
ACT-R 7.21+

AGI Manual

Dan Bothell

Table of Contents
Table of Contents...2
Introduction..3
Background..4

Devices...4
Virtual Windows..4
Visible Virtual Windows..4
UWI..5
Older ACT-R Devices..5
Native GUI Windows...5

The AGI...6
Visual Scene...7
Typical Experiment Design..8
Window Control (Steps 1 and 2)..9

Open-exp-window..9
Close-exp-window...10
Clear-exp-window..11

Displaying Items (step 3)...12
Item IDs...12
Colors...12
AGI Items...12

Waiting on user interaction (step 4)...19
Process-events..19

Response collection (step 5)..20
Monitorable Actions...20
Response Time...21

Data analysis (step 8)...22
Correlation...22
Mean-deviation..22

Miscellaneous..24
Permute-list..24
While..24

Visual Features of AGI Elements for Models..25
Text items...25
Buttons...27
Lines...28
Images..29

Other Commands...30
Appendix..33

Issues with using the AGI for human data collection..33
Command Syntax...34
Visible Virtual Window external interface...35

Introduction

This document will provide a description of the GUI tools available in ACT-R for
producing experiments for models (referred to as the AGI which stands for ACT-R GUI
Interface) as well as some of the general ACT-R commands one may use for running
models. These commands are used to create many of the experiments which are used for
the models included with the ACT-R tutorial. Thus, if you would like to see examples of
their use you can look at those models and the corresponding experiment code
description documents which accompany the tutorial units. There are also examples of
some of the AGI capabilities not used in the tutorial models available in model files
located in the examples directory of the ACT-R source code distribution.

Before describing the AGI itself however there will be some brief background provided
of the low level interface to ACT-R’s perceptual and motor systems, the tools upon which
the AGI is built, and some differences in the AGI compared to older versions of ACT-R.

When describing the commands available through the AGI we will be following the same
format for specifying the syntax as is used in the ACT-R reference manual, and the details
of that are included in the appendix of this manual.

Background

Devices

ACT-R models typically interact with the world through what are called devices. A
device is a general mechanism in the ACT-R software which can be associated with a
module to provide additional functionality. The AGI is based upon a set of devices which
provide the model with the ability to interact with a simulated computer. The motor and
speech modules use devices which translate the actions of those modules into appropriate
actions for a simulated keyboard, mouse, and microphone, and the vision module uses a
device which automatically generates visual features for GUI elements created using the
AGI.

While it’s possible to use some of those devices separately, the primary purpose of the
AGI is to use what is called an “experiment window” device which provides the visual
percepts and also installs the keyboard, mouse, and microphone devices automatically.

Virtual Windows

The experiment window device of the AGI is built around a GUI interface called virtual
windows. Virtual windows are based roughly on the windowing system of MCL
(Macintosh Common Lisp which is now obsolete but was the dominant Lisp during much
of ACT-R’s early development), and it implements a windowing interface which is
portable across Lisps. It is called virtual because it does not display anything the user can
see – it is an abstract interface only visible to the model, but it does include a mechanism
though which one can connect the virtual windows to real windows for viewing and to
accept real user actions.

Visible Virtual Windows

When the ACT-R Environment is connected to ACT-R it has an option (enabled by
default) to connect to the virtual windows interface so that it can display a real
representation of a virtual window and allow user interaction. Those displays are referred
to as visible virtual windows. Thus, even for command line only Lisps it is possible to
create and see graphic experiments for the model using the AGI commands when the
ACT-R Environment is also used. There is also a virtual window viewer available
through a browser using an application found in the examples/connections/nodejs
directory of the source code and which is also included with the standalone versions of
ACT-R (see the readme file in the sources or with the standalone for more information).
The interface through which those two tools connect to the virtual windows for display is
a part of the AGI which is available for use if one would like to use a different system to
display the visible virtual windows, and it is described in th e appendix.

