Stepper tool in the
ACT-R Environment.

If one wants to completely turn off the model trace, there is another parameter which can
be set to do so, and that will be described in a future unit.

To get a parameter’s current value using sgp only the name of the parameter (or
parameters) should be specified. When all of the values passed to sgp are the names of
parameters it will print out the details of those parameters and return a list of their current
values. Typically that is not necessary when defining a model (with one exception which
can be very helpful for debugging a model and that will be described in a later unit), but
it can be used at the ACT-R prompt to inspect the model settings (there is also an
inspector in the Environment for doing so). Here is an example which is checking the
values of the :trace-detail and :lf parameters:

? (sgp :trace-detail :lf)

:TRACE-DETAIL MEDIUM (default MEDIUM) : Determines which events show in the
trace
:LF 0.05 (default 1.0) : Latency Factor

If no parameters are provided to sgp then it will print out all of the parameters and their
details.

Interacting with a model

In this unit we used the ACT-R Environment tools to load, run, reset, and inspect the
model components. Most of the GUI tools in the Environment are using commands
which are also available to the modeler for interacting with the model from the command
prompt and in the code to create a task. Here we will describe some of the commands
that correspond to the Environment tools used for this unit with respect to using them
from the ACT-R command prompt (as was shown above for sgp). In future units we will
discuss how those commands can also be used in tasks written in Lisp or Python1.

Loading a model

To load the models in this unit we used the “Load ACT-R code” button to pick a file to
load. There is a command in ACT-R which can also be used to load a model file which is
called load-act-r-model. It requires one parameter which is a string specifying the
pathname of the file to load. Typically, the full pathname of the file must be specified,
but it does accept a simplified specification for files located in the directory containing
the ACT-R files which is based on the Lisp logical pathname convention. The format for
those relative pathnames is to start with ACT-R: and then follow that with the file name
or subdirectories separated by semicolons and then the file name. Here is an example of
loading the count.lisp model from the default ACT-R distribution:

? (load-act-r-model "ACT-R:tutorial;unit1;count.lisp")
T

The T printed after the call is the return value from the command, and T is the Lisp
symbol for true, which for this command means it was successful in loading the file. If
the file is not found or there is an error in loading it then it will print a warning indicating
the issue and the return value would be nil instead.

Resetting and Reloading

1 There are examples of connecting other languages included in the examples/connections directory, but
those are just simple examples and would need to be extended to provide sufficient support to be able to
implement the tutorial tasks. The documentation on the protocol for remote connections is in the docs
directory if one is interested in extending those examples.

Instead of pressing the buttons to reset or reload a model one can call the corresponding
commands, which are named reset and reload. They require no parameters and will
return T if successful:

? (reset)
T
? (reload)
T

Running the model

There are multiple commands which can be used to run a model which differ in how they
determine when to stop running. The one that corresponds to the button on the Control
Panel is called run. It requires one parameter which is the maximum number of seconds
to run the model, but it will stop earlier if the model has no more actions to perform. In
later units we will introduce more of the running commands and show them being used in
creating tasks that automatically run the model as needed. Here is an example of using
the run command at the prompt after loading the semantic model:

? (run 1)
 0.000 GOAL SET-BUFFER-CHUNK GOAL G1 NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED INITIAL-RETRIEVE
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK P14
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P14
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED DIRECT-VERIFY
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.150 ------ Stopped because no events left to process
0.15
24
NIL

After the trace there are multiple return values shown from the run command which
indicate how long it ran (in model time), how many events occurred during the run, and
whether it ended unexpectedly or not (a value of nil means a successful ending because it
was not unexpected).

Inspecting model components

During the unit we inspected the contents of the buffers, the model’s declarative memory,
and checked why productions did not match. All of those can also be done using
commands.

Buffers

You can use the command named buffer-chunk to find the names of the chunks in the
buffers and inspect their contents. Calling it without any parameters will show all of the
buffers and the chunks they contain returning a list of lists with a buffer name and the

name of the chunk in that buffer if it has one. Here is an example after running the
semantic model:

? (buffer-chunk)
AURAL: NIL
AURAL-LOCATION: NIL
GOAL: GOAL-CHUNK0
IMAGINAL: NIL
IMAGINAL-ACTION: NIL
MANUAL: NIL
PRODUCTION: NIL
RETRIEVAL: NIL
TEMPORAL: NIL
VISUAL: NIL
VISUAL-LOCATION: NIL
VOCAL: NIL
((AURAL) (AURAL-LOCATION) (GOAL GOAL-CHUNK0) (IMAGINAL) (IMAGINAL-ACTION)
(MANUAL) (PRODUCTION) (RETRIEVAL) (TEMPORAL) (VISUAL) (VISUAL-LOCATION)
(VOCAL))

