
Unit 5 Code Description

The experiments for this unit are a little more complex than the previous ones.  They use a few 
new ACT-R commands for creating perceptual information as well as several new commands for 
interacting with a model more directly through code.  First we will describe a detail you may have 
noticed about chunks being copied in buffers.  Then we will discuss the code and models for the 
tasks in this unit, describe the new commands used in the tasks, and some discussion of some 
technical issues  about passing parameters to  ACT-R commands.  After that is a section which 
describes how to  add new game configurations  to  the  1-hit  blackjack task  along with some 
suggested alternate games for testing the assignment model.  Finally, there's a section at the end 
which walks through how the parameters were adjusted to fit the data in the siegler task that may 
be helpful when adjusting parameters in your own models.

A note on chunks in buffers and the :dcnn parameter

When a chunk is set in a buffer the buffer makes a copy of it – it does not hold the original chunk. 
Typically, that detail does not affect how you work with or inspect a model as it runs, but there is 
one situation where that may be noticeable.  When the name of the chunk in a buffer is used to set 
the value of a slot in a buffer’s chunk that value will not match the name of the original chunk 
since the buffer’s chunk is a copy which requires a unique name.  That situation shows up in the 
fan model from this unit.  The slots of the chunk in the imaginal buffer are set using chunks from 
the  retrieval buffer.  If the model retrieves the chunk lawyer, then the chunk in the  imaginal 
buffer will look like this after  the encode-person production fires and the modification to  the 
imaginal buffer occurs:

IMAGINAL: IMAGINAL-CHUNK0 
IMAGINAL-CHUNK0 
   ARG1  LAWYER-0 

The copy of the lawyer chunk, named lawyer-0, which was in the retrieval buffer was placed into 
the arg1 slot.  

The lawyer-0 chunk is not  modified by the model while it is in the  retrieval buffer, and the 
retrieval buffer is also cleared by that production.  Thus, that lawyer-0 chunk is still a perfect  
match to the original lawyer chunk in declarative memory when it is cleared from the buffer, and 
because of that it is merged with the lawyer chunk and both names now refer to the same chunk. 
As discussed in the previous unit, the :ncnar parameter can be used to have the system normalize 
such references to  make it easier to  debug the system.  If :ncnar is enabled (not  nil) then the 
setting of the :dcnn (dynamic chunk name normalizing) parameter determines when those names 
are corrected.   If :dcnn is set  to  t,  which is the default  value,  then those  changes are  made 
immediately while the model runs.  Since the fan model leaves the :ncnar and :dcnn parameters at 
their default values of t, the chunk in the imaginal buffer will be changed to look like this after 
the lawyer-0 and lawyer chunks are merged:



IMAGINAL: IMAGINAL-CHUNK0 
IMAGINAL-CHUNK0 
   ARG1  LAWYER 

If :dcnn were set to  nil, then the arg1 slot would continue to hold the value lawyer-0 until the 
model stopped running at which time the chunk would be updated if the :ncnar parameter were 
not nil.  The important thing to note is that regardless of which name is shown in the slot, once 
those chunks have been merged the same chunk is being referenced regardless of which name is 
shown in the slot.  

Often having :dcnn and :ncnar set to t makes it easier to debug a model, but sometimes it may be 
useful to disable the dynamic updating so that one can more directly track a reference to a chunk 
from a buffer, even if it is eventually merged.  For this unit the demonstration models leave :dcnn 
and :ncnar set to  their default values of  t, thus the slot values are  immediately adjusted as the 
model runs. 

Fan Experiment

There are two versions of the fan experiment code and corresponding models included with this 
unit.   One pair,  fan and fan-model which are used in the main unit text,  uses an experiment 
window to present and perform the task as you have seen for  many of the tasks in the tutorial. 
The other one runs the model through the task without using the visual interface for input or the 
motor module for output and produces exactly the same timing results.  Instead it puts the input 
into the slots of the chunk placed into the  goal buffer before running the model and reads the 
response from a slot of the chunk in the goal buffer upon completion.  This is done through the 
use of commands to access the model’s buffers and chunks. Mechanisms like these can be used 
when the details of the visual/motor systems are not of interest in the task being modeled and an 
abstraction of the experiment is acceptable for the objectives of the modeling work, but doing so 
usually involves some additional work in the model as well.

The code which implements the experiment window version of the task is very similar to many of 
the previous experiments and doesn't need any description here.  Instead, we will just look at the 
fan-sentence (Lisp) and sentence (Python) functions from the code that runs the model in the fan-
no-pm.lisp and fan_no_pm.py files, and then describe what was done differently with the model.

Functions to run a trial

(defun fan-sentence (person location target term) 
  (reset) 
  
  ; disable the production that isn't being used for retrieval 
  
  (case term 
    (person (pdisable retrieve-from-location)) 
    (location (pdisable retrieve-from-person))) 
  
  ; modify the chunk named goal (which will be set in the goal buffer 
  ; when the model runs) to set the arg1 and arg2 slots to the probe 
  ; items and state slot to test 



   
  (mod-chunk-fct 'goal (list 'arg1 person 'arg2 location 'state 'test)) 
  
  ; run the model recording the time spent running 
  ; and get the value from the state slot of the goal buffer representing the 
  ; model's response to the task 
  
  (let ((response-time (run 30.0)) 
        (response (buffer-slot-value 'goal 'state))) 
      
    (list response-time 
          (or (and target (string-equal response "k")) 
              (and (null target) (string-equal response "d")))))) 

def sentence (person, location, target, term): 

    actr.reset() 

    # disable the production that isn't being used for retrieval 

    if term == 'person': 
        actr.pdisable("retrieve-from-location") 
    else: 
        actr.pdisable("retrieve-from-person") 

    # modify the chunk named goal (which will be placed into the goal buffer 
    # when the model runs) to set the arg1 and arg2 slots to the probe 
    # items and state slot to test 

    actr.mod_chunk("goal","arg1",person,"arg2",location,"state","test") 

    # run the model recording the time spent running 
    # and get the value from the state slot of the goal buffer representing the 
    # model's response to the task 

    response_time = actr.run(30)[0] 
    response = actr.buffer_slot_value("goal","state") 

    if target: 
        if response.lower() == "'k'".lower(): 
            return (response_time ,True) 
        else: 
            return (response_time ,False) 
    else: 
        if response.lower() == "'d'".lower(): 
            return (response_time ,True) 
        else: 
            return (response_time ,False) 
   

The parts of those functions which show new mechanisms being used are briefly described with 
the comments before them, but we will describe that in a little more detail here.  

The first new thing we see is the use of the pdisable command in ACT-R.  This command can be 
used to disable productions in the model (more details below).  In both this version and the other 
version of the fan experiment it is used to  disable one of the response productions, which was 
done to simplify the data collection as described in the main unit text.