UWI

The first attempt to create a set of commands for an ACT-R GUI was called the Uniform
Windowing Interface (UWI). It was a set of low level windowing functions which were
implemented in various Lisps and for the virtual windows to allow them to operate in a
portable manner. It was not entirely user friendly and has now been replaced by the AGI.
It is only mentioned here because parts of it still exist in the implementation of the AGI,
and one may encounter references to it in comments or other documentation.

Older ACT-R Devices

In older versions of ACT-R (those before 7.12) a device was a single construct which
provided specific interactions for the perceptual and motor modules through a fixed set of
Lisp methods which one had to implement. That approach is no longer available
(although like the UWI, parts of its mechanisms can still be found if one looks at the
underlying AGI implementation). The more general devices used for the current AGI do
provide similar capabilities to those from the monolithic device that was used in prior
versions of the AGI, and there is a commented example of converting the demo2 model
in the tutorial from the device in ACT-R 7.5 to the appropriate device mechanisms for the
7.12+ on the ACT-R website.

Native GUI Windows

The older versions of ACT-R also included devices which attempted to provide the same
functionality as the AGI did through the native GUI interface widgets of some Lisp
systems. That functionality is no longer included with ACT-R for multiple reasons.
However, if it is desired, one could use the external interface of the virtual windows to
connect to the native GUI, or one could create a more direct interface similar to the older
devices to do so.

http://act-r.psy.cmu.edu/actr7.14/update-demo2.lisp

The AGI

The AGI is a high level interface that we provide for GUI construction for models. It is a
small set of tools designed to make creating simple experiments for ACT-R models easy.
Those tools are able to create interfaces built from text, buttons, lines, and images. The
model actions from the output devices it implements can be monitored to record key
presses, mouse movement and clicks, and speech output from the model.

This document will describe the commands provided in the AGI as well as some of the
associated ACT-R commands for running models. The commands of the AGI are
available for use through the dispatcher in the current ACT-R software which makes it
possible to use them from languages other than Lisp when connected to ACT-R through
the remote interface. Examples of using the AGI can be found in the ACT-R tutorial
which provides both Lisp and Python versions of the tasks created with the AGI.

There is one final thing to note however before describing the AGI commands. While it
is possible to create real windows using the AGI through the included visible virtual
windows of the ACT-R Environment or the external interface of the virtual windows, that
is only recommended for use in testing and debugging the task and/or model. The AGI is
not recommended for use in creating experiments for human participants because it does
not provide any guarantees on the precision or accuracy of the timing data for real user
interactions nor does it provide any guarantees on the timing of the display updates. For
a model, those things are handled relative to ACT-R's clock and thus always occur at the
appropriate time for the model, but for real user interactions there are a lot of other
factors involved which vary significantly based on the Lisp, OS, and machine being used.
Therefore we cannot provide any guarantees on the usefulness of the AGI for human data
collection. If one would like to use the AGI for collecting human data then it will be
necessary to make sure that you understand the timing issues involved and test it
thoroughly to determine the reliability of that information in your specific situation. To
help with that, there are some notes about the AGI and timing issues which may be
helpful in the appendix of this document.

Visual Scene

The AGI makes some simplifying assumptions about the visual scene. When creating
windows for the model the assumption is that they are being displayed on a monitor with
a coordinate system based upon the upper left corner of the display being 0,0 and
increasing to the right and down, and a window itself also uses coordinates which start at
0,0 in its upper left corner. The location of items is specified using their upper left corner
as the reference point relative to the window in which they are drawn (or the whole
screen for windows). The windows themselves are not explicitly visible to the model.
They only serve as a means of organizing the items which are displayed from the code,
and the model can see all of the items in every experiment window which is installed for
it. There are no explicit boundaries for the screen or window with respect to the items
displayed. Although a negative coordinate value would suggest it is outside of the
window boundary that does not prevent the model from seeing it, and the same holds for
coordinates which exceed the height or width of the window. Similarly, there is no notion
of items being occluded by other items or windows – the model will see all of the items
regardless of any overlap which might occur.

Typical Experiment Design

To describe the commands available in the AGI we will first describe a very general
experiment design. Then for each step of the experiment we will describe the relevant
AGI commands.

