Multiple Models

* More than one model can be defined
— Define-model
— Clear-all removes all models

e All models run when ACT-R runs

— same clock

* Each is independent of the others
— Only share the clock

Differences in output

* Models are indicated in warnings and the trace

>

4

(load "ACT-R:examples;unit-1l-together-1-mp.lisp")

Loading ACT-R:examples;unit-1l-together-1-mp.lisp
(C:\Users\db30\Desktop\actr7\examples\unit-1-together-1-mp.lisp)

SEMANTIC) : Creating chunk CATEGORY with no slots |#

#|Warning

#|Warning

#|Warning

#|Warning

T
>

(run

O O O O O o O

1)

.000
.000
.000
.000
.000
.000
.000

(in model
(in model
(in model
(in model

COUNT
SEMANTIC
ADDITION
COUNT
COUNT
COUNT
SEMANTIC

SEMANTIC

Creating chunk PENDING with no slots |#

) :
SEMANTIC) : Creating chunk YES with no slots |#
) :

SEMANTIC

GOAL
GOAL
GOAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL

Creating chunk NO with no slots |#

SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
SET-BUFFER-CHUNK GOAL Gl NIL
SET-BUFFER-CHUNK GOAL SECOND-GOAL NIL
CONFLICT-RESOLUTION
PRODUCTION-SELECTED START
BUFFER-READ-ACTION GOAL
CONFLICT-RESOLUTION

Working with them

e Have to indicate which model

> (dm)
#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found |#

e Lisp: current-model, with-model, and with-model-eval commands
— With-model uses the specific name given
— With-model-eval evaluates the expression for name

 Python: actr.current_model and actr.set_current_model

? (with-model count (dm)) >>> actr.set current model ('count')
FIRST-GOAL-0 >>> actr.dm()
START 2
D 4 FIRST-GOAL-0
COUNT 4 START 2
.. END 4
? (let ((model 'count)) COUNT 4

(with-model-eval model
(dm)))

>>> actr.current model ()

? (with-model count 'count”
(current-model))

COUNT

The Environment

e Current model selection

i AR
"% Contro...|[25==20 p=h [?.é Contro... =n(s{Eh
F—— - F
|
Current Model l count L){lel -
-
addition — v addition ﬂ
Model Model
Load Model Load Model

e Windows indicate which model

retrieval =
imaginal

r‘ buffers3 (addition) [Elélg}

tnanual ‘

Creating multiple identical models

* Specify the model code in a list

(defparameter *model-code*
"((sgp :v t)
(p do-nothing
==>

)))

e Use define-model-fct to create the models

(define-model-fct 'modell *model-code¥*)
(define-model-fct 'model?2 *model-code¥*)

(define-model-fct 'model3 *model-code*)

Implementing a task

e Consider the level of abstraction

— Necessary and convenient

e Determine the model interactions

— How does it perceive and act

e How will it be run

Continuous running

Easy to stop and start

Monitor for the actions

— Output-key (zbrodoff unit 4)

— Output-speech (subitizing unit 3)
— Move-cursor & Click-mouse
Scheduled events

— Sperling unit 3

Use button action functions

— Bst unit 6

Run the model(s) until task over

Run-until-condition

* Instead of specifying a time to run, specify a function that indicates when
to stop running

? (run-until-condition 'game-over)

> actr.run until condition ("done")

* Possible gotcha
— Model isn’t doing things right and loops forever
— Add a time limit and/or a safety stop button

(defun game-over (time)
(or *safety-stop* *game-over* (> time 1000000)))

def is game over (time) :
return (safety stop or game over or (time > 1000000))

e Downside
— Run-until-condition can be slower because it calls the test fn a lot

Schedule a break event to stop ACT-R

 Run model(s) very long time
* When task complete schedule a break event

— Probably also still want a safety stop

(schedule-break-relative 0)

actr.schedule break relative (0)