The next new command used is mod-chunk/mod_chunk.  This can be used to modify the contents 
of a chunk.  It requires the name of the chunk, and then any number of pairs of slot names and 
values.  The indicated chunk has all of the slots specified set to the provided values.  That is done 
here to avoid having to include productions in the model for processing the visual scene to get the 
items – they are provided directly to the model.

After that, we see something that hasn't been done previously in the tutorial with respect to the 
run command.  Here we are actually recording the first return value from calling it which is the 
amount of time that the model spent running.  That is being used to determine the time it takes the 
model to respond to the task instead of recording the time that a key is pressed.  That can be 
simpler, but does require that the model stops completely at the appropriate time – if there were 
any additional  actions  to  execute  after  that  point  the  time  would  not  be  correct.   That  is 
sometimes difficult to  actually achieve in the model because of ongoing actions like a retrieval 
failure or motor action completion.

The final new operation in those functions is the use of buffer-slot-value/buffer_slot_value to get 
the model's response.  That  command takes the name of a buffer and the name of a slot  and 
returns the value of that slot from the chunk in the indicated buffer.  That is how this model and 
task avoid having to use the motor module to press a key to record a response.

Fan-no-pm Model

The model for the task which does not use the perceptual and motor modules is very similar to  
the one described in the unit.  It goes through the same steps of encoding the person and location 
and then retrieving the item, but it does not have to read them from the display nor perform a key 
press to respond.  Because those perceptual and motor actions take time, a model that does not 
perform them will be faster at the task than one that does.  To still fit the human performance on 
the task this model adjusts the time it takes to fire the productions from the default time of 50ms 
to account for that difference.  That is done using the spp command which was used in unit 3 to  
adjust the starting utility of the productions.  These settings at the end of the model file adjust  
the :at value (action time) of the productions which controls how long they take to fire:
  (spp mismatch-location-no :at .21) 
  (spp mismatch-person-no :at .21) 
  (spp respond-yes :at .21) 
  (spp start :at .250) 
  (spp harvest-person :at .285) 

Those settings are free parameters in the model, and they are not unique – there are many ways to  
set them to get the same results and it could have all been attributed to a single production.  In 
fitting this data one also has to  adjusted the latency factor  and maximum associative strength 
values which control the timing and activation of the underlying chunks.  Using the perceptual and 
motor  modules  to  perform the  task  gives  the  model  a  reasonable starting  point  for  human 
performance and saves having to  estimate the additional action time along with the declarative 
memory performance, but it may involve more work to setup the task and the model.  Something 
else to note is that we kept the two versions of this model similar for comparison purposes, but  
the one that  does not  use the perceptual and motor  components could have been made even 
simpler  by skipping  the  encoding  steps  and  just  performing  the  retrieval  after  placing  the 
appropriate values into the slots and then testing the result in the code as well instead of with 



productions.  There is no single best approach for creating the model and task, and you will have 
to consider the options and their trade-offs with respect to the objectives of the modeling effort.

Grouped Task

The grouped model is really just a demonstration of partial matching.  The experiment code is 
only there to collect and display the key presses of the model.  It is not an interactive experiment 
which a person can perform nor  does it have a direct  comparison to  any existing data.   The 
experiment code is very simple, and does not use any new commands.  However, the model which 
interacts with that code does use a new production action.  Unlike previous tasks where the data  
collection was done through monitoring the model’s output  actions,  here we create  a simple 
function for collecting the data directly which just records the values provided onto a response 
list.  That function is then called directly from the actions of a production.

Calling ACT-R commands from productions

It is possible to call a command which is available in ACT-R from within a production, and that is 
how this model provides its responses – it directly calls the grouped-response command that is 
added by the experiment code.  That is done in the harvest-first-item, harvest-second-item, and 
harvest-third-item productions.  Here is the harvest-first-item production.

(p harvest-first-item 
   =goal> 
      isa      recall-list 
      element  first 
      group    =group 
   =retrieval> 
      isa      item 
      name     =name 
  ==> 
   =goal> 
      element  second 
   +retrieval> 
      isa      item 
      group    =group 
      position second 
      :recently-retrieved nil 
   !eval! ("grouped-response" =name)) 

The new operation shown in that production is !eval!. [The ‘!’ is called bang in Lisp, so that’s 
pronounced bang-eval-bang.]  It can be placed on either the LHS or RHS of a production and 
must be followed by a call to an ACT-R command using Lisp style syntax specifying the string 
which names the command followed by any parameters to pass to it inside of parentheses.  [Note: 
a valid Lisp expression can also be provided for a !eval! operation instead of specifying an ACT-R 
command name string.]

On the RHS of a production all the !eval! operation does is evaluate the expression provided – 
when the production fires, the !eval! is just another action that occurs.  If that expression contains 
variables from the production the current bindings of those variables in the instantiation of the 
production are the values which will be passed to the command.  



On the LHS of a production a !eval! specifies a condition that must be met before the production 
can be selected just like all of the other items on the LHS.  The value returned by the evaluation 
of a LHS !eval! must be true for the production to be selected (where true is anything that is not  
nil in Lisp and if the command is implemented in some other language the values must not be the 
equivalent of nil e.g. False and None in Python are equivalent to nil in Lisp).  Because it will be 
called during the selection process, a LHS !eval! is likely to be evaluated very often and may be 
called even when the production that it is in is not the one that will be eventually selected and 
fired.

Using !eval! can be a powerful tool, but it can easily be abused. Using it to call commands as an 
abstraction for an aspect of the model which is not necessary to model in detail for a particular 
task is the recommended use.  In general, the predictions of the model should not depend heavily 
on the use of !eval!, otherwise there is not really any point to using ACT-R to create a model – 
you might as well just generate some functions to produce the data you want.  

In this model !eval! is used to  collect the model’s responses without  needing the overhead of 
creating an experiment with which to interact.  Because this task is not presenting information to  
the  model or  concerned with the  response time there  is not  really a  need for  an interactive 
experiment  and !eval! provides an easy alternative.   For  the  assignment  tasks  in the  tutorial 
however you should not be using !eval! in any of the productions which you write.

Siegler

The Siegler task is only available for a model to perform because there is no display to see and it 
records the model’s speech as a response.  There is only one new function used in the code, new-
digit-sound, which will be described later with the new commands.  It also uses install-device to 
install a microphone device for the speech module instead of installing an experiment window 
(which would automatically install a microphone device as was used in the subitizing task in 
unit3).

1-hit Blackjack

The 1-hit blackjack task has a lot of code to go with it to play the game, control the opponent,  
analyze the results, and allow a person to play against the model, and this code is flexible in that it 
allows for the game and opponent to be changed without having to change the existing code.  It 
runs the model through the task by modifying the goal buffer (like the fan experiment described 
above) and uses a couple of new commands to do so, but it does use an experiment window to 
display the data in a graph and when it plays against a person (so the person can see the cards). 
There is also a slight difference with respect to when the model is loaded relative to the code in 
the task.