Here is a typical procedure for creating a simple experiment:

1. Open a window

2. Clear the display

3. Present some stimuli

4. Wait for a response or fixed delay to pass

5. Record the response

6. Repeat steps 2-5 for different conditions/stimuli

7. Repeat steps 1-6 for multiple participants

8. Analyze the results

That general pattern can be found in most of the tutorial model experiments. Steps 6, 7,
and most of step 8 are best done with the iteration constructs and other functions of the
language being used, but the AGI provides the tools for carrying out the other steps.

One assumption with that design is that there is one participant performing the task at a
time and there is a single window with which that participant is interacting. The AGI
(and ACT-R) are not restricted to operating in that fashion, but that is the typical
modeling scenario and thus the AGI commands attempt to make that process easy. It is
possible to open multiple windows simultaneously with the AGI and make all of those
visible to a model as well as run more than one ACT-R model concurrently all interacting
with the same AGI window or different AGI windows, but the primary descriptions of the
AGI commands will present the simple (single window single user) usage details. Details
on running multiple models can be found in the ACT-R reference manual, and there are
examples of multiple models interacting with AGI tasks found in the examples/model-
task-interfacing directory of the software distribution.

Window Control (Steps 1 and 2)

For most tasks a single window is all that will be required for a model. When there is
only one window created for a model all other AGI commands will operate upon that
window without needing to specify it directly. If multiple windows are created however
one will need to specify which window to use for all of the other commands. When
specifying the window it can be done using either the title given to it when it was created
or the device list which was returned by the AGI when the window was created.

Open-exp-window

open-exp-window title {:visible visible} {:width w} {:height h} {:x x} {:y y} -> [device | nil]

Remote command name:

open-exp-window title { < visible visible, width w, height h, x x, y y >}

Arguments and Values:

title ::= a string which can be used to reference the window and will display in the title bar
 of the visible virtual windows
visible ::= a generalized boolean which indicates whether the window should be displayed
 through the external window interface if available
w ::= an integer indicating the width of the window in pixels
h ::= an integer indicating the height of the window
x ::= an integer indicating the position of the left edge of the window on the screen
y ::= an integer indicating the position of the top edge of the window on the screen
device ::= a list which is valid for installing as a device in ACT-R

This command takes one required parameter which is the title for an experiment window
to create. That title must be a string. If there is already an experiment window open with
that title then it clears its contents. If there is not already an experiment window with that
title then it creates a new window with the requested title.

The command also accepts several other parameters for configuring the window. The
other parameters allow one to specify the height and width of the window in pixels and
default to 300 each if not provided (only meaningful if the window is displayed as a
visible virtual window), the x and y pixel coordinates of the upper left corner of the
window on the screen which also default to 300 each, and visible which indicates
whether the window should be displayed visibly if possible. A value of nil means do not
display it visibly and any other value represents that displaying it is allowed (the default
is t).

If the provided parameters are all valid values then the command returns a list which can
be used to reference the window and is also valid for installing as a device to allow a

model to see the contents of the window. If there is a problem with the parameters then a
warning will be printed and nil will be returned.

examples:

(open-exp-window "Letter recognition")
(open-exp-window "Task" :visible nil)
(open-exp-window "Other" :x 0 :y 0 :width 250 :height 400)

actr.open_exp_window('test', x=0, y=0, visible=True)
actr.open_exp_window('Window', visible=False)

Close-exp-window

close-exp-window { window } -> [t | nil]

Remote command name:

close-exp-window

Arguments and Values:

window ::= a string which is the title of a window or the device list returned when opening
 a window

This command takes no required parameters and has one optional parameter which can
indicate a specific window (either by title or device list). If no window is provided then
if there is only one open window that one will be used, but if there are more than one or
no open windows it will print a warning. It closes the indicated window. Once the
window is closed it is no longer possible for a person or model to interact with it. One
should close experiment windows when they are no longer needed to avoid potential
problems with multiple open windows or memory issues since all objects created for a
window persist until the window is closed even if they are not currently displayed. All
open windows will be closed automatically when ACT-R is initialized with the clear-all
command. If a window is successfully closed then it will return t, otherwise it will return
nil.