If you call it with the name of a buffer (or multiple buffers), then it will print out the
chunks in the named buffers and return a list of the names of the chunks in those buffers
in the order they were provided (or nil if it does not have a chunk):

? (buffer-chunk retrieval goal)
RETRIEVAL: NIL
GOAL: GOAL-CHUNK0
GOAL-CHUNK0
 OBJECT CANARY
 CATEGORY BIRD
 JUDGMENT YES

(NIL GOAL-CHUNK0)

Declarative Memory

You can also inspect declarative memory from the command prompt. The command dm
will print out all of the chunks in the model’s declarative memory and return a list with
the names of those chunks. You can also specify the names of chunks as parameters to
the dm command and only those chunks will be printed. Here are some examples using
the count model:

? (dm)
FIRST-GOAL
 START TWO
 END FOUR

FIVE
 NUMBER FIVE

FOUR
 NUMBER FOUR
 NEXT FIVE

THREE
 NUMBER THREE
 NEXT FOUR

TWO
 NUMBER TWO
 NEXT THREE

ONE
 NUMBER ONE
 NEXT TWO

(FIRST-GOAL FIVE FOUR THREE TWO ONE)

? (dm four one)
FOUR
 NUMBER FOUR
 NEXT FIVE

ONE
 NUMBER ONE
 NEXT TWO

(FOUR ONE)

It is also possible to search declarative memory using the command sdm. Its parameters
are a chunk specification just as one would specify in a retrieval request in a production,
but without the +retrieval> indicator at the beginning. It prints out only those chunks
from the model’s declarative memory which match that specification and returns the list
of their names. Here are some examples using the semantic model:
? (sdm object shark)
P1
 OBJECT SHARK
 VALUE TRUE
 ATTRIBUTE DANGEROUS

P2
 OBJECT SHARK
 VALUE SWIMMING
 ATTRIBUTE LOCOMOTION

P3
 OBJECT SHARK
 VALUE FISH
 ATTRIBUTE CATEGORY

(P1 P2 P3)

? (sdm - attribute category - attribute nil)
P1
 OBJECT SHARK
 VALUE TRUE
 ATTRIBUTE DANGEROUS

P2
 OBJECT SHARK
 VALUE SWIMMING
 ATTRIBUTE LOCOMOTION

P4
 OBJECT SALMON
 VALUE TRUE
 ATTRIBUTE EDIBLE

P5
 OBJECT SALMON
 VALUE SWIMMING
 ATTRIBUTE LOCOMOTION

P7
 OBJECT FISH
 VALUE GILLS
 ATTRIBUTE BREATHE

P8
 OBJECT FISH
 VALUE SWIMMING
 ATTRIBUTE LOCOMOTION

P10
 OBJECT ANIMAL
 VALUE TRUE
 ATTRIBUTE MOVES

P11
 OBJECT ANIMAL
 VALUE TRUE
 ATTRIBUTE SKIN

P12
 OBJECT CANARY
 VALUE YELLOW
 ATTRIBUTE COLOR

P13
 OBJECT CANARY
 VALUE TRUE
 ATTRIBUTE SINGS

P15
 OBJECT OSTRICH
 VALUE FALSE
 ATTRIBUTE FLIES

P16
 OBJECT OSTRICH
 VALUE TALL
 ATTRIBUTE HEIGHT

P18
 OBJECT BIRD
 VALUE TRUE
 ATTRIBUTE WINGS

P19
 OBJECT BIRD
 VALUE FLYING
 ATTRIBUTE LOCOMOTION

(P1 P2 P4 P5 P7 P8 P10 P11 P12 P13 P15 P16 P18 P19)

One thing to note about the second example is that it specifies both that the attribute slot
is not category and also not nil (which means the chunk must have some value for the
slot). Here is what it returns if it were to only specify that the attribute slot is not
category:

? (sdm - attribute category)
...
(G1 G2 G3 P1 P2 P4 P5 P7 P8 P10 P11 P12 P13 P15 P16 P18 P19 SHARK DANGEROUS
LOCOMOTION SWIMMING FISH SALMON EDIBLE BREATHE GILLS ANIMAL MOVES SKIN CANARY
COLOR SINGS BIRD OSTRICH FLIES HEIGHT TALL WINGS FLYING TRUE FALSE)

In this case it also finds all of the chunks which do not have an attribute slot because
chunks without the slot fail the “attribute category” test and thus the negation of that is
then true. That is something to be careful about when using the negation modifier in
specifying retrieval requests in your productions as well.