Similarity hook function

Unlike the previous tasks in the tutorial, this one starts by defining a function and adding a new 
command before  loading the  corresponding model.   That  function  computes  the  similarities 
between numbers for the model.  It  must be added as a command before loading the model 
because the model’s :sim-hook parameter setting specifies that “1hit-bj-number-sims” command 
as the value, and that is not valid if the command does not exist.  That command will be called 
whenever  a  similarity  is  required  between  two  items  (unless  the  :cache-sim-hook-results 



parameter is set to t in which case it is only called once for a given pair of items), and if it returns 
a number that will be used as the similarity between them.  For this task the function associated 
with “1hit-bj-number-sims” will test whether the values it is passed are numbers and if they both 
are it will return a similarity based on the equation:

max

abs(a b)
Similarity(a,b)=

(a,b)

−−

Drawing the graph

The graph of the results is shown in an experiment window.  It is drawn using the add-text-to-
exp-window/add_text_to_exp_window commands which have been used in previous tasks and 
add-line-to-exp-window/add_line_to_exp_window which will be described below.  This shows 
that the experiment windows are not only usable for presenting information to the model in a task,  
but can also be used for displaying information to the modeler as well.

Providing the model information

To provide the information to the model the chunk in the goal buffer is modified with the current 
game data if there is a chunk in the buffer.  If there isn't a chunk in the goal buffer then it must 
create a new chunk and set that chunk in the buffer.  To test whether there is a chunk in the buffer 
the buffer-read/buffer_read function is used which returns the name of the chunk in a buffer if 
there is one.  If there is, then the mod-focus/mod_focus command can be used to modify it (this is 
a command specific to the goal buffer).  If there isn't then a new chunk needs to be created, and as 
a general principle, we do not want that chunk to be in declarative memory yet since the model 
hasn't seen it before.  So, we use the define-chunks command to create it which creates chunks 
without  placing them into  declarative memory (instead  of  add-dm which creates  chunks and 
places them into  declarative memory).   Once we have the new chunk we can use the goal-
focus/goal_focus command to put it into the goal buffer (a similar process that is not specific to  
the goal buffer will be shown in a future unit).  Details on those new commands will be provided 
later.

1hit-blackjack-model

In addition to the new parameters set in the model definition, which were described in the main 
unit text, there are some new commands used in the model definition.  The first is this one:

  (declare-buffer-usage goal game-state :all) 

That command is there to avoid the style warnings from the procedural module because the goal 
buffer is being tested for chunks which are not generated by the model itself.  The declare-buffer-
usage command is a way for the modeler to tell the procedural module that a buffer will be using 
slots other than those which are set directly in the model.  It takes two required parameters which 
are the name of a buffer and the name of a chunk-type defined in the model.  It takes an arbitrary 



number of additional parameters which indicate the slots from that chunk-type which will be set 
from outside of the model, or as is used here, the symbol :all to indicate that all of the slots from 
that chunk-type may be set externally.  

Doing so avoids the style warnings like these which would normally be printed when slots that are 
not set in the model are used in productions:

#|Warning:  Productions  test  the  MRESULT  slot  in  the  GOAL  buffer  which  is  not 
requested or modified in any productions. |# 
#|Warning: Productions test the MC1 slot in the GOAL buffer which is not requested 
or modified in any productions. |# 

Alternatively, instead of using declare-buffer-usage to specify the details of slots used in a buffer 
from outside of the model itself we could just turn off the warnings, but that is not recommended 
because with the warnings off one may miss other serious problems.

The next new command used is this one:
  (define-chunks win lose bust retrieving start results) 

That command is also used in the code which implements the game and will be described in detail 
below.  The reason this exists in the model is to create the chunks for the items that are used in 
the productions to indicate the game information and the model’s internal state.  That avoids the 
warnings for undefined chunks as was shown in the semantic model of unit 1, and because those 
chunks do not need to have any slots we can simply specify names to create them.

The last new command is actually one that we have used in many of the previous experiments, but 
this time we have included it in the model in a slightly different form:

  (install-device '("motor" "keyboard")) 

Previously we have seen install-device used to have the model interact with a window in a task.  It  
is more general than that however, and can be used to install any ACT-R device which has been 
created for a model to  use.  In this case, we are installing the keyboard device for the motor 
module to  use.  That has not been done previously in the experiments because the experiment 
windows automatically install a keyboard and mouse for the motor module, the window for the 
vision module, and a microphone for the speech module, but since this task does not have a visual 
interface for the model we are not  installing an experiment window for the model to  use.  A 
similar usage occurs in the siegler task of this unit to install the microphone device for the speech 
module to record the model’s vocal responses since it too does not use an experiment window.

Command Information

There were several new commands used in the tasks and models of this unit.  However, before 
describing those commands we will first discuss some details about working with ACT-R from 
code.



Names

The code which implements ACT-R is written in Lisp, and in Lisp one of the fundamental data 
types is called a symbol.  Very roughly speaking any sequence of alpha-numeric characters which 
is not purely numeric represents a symbol.  They can be used for a variety of purposes, and a 
convenient use of symbols is to name things.  Most of what you see in the model files are Lisp 
symbols e.g. everything in the count.lisp file for unit 1 except for the parentheses and numbers are 
symbols.  The important issue is that internally all of the names of things in ACT-R are symbols – 
chunks, productions, parameters, slots, buffers, modules, etc.  A Lisp symbol is different from a 
Lisp string which is specified in double quotes e.g. "goal" (like strings in most other languages) 
and that distinction can be an important factor when creating the chunks for a model (as we will 
discuss later with respect to the fan model from this unit).  However, most other languages do not  
provide a construct like a symbol and the communication protocol used to connect to ACT-R also 
does not provide such a default type.  Therefore, to accommodate interacting with other systems 
the ACT-R commands evaluated through the dispatcher accept strings as the names of items and 
convert strings to symbols to get the names, and similarly, names are converted to strings when 
returning them through the dispatcher.  If you have been looking at the Python versions of the 
tasks and interface functions from other  units you will have seen strings being passed to  the 
functions and strings being returned, with the buffer-chunk function shown in unit2 as a good 
example where the Lisp version used symbols and the Python version used strings:
? (buffer-chunk goal visual) 
GOAL: GOAL-CHUNK0 
GOAL-CHUNK0 
   ARG1  FIVE 
   ARG2  TWO 
   SUM  SEVEN 

VISUAL: NIL 
(GOAL-CHUNK0 NIL) 

>>> actr.buffer_chunk('goal','visual') 
GOAL: GOAL-CHUNK0 
GOAL-CHUNK0 
   ARG1  FIVE 
   ARG2  TWO 
   SUM  SEVEN 

VISUAL: NIL 
['GOAL-CHUNK0', None] 

Strings in slots

Generally, using strings to name things does not cause an issue, but there is one place where a 
little extra effort is required when using commands through the dispatcher.  That situation is when 
one wants to put a string value into a chunk’s slot or get the value of a slot which contains a 
string, as is done in the version of the fan experiment that does not use the perceptual and motor  
modules.  Since the assumption is that strings from the external interface should be converted to 
symbols to specify names, to specify that something should be a string requires additional effort.  
To indicate a value is a string instead of a name one needs to add a set of single quotes around the 
item in the string e.g. "'value'".  Similarly, when returning a value which should be considered as a 
string it will contain single quotes around the item. Having to work with strings in the slots of 



chunks using commands through the dispatcher is probably not the sort of thing one will need to 
do very often, but when needed, some extra care will be required.