Closing a window which is currently installed for a model will cause the model’s vision
module to reprocess the visual scene.

examples:

(close-exp-window)
(close-exp-window "task")

Clear-exp-window

clear-exp-window { window } -> [t | nil]

Remote command name:

clear-exp-window

Arguments and Values:

window ::= a string which is the title of a window or the device list returned when opening
 a window

This command takes no required parameters and has one optional parameter which can
indicate a specific window (either by title or device list). If no window is provided then
if there is only one open window that one will be used, but if there are more than one or
no open windows it will print a warning. It removes all of the items currently displayed
in the indicated experiment window and causes all models which have that device
installed to reprocess the visual scene. If it successfully clears the window it returns t
otherwise it returns nil.

examples:

(clear-exp-window)
(clear-exp-window "window")

actr.clear_exp_window()
actr.clear_exp_window('Task')

Displaying Items (step 3)

Displaying items in experiment windows involves two steps: creating an item for the
window and adding that item to the window. The AGI includes commands for
performing both steps together as well as separate commands for creating and modifying
items and adding or removing them from the window.

Item IDs

When creating an item for an experiment window the AGI commands return an ID which
can be used to reference that item. That ID will be a list, but the contents of that list are
not part of the AGI’s API and thus should not be used or modified in any way.

Colors

When creating an item it is possible to specify its color. Colors should be provided as
either a string or in Lisp, a symbol can also be used. Any string or symbol may be
provided and will be used to create the visual feature for the item and passed to a visible
window handler if installed. The vision module only provides chunks for the following
colors: black, green, dark-gray, cyan, light-blue, yellow, dark-yellow, light-gray, dark-
blue, dark-magenta, white, dark-cyan, blue, purple, gray, dark-green, dark-red, red,
brown, pink, and magenta. Any other colors indicated for an item will result in a warning
that the chunk is being created by default if it hasn’t already been defined in the model.
Also, a visible window handler may not recognize every name one provides, and how it
handles that is up to the implementer of that window handler. For the visible virtual
window handler provided by the ACT-R Environment, it recognizes all of the colors
named above which are defined in the vision module, and for any other name it is given it
will draw the item in black.

One note on providing colors in Lisp is that in some Lisps there are global variables
which are bound to color objects, but those are not valid as colors for the AGI. In
particular, in ACL it has variables like red and blue which are bound to the ACL color
object for those colors. Those variables are not valid as colors for the AGI, but the
symbol with that name is i.e. 'red is a valid color for the AGI but in ACL the global
variable red itself is not.

AGI Items

There are four types of items which can be displayed in an AGI window: text, lines,
buttons, and images. Each item has a command for creating one and a command which
will create one and add it to a window, and all except images also include a command for
modifying one. Whenever an item is added to a window or an item already added to a
window is modified that window will cause all models with that window installed to
reprocess that item. Creating an item requires specifying the window with which the

item will be associated (either by title or by its device list), and that window will be the
only one which can display that item. If there is only one open window then a value of
nil can be used to indicate that window.

Text

create-text-for-exp-window win text {:x x} {:y y} {:width w} {:height h} {:color c } {:font-size f }
 -> [id | nil]
add-text-to-exp-window win text {:x x} {:y y} {:width w} {:height h} {:color c } {:font-size f }
 -> [id | nil]
modify-text-for-exp-window text-id {:text text} {:x x} {:y y} {:width w} {:height h} {:color c }
 {:font-size f } -> [id | nil]

Remote command name:

create-text-for-exp-window win text <x x, y y, width w, height h, color c, font-size f >
add-text-to-exp-window win text <x x, y y, width w, height h, color c, font-size f >
modify-text-for-exp-window text-id <text text, x x, y y, width w, height h, color c, font-size f >

