
1

Threaded Cognition
User Guide and Theoretical Notes

Dario D. Salvucci & Niels A. Taatgen

1. Introduction

Threaded cognition (Salvucci & Taatgen, submitted) is an integrated theory of concurrent
multitasking — that is, doing two or more things at once. The theory posits that streams of
thought can be represented as cognitive threads that are executed together on a resource-limited
cognitive processor without the need for specialized executive processes to control them. By
specifying the particular limitations of processing on cognitive, perceptual, and motor processes
in a computational modeling framework, threaded cognition provides explicit predictions of the
bottlenecks that do and do not arise in multitasking behavior for two or more given tasks. The
theory has been validated in illustrative domains ranging from simple psychological laboratory
tasks such as dual-choice tasks to complex real-world domains such driving.

The theory of threaded cognition has been implemented as a computational model within the
framework of the ACT-R cognitive architecture (Anderson et al., 2004). The implementation has
no effect on existing ACT-R models, but adds significant new functionality to the architecture in
terms of accounting for multitasking behavior. This document provides theoretical and
practical details for those interested in using the mechanisms of threaded cognition, or
“threading,” in their own ACT-R modeling efforts. We assume a basic familiarity with the
workings of ACT-R and model development in this framework; please refer to the ACT-R web
site (act.psy.cmu.edu) for more information about the architecture.

2. Installation

The implementation of threaded cognition requires ACT-R 6.0. To install the code into your
ACT-R setup, place the file “threads.lisp” into the directory “actr6/modules/”. The code will
compile and load automatically during the next startup of the ACT-R system. The provided
sample model can then be loaded and run. All code and models have been tested on a
Macintosh running OS 10.4.9 and MCL 5.1 with ACT-R version 1.1 [r222].

3. Modeling with Threads

Threaded cognition as implemented in ACT-R allows for multiple model threads to be executed
together to produce multitasking behavior. In essence, threaded cognition extends the goal
buffer into a set of active goals that progress together in a multitasking fashion. In addition, the
theory defines how conflicts for both the procedural resource (i.e., production firing) and the

db30
Sticky Note
Unmarked set by db30

db30
Sticky Note
Unmarked set by db30

db30
Cross-Out

db30
Sticky Note
This is the ACT-R 7 implementation. The easy way to use it is to call (require-extra "threads"), and that can be placed into a model file to ensure it always gets loaded. Alternatively, one can enable it permanently by placing the "new-threads.lisp" file into the modules directory of the ACT-R 7 distribution.

2

other resources (declarative, perceptual, and motor) are resolved. The theory and
implementation thus provide, for any two or more models, predictions of multitasking behavior
when executing the models together.

3.1. Syntax and Semantics

To set a new goal, all current ACT-R models utilize a +goal> construct that replaces the current
goal with a new goal chunk. For example, the following rule illustrates how, in the current
ACT-R, a rule terminates the current goal and initiates a new goal:

(p Start-Next-Goal
 =goal>
 isa current-goal
==>
 +goal>
 isa next-goal)

Threading maintains this semantics for the first instance of +goal> in a given rule. However, it
extends the semantics by allowing for additional +goal> specifications in the same, where each
subsequent specification adds a new goal to the goal set. For example, we can modify the above
rule as follows to produce a new rule that initiates two goals:

(p Start-Two-Goals
 =goal>
 isa current-goal
==>
 +goal>
 isa next-goal-1
 +goal>
 isa next-goal-2)

When this rule fires, the current goal is replaced in the goal set by next-goal-1, and then next-
goal-2 is added to this set, resulting in both goals being present in the active set.

For model initialization where the goal-focus command is used to set the initial goal, multiple
calls to the this function have an effect analogous to that of +goal> — for instance:

(goal-focus goal-1)
(goal-focus goal-2)

Here the model begins with both goals in the goal set, and threading takes over to manage the
execution of both goal’s threads.