Additional Lisp command information

For many of the ACT-R commands the Lisp version provides both a macro and a function for 
accessing the command.  The biggest distinction from the user’s perspective is that when using a 
function  in  Lisp  the  parameters  are  evaluated  first  whereas  a  macro  does  not  evaluate  its 
parameters.  Many of the ACT-R commands you’ve seen are actually macros e.g. chunk-type, 
add-dm, and p.  They are macros so that you don’t have to worry about quoting symbols or lists 
and other issues with Lisp syntax, but because they don’t evaluate their parameters there are some 
things that you can’t do with the macros (at least not without using an explicit call to eval and/or  
backquoting but those are Lisp programming techniques which will not be described here).  For 
example, if you have a variable called *number* and you’d like to  create a chunk that has the 
value of *number* in one of its slots.  Using the add-dm macro will not work as shown here using 
the dm command discussed in unit1 for printing a chunk from declarative memory:

? (defvar *number* 3) 
*NUMBER* 
? (add-dm (foo size *number*)) 
(FOO) 
? (dm foo) 
FOO 
   SIZE  *NUMBER* 

The add-dm macro doesn’t evaluate the variable *number* to get its value. Instead it creates a 
chunk that literally contains *number* in its slot.

To  allow modelers to  do  things like that,  most  of the ACT-R macros  have a corresponding 
function that does the same thing and the naming convention in the ACT-R interface is to  add 
“-fct” to the end of the name for the functional form of a command.  When using the functional 
form of an ACT-R command you have to pay more attention to Lisp syntax and make sure that 
symbols are quoted and lists are constructed appropriately, and often the required parameters are 
a little different – things that do not need to be in a list for the macro version need to be in a list 
for the function.  For example, add-dm-fct requires a list of lists as its only parameter instead of 
an arbitrary number of lists.  Here is the code that would generate the chunk as desired above:

? (add-dm-fct (list (list 'foo 'size *number*))) 
(FOO) 
? (dm foo) 
FOO 
   SIZE  3 

Not all of the ACT-R commands have both a macro and function available from Lisp, but for 
those that do we will provide the details from this point on when describing the new commands.  

New Commands

Below we will describe the new commands used in this unit.  



pdisable – This command can be used to disable productions.  The Lisp macro and the Python 
function take any number of production names as parameters.  The Lisp function  pdisable-fct 
requires a list of production names as its only parameter.  The named productions will be disabled 
in the current model.  A disabled production cannot  be selected during the conflict resolution 
process.  Disabled productions will be enabled again if the model is reset or if explicitly enabled 
using the corresponding penable command.  It returns a list with the names of all the productions 
which have been disabled in the current model.

define-chunks – Define-chunks is similar to add-dm which has been used in all of the previous 
models to  create  chunks and add  them to  the  model’s declarative memory.   The  difference 
between define-chunks and add-dm is that define-chunks creates the chunks specified but does not 
add  them to  the  model’s declarative  memory.   Keeping unnecessary information  out  of  the 
model’s declarative memory can be useful in multiple situations.   One reason  is because the 
spreading activation depends on the fan of items and that  fan is based on the contents of the 
chunks in declarative memory.  So, putting chunks which do not represent the actual knowledge 
of the model into  declarative memory could affect the activation of the important  chunks by 
affecting the fan values.  It is also important when creating chunks for a buffer which might later  
need to be retrieved after the model has manipulated them e.g. if the 1hit-blackjack model were 
retrieving the game-state chunks to make its decision we would not want the starting goal chunk 
placed into declarative memory prior to the model actually playing that game.  Finally, it can also 
make things easier on the modeler when inspecting declarative memory while working with the 
model because it can be easier to find the relevant information if there are not a lot of irrelevant 
chunks there as well.

The Lisp macro (define-chunks) and the Python function (define_chunks) take any number of 
lists of chunk descriptions or names for chunks which will have no slots whereas the Lisp function 
(define-chunks-fct) requires a list of chunk description lists or names for chunks with no slots. 
They return a list of the names of the chunks that were created.

goal-focus – We have seen goal-focus used in models throughout  the tutorial to  schedule an 
action to place a chunk into the goal buffer.  Here we are calling it from code to do the same 
thing.  All versions, the Lisp macro, Python function (goal_focus), and the Lisp function (goal-
focus-fct) take one optional parameter which names a chunk to place into the goal buffer.  If the 
parameter is not specified then the command will print out the chunk in the goal buffer.  It returns 
the name of the chunk which will be placed into the goal buffer or the chunk that is already there 
if no parameter is provided and no previous goal-focus action remains unexecuted.

mod-chunk - This command is used to modify a chunk.  The Lisp macro version and the Python 
function (mod_chunk) require a chunk name and then an even number of additional parameters 
which indicate slots  and values whereas the Lisp function (mod-chunk-fct)  requires a chunk 
name and then a list of slots and values.   Each of the slots specified for the chunk is given the 
corresponding value.  It returns the name of the chunk which was modified.

One important thing to note is that once a chunk enters declarative memory it cannot be modified. 
That is another reason why one may want to use define-chunks instead of add-dm.

mod-focus –  This command is very similar to  mod-chunk except that it does not require the 
name of a chunk, only the slots and values.  It schedules those changes to be made at the current  



time to the chunk which is in the goal buffer, and it returns the name of the chunk which is in the 
goal buffer (or the chunk which is scheduled to enter the goal buffer if a goal-focus command has 
scheduled one to be put there at the current time as well).

buffer-slot-value –  This command returns the value from a slot of a chunk in a buffer.  The 
parameters for both the Lisp function and Python function (buffer_slot_value) are the name of 
the buffer and the name of the slot.   It  returns the value of that  slot  from the chunk in the 
indicated buffer or nil (Lisp) or None (Python) if the chunk does not have the specified slot.

new-digit-sound  –  This  command  creates  a  new sound  stimulus  for  the  model  to  provide 
numeric information and is similar to the new-tone-sound command which was used in unit 3 to  
present  a  tone.   Both  the  Lisp  function  (new-digit-sound)  and  the  Python  function 
(new_digit_sound)  require one parameter  which is the number to  present  and also take two 
optional parameters.  The first optional parameter can be provided to specify the time at which the 
digit should be presented (the current time will be used if a specific onset time is not given).  The 
second optional parameter can be specified as a true value to indicate that the time is specified in 
milliseconds instead of the default units of seconds.

add-line-to-exp-window – this is similar to the Lisp function add-text-to-exp-window and the 
Python  function  add_text_to_exp_window which  have  been  used  in  previous  units.   This 
function draws a line in an experiment window.  It  takes  three required parameters  and one 
optional parameter.  The first required parameter is the window in which to draw the line.  The 
other two are each a list of two integers which indicate the pixel coordinates of the end points of  
the line to be drawn (given as x and then y).  The optional parameter can be provided to indicate 
the color of the line, and the default is black if it is not provided.