Arguments and Values:

win ::= the title or device list of an experiment window or nil if there is only one window
text ::= a string of the text to display
x ::= an integer indicating the x position of the upper left corner of the text on the window
y ::= an integer indicating the y position of the upper left corner of the text on the window
w ::= an integer indicating the width in pixels of a box in which to draw the text
h ::= an integer indicating the height in pixels of a box in which to draw the text
f ::= an integer indicating the size of the font to use to draw the text (in points)
c ::= a string or symbol indicating the color of the text
id ::= a list which can be used to reference this text item
text-id ::= the id of a text item which has been created

These commands are used to draw a text string in an experiment window based on the
values of the parameters provided. The x and y parameters specify the pixel coordinate of
the upper-left corner of the box in which the text is to be displayed within the window,
and the default value for each is 0. The height and width parameters specify the size of
the box in which to draw the text, measured in pixels. The default value for height is 20
and for width is 75. The height and width parameters are only potentially meaningful for
a visible display of the window – they do not affect the features created for the model.
The color parameter specifies in which color the text will be drawn (as described above)
and defaults to black. The font-size parameter specifies the size of the font used to draw
the text and is measured in points. It defaults to 12 if not specified. It will affect the size
of the text item for the visual feature, but it may or may not be used by a visible window
handler when displaying the text (the visible virtual windows of the ACT-R Environment
do use the font-size when displaying text).

If all of the parameters are valid then the text item is created or modified and its id is
returned otherwise a warning will be printed and nil is returned.

examples:

(add-text-to-exp-window "Task" "Ok" :x 20 :y 30)
(add-text-to-exp-window nil "A" :x 100 :color 'red :width 20 :font-size 20)
(setf *item* (create-text-for-exp-window "Exp. Window" "True"))
(modify-text-for-exp-window *item* :color 'green)

actr.add_text_to_exp_window('Task', 'Ok', x=20, y=30)
actr.add_text_to_exp_window(None, 'A', x=100, color='red', width=20,
 font-size=20)

Buttons

create-button-for-exp-window win {:text text} {:x x} {:y y} {:width w} {:height h} {:color c }
 {:action a } -> [id | nil]
add-button-to-exp-window win {:text text} {:x x} {:y y} {:width w} {:height h} {:color c }
 {:action a } -> [id | nil]
modify-button-for-exp-window b-id {:text text} {:x x} {:y y} {:width w} {:height h} {:color c }
 {:action a } -> [id | nil]

Remote command name:

create-button-for-exp-window win < text text, x x, y y, width w, height h, color c, action a >
add-button-to-exp-window win < text text, x x, y y, width w, height h, color c, action a >
modify-button-for-exp-window b-id < text text, x x, y y, width w, height h, color c, action a >

Arguments and Values:

win ::= the title or device list of an experiment window or nil if there is only one window
text ::= a string of text to display on the button
x ::= an integer indicating the x position of the upper left corner of the button in the
 window
y ::= an integer indicating the y position of the upper left corner of the button in the
 window
w ::= an integer indicating the width in pixels the button
h ::= an integer indicating the height in pixels of the button
c ::= a string or symbol indicating the color of the button
a ::= [fct | cmd | ([fct | cmd] param*)]
fct ::= a Lisp function or symbol naming a function
cmd ::= a string naming an available ACT-R command
param ::= a value to pass to the indicated function or command
id ::= a list which can be used to reference this button item
b-id ::= the id of a button item which has been created

These commands are used to create a button for an experiment window which can
perform an action when clicked on with the mouse device (or by a real mouse with the

visible virtual windows). The text parameter must be a string and specifies the text to
display on the button, and it defaults to “” (an empty string). The x and y parameters
specify the pixel coordinate of the upper-left corner of the button in the window and each
defaults to 0. The height and width parameters specify the size of the button in pixels,
and the height defaults to 18 and the width defaults to 60. The color parameter specifies a
background color for the button, and defaults to gray. The action parameter specifies a
function or command to be called when this button is pressed. If not provided or set to
nil then clicking the button will result in printing a warning which says “Button with no
valid action clicked at time xxx” where xxx is the current ACT-R time in seconds. The
function or command will be called with no parameters unless some are included when
creating or modifying the button, in which case those parameters will be passed to it.