Testing why not? for productions

The command to test whether a production matches the current state is called whynot. If
you pass it no parameters it will print out each production in the model’s procedural
memory along with either an indication that it matches or a reason why it does not match.
You can also provide it with specific production names to test. It returns a list of the
names of the productions which do match the current state. Here is an example using
productions from the semantic model after it has been reset:
? (whynot direct-verify fail)

Production DIRECT-VERIFY does NOT match.
(P DIRECT-VERIFY
 =GOAL>
 OBJECT =OBJ
 CATEGORY =CAT
 JUDGMENT PENDING
 =RETRIEVAL>
 OBJECT =OBJ
 ATTRIBUTE CATEGORY
 VALUE =CAT
 ==>
 =GOAL>
 JUDGMENT YES
)
It fails because:
The GOAL buffer is empty.

Production FAIL does NOT match.
(P FAIL
 =GOAL>
 OBJECT =OBJ1
 CATEGORY =CAT
 JUDGMENT PENDING
 ?RETRIEVAL>
 BUFFER FAILURE
 ==>

 =GOAL>
 JUDGMENT NO
)
It fails because:
The GOAL buffer is empty.
NIL

Other model commands

Any of the commands that are specified in the model definition can also be called from
the ACT-R command prompt. The add-dm and p commands are not usually called from
the prompt since you want that knowledge to be included in the model when it starts
running, but a command like goal-focus can occasionally be useful if you want to change
the goal chunk for a model and run it again. That could have been convenient for the
semantic model because instead of changing the file and reloading it to switch the goals
one could have run the different goals sequentially by just calling goal-focus to change
the chunk in the goal buffer and then run it again:
? (run 1)
 0.000 GOAL SET-BUFFER-CHUNK GOAL G1 NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED INITIAL-RETRIEVE
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK P14
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P14
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED DIRECT-VERIFY
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.150 ------ Stopped because no events left to process
0.15
24
NIL
? (goal-focus g2)
G2
? (run 1)
 0.150 GOAL SET-BUFFER-CHUNK GOAL G2 NIL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 PROCEDURAL PRODUCTION-FIRED INITIAL-RETRIEVE
 0.200 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.200 DECLARATIVE start-retrieval
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.250 DECLARATIVE RETRIEVED-CHUNK P14
 0.250 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P14
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.300 PROCEDURAL PRODUCTION-FIRED CHAIN-CATEGORY
 0.300 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.300 DECLARATIVE start-retrieval
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.350 DECLARATIVE RETRIEVED-CHUNK P20
 0.350 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P20
 0.350 PROCEDURAL CONFLICT-RESOLUTION
 0.400 PROCEDURAL PRODUCTION-FIRED DIRECT-VERIFY
 0.400 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.400 PROCEDURAL CONFLICT-RESOLUTION
 0.400 ------ Stopped because no events left to process
0.25

36
NIL
? (goal-focus g3)
G3
? (run 1)
 0.400 GOAL SET-BUFFER-CHUNK GOAL G3 NIL
 0.400 PROCEDURAL CONFLICT-RESOLUTION
 0.450 PROCEDURAL PRODUCTION-FIRED INITIAL-RETRIEVE
 0.450 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.450 DECLARATIVE start-retrieval
 0.450 PROCEDURAL CONFLICT-RESOLUTION
 0.500 DECLARATIVE RETRIEVED-CHUNK P14
 0.500 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P14
 0.500 PROCEDURAL CONFLICT-RESOLUTION
 0.550 PROCEDURAL PRODUCTION-FIRED CHAIN-CATEGORY
 0.550 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.550 DECLARATIVE start-retrieval
 0.550 PROCEDURAL CONFLICT-RESOLUTION
 0.600 DECLARATIVE RETRIEVED-CHUNK P20
 0.600 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P20
 0.600 PROCEDURAL CONFLICT-RESOLUTION
 0.650 PROCEDURAL PRODUCTION-FIRED CHAIN-CATEGORY
 0.650 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.650 DECLARATIVE start-retrieval
 0.650 PROCEDURAL CONFLICT-RESOLUTION
 0.700 DECLARATIVE RETRIEVAL-FAILURE
 0.700 PROCEDURAL CONFLICT-RESOLUTION
 0.750 PROCEDURAL PRODUCTION-FIRED FAIL
 0.750 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.750 PROCEDURAL CONFLICT-RESOLUTION
 0.750 ------ Stopped because no events left to process
0.35
48
NIL

	Unit 1 Code Description
	Additional ACT-R command details
	Clear-all
	Define-model
	SGP

	Interacting with a model
	Loading a model
	Resetting and Reloading
	Running the model
	Inspecting model components
	Buffers
	Declarative Memory
	Testing why not? for productions

	Other model commands