Modifying 1-hit blackjack

This section will discuss how to  change the decks and/or the opponent for the 1-hit blackjack 
game as well as provide some suggestions for some other opponents to test a model against.  

To  make the  game flexible the  code  relies on  functions  being specified to  handle the  three 
changeable components of the game: the model’s deck of cards, the opponent’s deck of cards, 
and the code to determine whether or not the opponent will hit or stay.  The functions are stored 
in global variables which are then called when needed.  Thus, writing new functions for those 
parts of the game and setting the corresponding variables to those functions will change the way 
the game plays.  To help make that more manageable, a function can be written to set all of the 
appropriate values for a particular game scenario and that function can be passed to the onehit-
learning or learning function as the (optional) third parameter.   That setup function will be called 
at the start of each of the rounds that is played.  Thus, to play 5 rounds of a game specified by a 
function named game1 and display the graph of the model’s results these would be how that is 
called for the Lisp and Python versions (assuming the game1 function was also defined in the 
onehit.py file for the Python version):

? (onehit-learning 5 t 'game1)

>>> onehit.learning(5,True,onehit.game1)

The functions for the decks are held in the variables *deck1* and *deck2* for Lisp and deck1 and 
deck2 for Python.  Deck1 holds the deck for the model’s cards and deck2 the opponent’s cards.  
A deck function should return a number from 1-10 representing the value of the card being dealt. 
On every hand each of the deck functions will be called three times.  The first call will be for the 
face up card’s value, the second call will be for the player’s hidden card and the third call will be 
for the card that the player will receive on a hit.  All three cards are dealt at the start of the hand,  
but  only shown  to  the  players  when appropriate.   The  model’s  cards  are  dealt  before  the 
opponent’s cards.  Thus, if the same deck function is used for both players, as it is for the example 
games and the suggested alternatives, then the function will be called 6 times per hand with the 
first three calls returning the model’s cards and the second set of three being for the opponent’s 
cards.

The function for the model’s opponent is called to determine if the opponent will hit or stay.  The 
opponent function is stored in the variable *opponent-rule* for Lisp and opponent_rule in Python. 
It  will be passed two parameters.  The first parameter is a list of the opponent’s two starting 
cards.  The second parameter is the number of the model’s face up card.  That function should 
return either the string “h” if the opponent will hit the hand or the string “s” if the opponent will 
stay for that hand.  Because we are only using a fixed opponent for the model there is no function 
called to provide feedback on the outcome of the hand to the opponent i.e. it has no way to learn 
about the game or the model, but the code does provide a variable for that (*opponent-feedback* 
or opponent_feedback) if one wanted to create a learning opponent to play against.

There is a given function called fixed-threshold or fixed_threshold which can be used for creating 
an opponent with a fixed value which indicates the hand value at which it will always stay.  The 



value at  which an opponent  with that  function will stay is set  with the  variable *opponent-
threshold* or opponent_threshold.  

All of these variables are set to  create the default game scenario as can be seen in the game0 
functions in the code.

If you want to create an opponent that needs to know the value of a hand, the score-cards and 
score_cards functions can be used to  compute  the value for a list of card values taking into 
account the rule of a 1 being counted as 11 when possible.

By writing a different game function to set the control variables one can easily modify the game 
that is played by the model.  The simplest change would be to just adjust the threshold at which 
the  default  opponent  stays.   That  could be done by adding a  new game function to  set  the 
variables appropriately and then passing that function to the onehit-learning or learning function. 
A function like these would change the opponent to  stay when it has a score of 12 or  more 
instead:

(defun newgame ()
  (setf *deck1* 'regular-deck)
  (setf *deck2* 'regular-deck)
  (setf *opponent-rule* 'fixed-threshold)
  (setf *opponent-threshold* 12)
  (setf *opponent-feedback* nil)) 

def newgame():
    global deck1,deck2,opponent_threshold,opponent_rule,opponent_feedback

    deck1 = regular_deck
    deck2 = regular_deck
    opponent_rule = fixed_threshold
    opponent_threshold = 12
    opponent_feedback = None

Then to run that game we would pass that newgame function to the onehit-learning or learning 
function like this:

? (onehit-learning 5 t 'newgame)

>>> onehit.learning(5,True,onehit.newgame)

There is a second game already programmed and available in the given code.  It is called game1 
and its setup function serves as another example for reference.

There are some other game scenarios which we have designed to test the model’s ability to learn, 
but  which have not  been included in the  code.   These can be implemented as an additional 
exercise if you would like, and of course, you are also free to create game scenarios of your own 
design for testing.  The testing scenarios we outline here all assume the same deck function will be 
used for both the model and the opponent to keep things simpler, but that is not necessary since 
the two variables can be specified separately.



Game 2:  In this game the deck consists of only cards numbered 7 and the opponent will always 
stay.  In this game the model will always win if it hits and it should be able to learn that fairly 
quickly.

Game 3:  The deck consists of an essentially infinite number of cards with only the values 8, 9,  
and 10 in equal proportions and again the opponent will always stay.  The model should also learn 
to always stay because it will always lose if it hits.  Staying on every hand will result in winning 
about 38.9% of the games.

Game 4:  The deck consists of the cards 2, 4, 6, 8, and 10 being cycled in that order repeatedly. 
Thus there are only 5 possible hand combinations which will be cycled through in order:

Mod el’ s  
card s  

Oppon e n t ’ s  
card s

2 4 6 8 10 2

4 6 8 10 2 4

6 8 10 2 4 6

8 10 2 4 6 8

10 2 4 6 8 10

The opponent for this game is one which always hits.  In this game the model should be able to  
learn the correct move to win the 4 situations which can be won out of the 5 possible hands (80% 
wins by the end).

Game 5:  The deck consists of only the following possible triples each equally likely in any deal to  
either player: (2 10 10) (4 9 9) (6 8 8) (8 8 5) (9 9 3) (10 10 1).  These hands are designed so that  
if the player’s initial score is small (12, 13 or 14) then a hit will always bust and if the initial score 
is large (16, 18, or 20) then a hit will always score 21 total.  The opponent for this game will 
randomly hit or  stay with equal probability.  The optimal strategy for this game will result in 
winning about 54% of the hands.