If all of the parameters are valid then the button item is created or modified and its id is
returned otherwise a warning will be printed and nil is returned.

examples:

(add-button-to-exp-window "task" :text "Ok" :x 100 :y 150)
(create-button-for-exp-window nil :text "Cancel" :color 'red :action 'cancel)
(modify-button-for-exp-window *but-obj* :action '("new-cmd" 10 t))

actr.add_button_to_exp_window("task", text='Ok', x=100, y=150)

Lines

create-line-for-exp-window win (x1 y1) (x2 y2) { c } -> [id | nil]
add-line-to-exp-window win (x1 y1) (x2 y2) { c } -> [id | nil]
modify-line-for-exp-window line-id [(x1 y1) | nil] [(x2 y2) | nil] { c } -> [id | nil]

Remote command name:

create-line-for-exp-window
add-line-to-exp-window
modify-line-for-exp-window

Arguments and Values:

win ::= the title or device list of an experiment window or nil if there is only one window
x1 ::= an integer indicating the x position of one end point of the line in the window
y1 ::= an integer indicating the y position of one end point of the line in the window
x2 ::= an integer indicating the x position of one end point of the line in the window
y2 ::= an integer indicating the y position of one end point of the line in the window
c ::= a string or symbol indicating the color of the button
id ::= a list which can be used to reference this line item
line-id ::= the id of a line item which has been created

These commands are used to create a line item for an experiment window. The required
parameters are lists with the x and y pixel coordinates for the ends of the line to be drawn.

An optional color may be provided. If no color is given it defaults to black. When
modifying a line either or both of the position lists may be specified as nil to indicate that
that position should not be modified.

If all of the parameters are valid then the line item is created or modified and its id is
returned otherwise a warning will be printed and nil is returned.

examples:

(add-line-to-exp-window "task" (list 100 150) (list 50 10))
(create-line-for-exp-window nil (list 0 0) (list 500 100) 'blue)
(modify-line-for-exp-window *line-obj* nil (list 30 30))

actr.add_line_to_exp_window('task', [100, 150], [50, 10])
actr.modify_line_for_exp_window(line_obj, None, [30, 30])

Images

create-image-for-exp-window win text file {:x x} {:y y} {:width w} {:height h} {:action a }
 -> [id | nil]
add-image-to-exp-window win text file {:x x} {:y y} {:width w} {:height h} {:action a }
 -> [id | nil]

Remote command name:

create-image-for-exp-window win text file <x x, y y, width w, height h, action a >

add-image-to-exp-window win text file <x x, y y, width w, height h, action a >

Arguments and Values:

win ::= the title or device list of an experiment window or nil if there is only one window
text ::= a string of text to provide as the value of the visual feature for the model
file ::= a string containing the name of a .gif file in environment/GUI/AGI-images
x ::= an integer indicating the x position of the upper left corner of the image in the
 window
y ::= an integer indicating the y position of the upper left corner of the image in the
 window
w ::= an integer indicating the width of the box in which to display the image in pixels
h ::= an integer indicating the height of the box in which to display the image in pixels
a ::= [fct | cmd | ([fct | cmd] param*)]
fct ::= a Lisp function or symbol naming a function
cmd ::= a string naming an available ACT-R command
param ::= a value to pass to the indicated function or command
id ::= a list which can be used to reference this image item

These commands are used to create an image item for an experiment window. This is
intended only for use with the visible virtual windows of the ACT-R Environment. It

allows one to display a .gif file in the visible virtual window. That image can be seen by a
model as a single feature with a value indicated when creating the image, and it can be
clicked like a button to trigger an action. The required parameters are a string which
provides the value for the visual feature made available to the model for the item, and a
string which names a .gif file which must be located in the environment/gui/AGI-images
directory of the ACT-R Environment being run. One can also specify the position for the
image in the window and the size of the box in which it will be displayed (there is no
attempt to stretch or center the image in the box – it is displayed with its upper left corner
in the upper left corner of the box specified and will be clipped at the borders if it extends
past them and the background color will show if the image does not fill the box). The
action parameter specifies a function or command to be called when this image is clicked
(which is the entire box whether or not the image actually fills it). If not provided or set
to nil then clicking the image will result in printing a warning which says “Image name
with no valid action clicked at position x,y at time zzz.” where name is the text value of
the box, x and y are the position within the image that the click occurred, and zzz is the
current ACT-R time in seconds. If the function or command is specified without any
parameters then it will be called with two values which are the text value of the image and
a list of the x and y position within the image where the click occurred, but if parameters
are included when creating the image those parameters will be passed to the action.