Simple two player game

6 spaces in aline

Players’ pieces start at opposite ends facing each
other

Alternating turns, each can move forward 1 or 2
spaces

A player wins when landing on or passing opponent

Many ways to implement

No interface, goal modification

No window, but visual information

One winc
One winc

Two wino

ow both players press buttons

ow players speak the move
OWS, one per model

No windows explicit goal chunks

Like the 1-hit blackjack task
All information provided in a goal chunk

— Including which player

Each player gets a new goal when it needs to
make a move and when game over

Use a levall to indicate its action

Pros and cons

* No GUI code
* Model states set externally
* Chunk manipulation code

— Modifying while model using it could be confusing

No window but still visual info

* Provide custom visicon features directly

— Can contain any info needed

 Model will press keys to indicate move

Add/delete/modify visicon-features

* Specify the visual-location and visual object
chunks’ slot values

* Location must have position info

— Screen-x and screen-y (default)

* Anything else is up to the modeler

Adding visicon feature example

* Directly specify the chunks for the location and object
— Single value goes to both chunks (except position info)
— Two values: first goes to location chunk and second to object chunk
* Visicon holds object’s value — searchable in a visual-location request

(add-visicon-features “(isa (player-loc player) screen-x 0 screen-y 0 name ,player1 position (nil 0) turn (nil t))
“(isa (player-loc player) screen-x 100 screen-y 0 name ,player2 position (nil 5)))

actr.add_visicon_features(['isa',['player-loc','player'],'screen-x',0,'screen-y',0,'name’,player1,'position’,[False,p1_position], 'turn’,[False,True]],
['isa',['player-loc','player'], 'screen-x',100,'screen-y',0,'name’,player2, 'position',[False,p2_position]])

(chunk-type (player-loc (:include visual-location)) name position turn result)
(chunk-type (player (:include visual-object)) name position turn result)

Name Att Loc Kind Position Name Size Turn

PLAYER-LOCO NEW (0 O 1080) PLAYER O MODEL1 1.0 T
PLAYER-LOC1 NEW (100 O 1080) PLAYER 5 MODEL2 1.0

Pros and cons

* No ACT-R GUI code
 May need interface device

— Can add to model definition
(install-device '("motor" "keyboard"))

* Need to manage visicon features
— Vision module handles “safe” updating of visicon

One game board

e One window with buttons

— Both models install the same device
* Click on the button to make a move

* Current player’s space is highlighted to
indicate turn (red or blue)

Model

Needs to know its color
Detect its turn

~ind a button to press
Press the button

Process the end state

Know its color

 Could create different red and blue models

e |f identical models “tell” them at the start
— Different goal chunks one approach

(with-model-eval playerl
(define-chunks (goal i1isa play my-color red))

(goal-focus goal))

(with-model-eval player?
(define-chunks (goal isa play my-color blue))

(goal—-focus goal))

Detecting its turn

* When its color button appears

* Use buffer stuffing of visual-location
information

* Have it only stuff the critical item

— Set-visloc-defaults (unit 3 code document)
* Only available in model definition

(set-visloc—-default kind oval - color white - color blue)

Finding and pressing buttons

 Unit 6 Bst task

* Visual-location request

+visual-location>
kind oval

e Manual move-cursor and click-mouse actions

+manual>
cmd move-—-cursor
loc =visual-location

+manual>
cmd click-mouse

Processing the end state

e Run-until-condition

— Stops the models when result is true

e Schedule an event to give the model(s) time to process it

Pros and cons

* Single GUI not too difficult to implement

e Specific models or need to know how to play
both sides

e All information available to both players

Two game boards

e Two interface windows

— One per model

* Provide egocentric perspective

Pros and Cons

* |Interface code a little more complicated
* Models see same interface as either player
* Allows for hidden information

One window no buttons

One window for both players

Only display position number
— Color coded by player

Say “one” or “two” to make the move
The game speaks the starting player’s name

Having the models talk to each other

e Speaking unit 3 subitize task

+vocal>
cmd speak
string

e Qutput-speech monitor can create sounds for other
models

— New-word-sound / new_word_sound
e Similar to new-tone-sound in unit 3 sperling code

e Set-audloc-default
— Similar to set-visloc-default
— Own speech has location of self

(set—-audloc-default - location self :attended nil)

Pros and cons

* Simple GUI code
 Model state driven by percepts

* Processing speech in model and task may be
difficult