Fitting the data for the siegler task

This section is going to walk through how the parameter values were chosen to fit the data in the 
siegler task.

Parameters to be adjusted for siegler task

To  adjust  the  fit  to  the  data  we will be using partial matching and adjusting the  base-level 
activations of the plus-facts for the model.  The specific parameters that we will need to adjust for 
the model are those related to activation in general (the retrieval threshold, :rt, and the activation 
noise, :ans), those related to partial matching (the similarities among the number chunks used as 
the addends of the plus-facts and the match scale value, :mp), and the base-level activation values 
of the chunks.

That is potentially a lot of free parameters in the model.  Treating them that way one could likely 
produce an extremely strong fit to the reported data.  However, doing that is not very practical 
nor does it result in a model that is of much use for demonstrating anything other than the ability 
to fit 60 data points using more than 60 parameters.

In the following sections we will describe the effects that the particular parameters have on the 
model’s performance and outline an approach which can be taken to  arrive at  the parameter 
settings in a model.

Initial siegler model

The first thing to do for the model is make sure that it can do the task.  In this case that is hear the  
numbers, attempt to retrieve an addition fact, and then speak the result.  To do that, we will start 
without enabling the subsymbolic components of the system.  Making sure the model works right 
with basic symbolic information is a good start  for modeling complex tasks because once the 
subsymbolic components are enabled and more sources of randomness or indeterminate behavior 
are introduced it can be very difficult to find potential errors in the productions or basic logic of 
the model.

The assumptions for the model are that the children know the numbers from zero through nine 
and that they have encountered the addition facts for problems with addends from zero to five. 
Thus these will be the declarative memory elements with which the model will start.  Along with 
that, we are assuming that the children are not going to use any complex problem solving to try to  
remember the answer.  So, if there is a failure to remember a fact after one try the model will just 
give-up and answer that it does not know.  For a task of this nature where we are modeling the 
aggregate data, using a single idealized strategy for the model is often a reasonable approach, and 
has been how all of the other models seen so far in the tutorial operate.  In other circumstances,  
particularly when individual participant  data  is  being modeled,  the  specific strategy used  to 
perform the task may be important, and in those cases it may be necessary to include different 
strategies into the model to account for the data.

With the  model working correctly in a  purely symbolic fashion we should see  it  answering 
correctly on every trial and here are the results of the model in that case providing the starting 
point for the adjustments to be made:



CORRELATION:  0.943 
MEAN DEVIATION:  0.127 
       0     1     2     3     4     5     6     7     8   Other 
1+1  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
1+2  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00 
1+3  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00 
2+2  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00 
2+3  0.00  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00 
3+3  0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00 

Making errors

Now that we have a model which performs perfectly we need to  consider how we want it to 
model the errors.  For this task we have chosen to use partial matching to do that.  Specifically, 
we want the model to retrieve an incorrect addition fact as it does the task and also to sometimes 
fail to retrieve an addition fact at all (an important source of the “other” results for the model). 
What we do not want it to do is retrieve an incorrect number chunk or fail to retrieve one while 
encoding the audio input or producing the vocal output.  The reason for that is because we are 
assuming that the children know their numbers and thus do not produce errors because they are 
failing to  understand what they hear or  failing to  say an answer correctly.  That  is important 
because we are not just looking to have the model fit the data but to actually have it do so in a  
manner which seems plausible for the task.

To make those errors through partial matching requires that the model occasionally retrieve the 
wrong chunk for the critical request of a plus-fact chunk like this one based on the addend1 and 
addend2 slots:
 (f13 ISA plus-fact addend1 one addend2 three sum four) 

Thus, the items which will need to be similar to result in mismatches are the number chunks which 
are used as addends, and that is where we will start in setting the parameters.

Setting similarities

The  similarity  settings  between  the  number  chunks  will  affect  the  distribution  of  incorrect 
retrievals.  While this looks like a lot  of free parameters to  be fit,  in practice that  is just not 
reasonable.  For a situation like this, where the chunks represent numbers, it is better to set the  
similarity between two numbers based on the numerical difference between them using a single 
formula to  specify all of the similarities.  There is a lot  of research into how people rate  the 
similarity of numbers and there are many equations which have been proposed to describe it.  For 
this task, we are going to use a linear function of the difference between the numbers.

Also, to keep things simple we will use the default range of similarity values for the model, which 
are from 0.0 for most similar to  -1.0 for most dissimilar.  Since we are working with numbers 
from 0-9 an obvious choice for setting them seems to be:

( ) | |( )ba=baSimilarity −∗− 0.1,



To set those similarities, we need to use the set-similarities command.  Because the similarities are 
symmetric we only need to set each pair of numbers once and we do not need to set the similarity 
between a chunk and itself because that defaults to  the most similar value.  We also note that 
since the model only has chunks for encoding the facts with addends from 0-5 we only need to set 
the similarities for the chunks which are relevant to the task.  Thus, here are the initial similarity 
values set in the model:

(Set-similarities 
  (zero one -0.1) (one two -0.1) (two three -0.1) (three four -0.1) (four five -0.1) 
  (zero two -0.2)(one three -0.2)(two four -0.2)(three five -0.2) 
  (zero three -0.3)(one four -0.3) (two five -0.3) 
  (zero four -0.4)(one five -0.4) 
  (zero five -0.5)) 

In addition to the similarities, we will also need to set the match scale parameter for the model. 
Adjusting the match scale will determine how much the similarity values affect the activation of 
the chunks since it is used to multiply the similarity values.  Because we have chosen a linear scale 
for our similarity values we will actually be able to just use the match scale parameter to handle all 
of our adjustments instead of needing to adjust the available range or the parameter we chose in 
our similarity equation.

The similarity value and the match scale are going to determine how close the activations between 
the correct and incorrect chunks are.  How large that needs to be to create the effect we want is 
going to  depend on other settings in the model.  Thus, there is not really a good guideline for 
determining where it should be initially, but from experience we know that it is often easier to 
adjust the parameters later if we start with values that allow us to see the effect each has on the 
results.   Therefore  we want  to  make sure that  we pick a  value here which ensures that  the 
similarity will make a difference in the activation values.  Since the default base-level activation of 
chunks is 0.0 when the learning is off we are going to choose a large initial :mp value, like 5, to  
make sure that the activations will differ noticeably.

With just these settings however, the model will still not make any errors because the correct  
chunk will always have the highest activation and be the one retrieved.  To actually get some 
errors we will need to also add some noise to the activation values.

Activation noise

In the previous unit, we saw how the activation noise affects the probability that a chunk will be 
above the retrieval threshold.  Now, since there are multiple chunks which could all be above the 
threshold,  it  is also going to  affect  the  frequency of retrieving the correct  chunk among the 
incorrect alternatives.  The more noise there is the less likely it is that the correct chunk will have 
the highest activation.