When a goal terminates without needing to start a subsequent goal, a model should use –goal>
to denote termination as follows:

(p Terminate-Goal
 =goal>
 isa current-goal
==>
 -goal>)

This command removes the current goal from the goal set. Note that for previous ACT-R
models, this would essentially halt the production system, but in the presence of threading this

3

terminates only the thread corresponding to the current goal and allows other threads to
continue execution.

It is critical to note that threading does not change the semantics or execution of existing ACT-R
models. Because all previous models have at most one +goal> specification in the rule actions,
this specification behaves in an identical way (replacing the current goal), and thus execution is
exactly the same with or without threading. In essence, we can think of previous models as all
being single-threaded and thus not being affected in any way by the new threading capabilities.

3.2. Modeling Guidelines

Models that run with the new threading mechanism are largely identical to those already
developed or under development in the ACT-R architecture. There is only one additional
guideline imposed by threading related to checking the status of processing modules and
buffers. It is already typical for ACT-R models to test whether a module is “free” on the left-
hand side of a rule before initiating a module process on the right-hand side; for example, the
following rule tests the motor module and ensures that the system waits for any existing motor
movements to complete before firing the rule and starting another movement:

(p Move-Hand
 =goal>
 isa goal
 ?manual>
 state free
==>
 +manual>
 isa punch
 hand left
 finger index)

Some module processes, including perceptual (visual and aural) and declarative retrieval
processes, place a result chunk in the module’s buffer for subsequent use. It is important that,
before starting on a new process on these modules, rules also test to make sure that the buffer is
empty, as shown in these two examples:

(p Attend-Visual-Location
 =goal>
 isa goal
 ?visual-location>
 state free
 buffer empty
==>
 +visual-location>
 isa visual-location)

(p Retrieve-Chunk
 =goal>
 isa goal
 ?retrieval>
 state free
 buffer empty
==>
 +retrieval>
 isa chunk)

4

The checks for both a free module and an empty buffer are critical for threading. When
multiple threads run concurrently, the check for a free module ensures that no other thread is
using that module; in fact, this occurs in many current ACT-R models as well. The check for an
empty buffer ensures that, when a perceptual or retrieval process completes and the result is
stored in the buffer, another thread does not start a process and overwrite the results before the
requesting thread can use the results.

Some models already follow these guidelines, which are indeed good guidelines for any ACT-R
models, threaded or not. But without concurrent processing, such checks are not normally
needed. We suggest that all models include these checks, whether or not the models themselves
utilize concurrent processing.

4. Issues and Future Work

As described in the full paper (Salvucci & Taatgen, submitted), we have validated the threading
mechanism for several laboratory and real-world domains. However, there are at least two
issues that we hope to address with future work. First, there is currently no limitations on the
number of goals that can be stored in the goal set (in much the same way that there are no
limitations on the number of slots in a declarative chunk). Clearly there should be some limits
here, and it seems reasonable that a chunk in the goal set, or any chunk in any module buffer
for that matter, can and should decay away, providing a natural limit to the size of the goal set
and duration of a goal. However, we currently have no theory to specify this decay in more
detail, and more importantly, it is not clear that we have sufficient empirical evidence for
guiding such a development. Thus, just as for the number of chunk slots, the limits are left to
the modeler with the understanding that models should keep a reasonable number of goals in
the goal set and not overload the set with an unrealistic number of chunks and/or maintain
goals for an unreasonable period of time.

Another future development involves an integration of threaded cognition with recent
modeling work on task switching (e.g., Altmann & Trafton, 2002). As detailed in the full paper,
we believe that threading provides a complementary mechanism to those explored for task
switching, and the two approaches are very amenable for a unified approach; however, we have
not yet attempted such a unification. Further work should clarify the roles of these various
mechanisms for different types of multitasking.

References

Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activation-based model.
Cognitive Science, 26, 39-83.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An
integrated theory of the mind. Psychological Review, 111, 1036-1060.

Salvucci, D. D., & Taatgen, N. A. (submitted). Threaded cognition: An integrated theory of
concurrent multitasking. Revised manuscript submitted to Psychological Review.