If all of the parameters are valid then the image item is created and its id is returned
otherwise a warning will be printed and nil is returned.

examples:

(add-image-to-exp-window nil "back" "ref-brain.gif" :height 390 :width 390)
(create-image-for-exp-window "WIN" "brain" "ref-brain.gif" :x 10 :y 160
 :width 128 :height 128 :action "click-brain")

actr.add_image_to_exp_window(None,'back','ref-brain.gif',height=390,width=390)
actr.create_image_for_exp_window('WIN', 'brain', 'ref-brain.gif',x=10,y=160,
 width=128, height=128,action='click-brain')

General Commands

These commands work for any of the AGI items which have been created to add or
remove them from an experiment window.

Remove-items-from-exp-window

remove-items-from-exp-window win id* -> [t | nil]

Remote command name:

remove-items-from-exp-window

Arguments and Values:

win ::= the title or device list of an experiment window or nil if there is only one window
id ::= the id returned when an AGI item was created or added to an experiment window

This command takes one required parameter which must indicate an experiment window,
and then an arbitrary number of parameters which should be AGI item ids. Each of those
items is removed from the indicated window. If any of the parameters are not valid then
no items are removed, a warning is printed and nil is returned. Otherwise all items are
removed and t is returned.

examples:

(remove-items-from-exp-window nil text-id-1 but-id)
actr.remove_items_from_exp_window(None, text_id_1, but_id)

Add-items-to-exp-window

add-items-to-exp-window win id* -> [t | nil]

Remote command name:

add-items-to-exp-window

Arguments and Values:

win ::= the title or device list of an experiment window or nil if there is only one window
id ::= the id returned when an AGI item was created or added to an experiment window

This command takes one required parameter which must indicate an experiment window,
and then an arbitrary number of parameters which should be AGI item ids. Each of those
items is added to the indicated window. If any of the parameters are not valid then no
items are added, a warning is printed and nil is returned. Otherwise all items are added
and t is returned.

examples:

(add-items-to-exp-window nil text-id-1 but-id)
actr.add_items_to_exp_window(None, text_id_1, but_id)

Waiting on user interaction (step 4)

There are no commands specific to the AGI which are relevant for waiting for an ACT-R
model. Many ACT-R commands are relevant to that process, like run, install-device, etc,
and those are described in the main reference manual and also used in the tasks included
with the ACT-R tutorial. There is however one command which is available in ACT-R
and the Python module provided with the ACT-R tutorial which can be useful if you are
interacting with a task directly instead of running the model.

Process-events

process-events -> nil

This command can be useful when a task is waiting for a person to interact with an
experiment window. It takes no parameters and always returns nil. It gives the system a
chance to handle real user interactions and also gives ACT-R a chance to process them
while waiting. It is not necessary when a model is performing the task, but it is
recommended that it be called inside any loop which is waiting for a real response.

Response collection (step 5)

When a model performs a key press, mouse click, or speech action the associated devices
will generate actions which can be “monitored” to record what has happened, and when a
real key press or mouse click occurs on the visible virtual window they will also generate
the same actions for monitoring. Thus, the same commands can be used to record both
model and human actions. The action monitoring process is not part of the AGI. It is a
component of the remote interface built into ACT-R. The details of the underlying
process can be found in the remote document in the ACT-R docs directory and the
experiment description text in unit 2 of the ACT-R tutorial describes how to use that for
monitoring experiment window actions. That will not be covered here, but the actions
which can be monitored for the experiment window devices will be described.