As with the :mp value, choosing the initial value for the noise is not obvious because its effect is 
determined by other settings in the model.  For this parameter however, we do have some general 
guidelines to work with based on past experience.  For many models that have been created in the 
past an activation noise value in the range of 0.0-1.0 has been a good setting and for most of 
those the value tends to fall somewhere between 0.2 and 0.5.  So, based on that, we will start this 



model off with a value of .5, as was used for the models of the previous unit, and then adjust 
things from there if needed later.

Now, given these settings, :ans .5 and :mp 5 with the similarities set as shown above, we can run 
the model and see what happens.  Here is what we see if we just run it to collect the data:
CORRELATION: -0.034 
MEAN DEVIATION:  0.339 
       0     1     2     3     4     5     6     7     8   Other 
1+1  0.01  0.00  0.04  0.04  0.03  0.00  0.00  0.00  0.00  0.88 
1+2  0.00  0.01  0.03  0.03  0.02  0.02  0.00  0.01  0.00  0.88 
1+3  0.00  0.01  0.02  0.04  0.04  0.01  0.02  0.00  0.00  0.86 
2+2  0.00  0.00  0.01  0.03  0.02  0.02  0.00  0.00  0.00  0.92 
2+3  0.00  0.01  0.00  0.00  0.02  0.02  0.01  0.02  0.00  0.92 
3+3  0.00  0.00  0.00  0.00  0.03  0.01  0.05  0.02  0.02  0.87 

The model is almost never correct and most of the errors are in the other category which means 
that it probably did not respond.  The important thing to  do next is to  understand why that is 
happening.  One should not just start adjusting the parameters to try to improve the fit without  
understanding why the model is performing in that way.

Retrieval threshold and base-levels

Running the model on a few single trials and stepping through its operations shows that  the 
problem is happening because the model is failing to  retrieve chunks during all of the retrieval 
requests, including the initial encoding of the numbers.  We want the model to sometimes fail on 
the retrieval of the addition fact chunks, but we do not want it to be failing during the encoding 
steps.

To fix that, there are two changes which we will make at this point.  The first is to adjust the 
retrieval threshold so that we eliminate most, if not all, of the retrieval failures.  This will allow us 
to  work  on  setting  the  other  parameters  to  match  the  data  with  the  model  answering  the 
questions.  Then we can come back to the retrieval threshold later and increase it to introduce 
more  of  the  non-answer  responses into  the  model.   Thus,  for  now we will set  the  retrieval 
threshold to a value of  -10.0 to make it very unlikely that any chunk will have an activation below 
the threshold.

The other thing we will do at this time is consider how to keep the number chunks from failing 
once we bring the retrieval threshold back up to a reasonable value.  The easiest way to handle 
that is to increase the base-level activation of the number chunks so that the noise will be unlikely 
to ever take them below the retrieval threshold.  The justification for doing so in the model is that  
it is assumed the children have a strong knowledge of the numbers and do not confuse or forget 
them and thus we need to provide the model with a comparable ability.

To do that we will use the set-base-levels command which works similar to the set-all-base-levels 
command that was used in the last unit.  The difference is that for set-base-levels we can specify 
specific chunks instead of applying the change to all of them.  Again, this seems like it is a lot of 
free parameters, but since we are not measuring the response time in this model all that matters is 
that the chunks have a value large enough to not fail to be retrieved – differences among them will 
not affect the error rate results as long as they are all being retrieved.  We will start by assigning 



them a value of 10 which is significantly larger than the retrieval threshold we have now of -10 
which should result in no failures for retrieving number chunks.  When we increase the retrieval 
threshold later we may need to adjust this value, but for now we will add these settings to the 
model:

(set-base-levels 
  (zero 10) (one 10) (two 10) (three 10) (four 10) (five 10) 
  (six 10) (seven 10) (eight 10) (nine 10)) 

Unlike the similarities where we only needed to set the values for the numbers from 0-5 based on 
the task, here we need to set all of the numbers from 0-9 since any of those values is a potential 
sum of an addition fact in the model’s declarative memory which may need to be retrieved.

After making those additions to the model, running it produces this output:

CORRELATION:  0.542 
MEAN DEVIATION:  0.174 
       0     1     2     3     4     5     6     7     8   Other 
1+1  0.04  0.14  0.28  0.26  0.15  0.07  0.04  0.01  0.00  0.01 
1+2  0.00  0.09  0.23  0.20  0.17  0.17  0.09  0.05  0.00  0.00 
1+3  0.01  0.05  0.11  0.17  0.25  0.21  0.15  0.04  0.01  0.00 
2+2  0.00  0.01  0.05  0.28  0.22  0.24  0.13  0.06  0.01  0.00 
2+3  0.01  0.02  0.04  0.16  0.22  0.22  0.14  0.14  0.04  0.01 
3+3  0.00  0.01  0.01  0.03  0.15  0.16  0.26  0.25  0.09  0.04 

That shows a better fit to the data than the last one, though still not as good as we want, or in fact 
as good as it was when perfect.  Looking at the trace of a few individual runs seems to indicate 
that the model is working as we would expect – the errors are only due to retrieving the wrong 
addition fact because of partial matching.

Adjusting the parameters

The next step to take depends on what the objectives of the modeling task are – what are you 
trying to accomplish with fitting the model to the data and what do you consider as a sufficient fit 
to the data.  If that fit to the data is good enough, then as a next step you would then want to start  
bringing the retrieval threshold up to introduce more of the “other” responses (failure to respond) 
and hopefully improve things a little more.  In this case however we are not going to consider that  
sufficient and will first investigate other settings for the :ans and :mp parameters before moving 
on to adjusting the retrieval threshold.

To do that we are going to search across those parameters for values which improve the model’s 
fit to the data.  When searching for parameters in a model there are a lot of approaches which can 
be taken.  In this case, we are going to keep it simple and try manually adjusting the parameters 
and running the model to see if we can find some better values.  When the number of parameters  
to search is small, the model runs fairly quickly, and one is not looking to precisely model every 
point this method can work reasonably well.  For other tasks, which require longer runs or which 
have many more parameters to  adjust other means may be required.  That can involve writing 
some code to  adjust  the parameters  and perform a more thorough search or  going as far as 
creating an abstraction of the model based on the underlying equations and using a tool  like 
MATLAB, Mathematica, or a spreadsheet solver to then find the best values.



The approach that we use when searching by hand is to search on only one parameter at a time. 
Pick one parameter and then adjust that to get a better fit.  Then, fix that value and pick another 
parameter to adjust.  Do that until each of the parameters has been adjusted.  Often, one pass 
through each of the parameters will result in a much better fit to the data, but sometimes it may 
require multiple passes to arrive at the performance level you desire (assuming of course that the 
model is capable of producing such a fit through manipulating the parameters).

Sometimes it is also helpful to work with only a subset of the parameters if you have an idea of 
the effects which they will have on the data.  For example, in this task we know that the retrieval 
threshold will primarily determine the frequency with which the model gives up.  Thus we are 
going to hold back on trying to fit that parameter until we have adjusted the others to better fit 
the majority of the data for the trials where it produces an answer.

Since we are starting with a noise value that was based on other tasks and our match scale value 
was  chosen  somewhat  arbitrarily we  will start  searching across  the  match  scale  parameter. 
Keeping the noise value at .5 we found that a value of 16 for the match scale parameter seems to 
be our best fit:
CORRELATION:  0.914 
MEAN DEVIATION:  0.086 
       0     1     2     3     4     5     6     7     8   Other 
1+1  0.00  0.09  0.68  0.21  0.02  0.00  0.00  0.00  0.00  0.00 
1+2  0.00  0.00  0.20  0.67  0.11  0.02  0.00  0.00  0.00  0.00 
1+3  0.00  0.00  0.00  0.13  0.68  0.17  0.02  0.00  0.00  0.00 
2+2  0.00  0.00  0.01  0.16  0.73  0.10  0.00  0.00  0.00  0.00 
2+3  0.00  0.00  0.00  0.01  0.11  0.76  0.11  0.01  0.00  0.00 
3+3  0.00  0.00  0.00  0.00  0.01  0.09  0.72  0.17  0.01  0.00 

Then, fixing the match scale parameter at 16 and adjusting the noise value we do not seem to find 
a value which does any better  than the starting value of .5.   So,  we will adjust the retrieval 
threshold to  introduce more of the other responses and hopefully improve the fit some more. 
Searching finds that a value of -.7 improves the fit slightly to this:

CORRELATION:  0.937 
MEAN DEVIATION:  0.073 
       0     1     2     3     4     5     6     7     8   Other 
1+1  0.00  0.12  0.69  0.07  0.00  0.00  0.00  0.00  0.00  0.12 
1+2  0.00  0.00  0.07  0.68  0.09  0.00  0.00  0.00  0.00  0.16 
1+3  0.00  0.00  0.00  0.06  0.73  0.07  0.01  0.00  0.00  0.13 
2+2  0.00  0.00  0.01  0.04  0.69  0.08  0.02  0.01  0.00  0.15 
2+3  0.00  0.00  0.00  0.01  0.09  0.69  0.10  0.00  0.00  0.11 
3+3  0.00  0.00  0.00  0.00  0.00  0.09  0.72  0.10  0.01  0.08 

One important thing to do at this point is to make sure that the model is still doing the task as we 
expect – that changing the parameters has not introduced some problems, like failing to retrieve 
the number chunks.  For the current model, looking at a couple of single trial runs in detail shows 
that things are still working as expected.  So, at this point we could go back and perform another 
pass through all the parameters trying to find a better fit, but instead we are going to stop and 
look at where our model seems to be deviating from the experimental data before trying to just 
find better parameters.



Adjusting the model

It  seems that one trend in the data which we are missing is that the children seem to  respond  
correctly more often to the smaller problems and that when they respond incorrectly the answers 
are more often smaller than the correct answer.  There seems to be a bias for the smaller answers. 
This  agrees  with  other  research  which  finds  that  addition  facts  with  smaller  addends  are 
encountered more frequently in the world.

Accounting for that component of the data is going to  require making some adjustment to the 
model other than just modifying the parameters which we have.  The research which finds that the 
smaller problems occur more frequently suggests a possible approach to  take.   The base-level 
activation of a chunk represents its history of use, and thus by increasing the base-level activation 
of  the  smaller plus-fact  chunks we  can simulate  that  increase  in frequency and increase  the 
probability that the model will retrieve them.  This should help improve the data fit in a plausible 
manner.

Like the similarities, this is another instance where it looks like there are a lot of free parameters 
that could be used to fit the data, but again a principled approach is advised.  In this case we are 
going to increase the base-level activation of all the small plus facts (which we have chosen to be 
those with a sum less than or equal to four), and we are going to give all of those chunks the same 
increase to their base-level activation.  The default base-level activation for the plus-facts is 0.  So 
we are going to set those chunks to have a value above that by using the set-base-levels command 
as we have done with the number chunks like this:

(set-base-levels 
 (f00 .1)(f01 .1)(f02 .1)(f03 .1)(f04 .1)
 (f10 .1)(f11 .1)(f12 .1)(f13 .1)
 (f20 .1)(f21 .1)(f22 .1)
 (f30 .1)(f31 .1)
 (f40 .1))

Using the values for the other parameters found previously we will search for a base-level value 
which improves the data fit and what we find is that a value of .5 seems to improve things to this:

CORRELATION:  0.961 
MEAN DEVIATION:  0.060 
       0     1     2     3     4     5     6     7     8   Other 
1+1  0.00  0.15  0.75  0.08  0.00  0.00  0.00  0.00  0.00  0.02 
1+2  0.00  0.00  0.12  0.75  0.11  0.00  0.00  0.00  0.00  0.02 
1+3  0.00  0.00  0.00  0.10  0.81  0.04  0.01  0.00  0.00  0.04 
2+2  0.00  0.00  0.01  0.11  0.76  0.04  0.01  0.01  0.00  0.06 
2+3  0.00  0.00  0.00  0.02  0.23  0.62  0.08  0.00  0.00  0.05 
3+3  0.00  0.00  0.00  0.00  0.01  0.09  0.72  0.10  0.01  0.07 

Given that,  we will make one more pass over all the parameters (noise, match scale, retrieval 
threshold, and small plus-fact base-level offset) to find the final set of parameter values which are 
set in the given model and produce this fit to the data:

CORRELATION:  0.947 
MEAN DEVIATION:  0.066 
       0     1     2     3     4     5     6     7     8   Other 
1+1  0.00  0.09  0.67  0.20  0.02  0.00  0.00  0.00  0.00  0.02 



1+2  0.00  0.00  0.18  0.64  0.09  0.01  0.00  0.00  0.00  0.08 
1+3  0.00  0.00  0.00  0.14  0.78  0.05  0.00  0.00  0.00  0.03 
2+2  0.00  0.00  0.01  0.17  0.78  0.03  0.00  0.00  0.00  0.01 
2+3  0.00  0.00  0.00  0.00  0.25  0.50  0.05  0.00  0.00  0.20 
3+3  0.00  0.00  0.00  0.00  0.01  0.02  0.62  0.14  0.01  0.20 

We could continue to search over the parameters or attempt other changes, like modifying the 
similarities  used  to  something  other  than  linear,  but  these  results  are  sufficient  for  this 
demonstration.  You are free to explore other changes to the parameters or to the model if you 
are interested.
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