Monitorable Actions

Output-key

The output-key action is generated when a key is pressed by a model on the keyboard
device or when a person presses a key in a visible virtual window. It is passed two
parameters. The first is the name of the model which pressed the key or nil if it was a
person pressing a key. The second is the string containing the key which was pressed.

Output-speech

The output-speech action is generated when the model performs a speak action by the
microphone device (there is no corresponding action for a person interacting with the
visible virtual windows). It is called at the beginning of the speech output (when it would
first be detectable). It is passed two parameters. The first is the name of the model which
performed a speak action, and the second is the string which was spoken.

Move-cursor

The move-cursor action is generated when the model moves the mouse device (there is
no corresponding action for a person interacting with the visible virtual windows). It is
called with three parameters. The first is the name of the model which moved the mouse.
The second is the name of the cursor which was used (will always be the string “mouse”
for the device installed with the experiment windows), and the third will be a list of the x
and y coordinates to which the mouse was moved. If the :incremental-mouse-moves

parameter is set in the model then this action will be generated for each of the
components of a mouse movement.

Click-mouse

The click-mouse action is generated when the model is using the mouse device and
performs a punch, peck, or peck-recoil action with a finger on that hand to the location of
a button (the default finger positions – it assumes that there are 5 buttons available on the
mouse). It is passed three parameters. The first is the name of the model which pressed a
mouse button. The second is the list of the x and y coordinates of the mouse position at
the time the press occurred, and the third is the name of the finger which performed the
press: index, middle, ring, pinkie, or thumb. There is no corresponding action for a
person interacting with the visible virtual windows.

Response Time

Get-time

To record the time of an action the get-time command can be used. This command takes
one optional parameter and it returns the current time in milliseconds. If the optional
parameter is specified as a non-nil value then the time returned is the model’s simulated
time. If the optional parameter is specified as nil then the time is taken from the internal
Lisp timer using the function get-internal-real-time. If the optional parameter is not
specified, then the model’s simulated time is returned. When recording the real time
(passing nil) the time is not zero referenced with respect to the task (unlike model time
which is the current simulated time since the model was last reset). Therefore if
collecting real time values one will likely also need to record the time at the start of the
trial for reference. Also, although the real time value is measured in milliseconds that
does not mean that it is necessarily accurate to that resolution (see the appendix on
collecting human data for more details).

examples:

?> (get-time)
4931

?> (get-time nil)
67564376340

>>> actr.get_time()
4931

>>> actr.get_time(None)
67564403993

Data analysis (step 8)

To help with data analysis there are two AGI commands provided for performing
correlation and mean deviation calculations.

Correlation

This command takes 2 required parameters which must be equal length lists of numbers,
and it computes the correlation between those two lists of numbers. That correlation
value is returned. There is an optional third parameter which controls whether or not the
correlation value is also output. If it is nil then no output is written. If it is a string then
that string is used as the full pathname for a file which is opened and then has the
correlation value written to the end of it (it is created if it does not currently exist). If it is
any other value, then the output is written to the ACT-R command trace (if there is a
current model) or the ACT-R output trace if there is not a current model. The default is to
output the correlation to the appropriate ACT-R trace.

examples:

?> (correlation (list 1 2 3 4) (list .3 .5 .9 1.2))
CORRELATION: 0.993
0.9927947

?> (correlation (list 1 2 3 4) (list .3 .5 .9 1.2) nil)
0.9927947

>>> actr.correlation([1,2,3,4],[.3,.5,.9,1.2])
CORRELATION: 0.993
0.9927947

>>> actr.correlation([1,2,3,4],[.3,.5,.9,1.2],None)
0.9927947

Mean-deviation

This command operates just like correlation, except that the calculation performed is the
root mean square deviation between the data sets.

examples:

?> (mean-deviation (list 1 2 3 4) (list .3 .5 .9 1.2))
MEAN DEVIATION: 1.936
1.9358461

?> (mean-deviation (list 1 2 3 4) (list .3 .5 .9 1.2) nil)
1.9358461

>>> actr.mean_deviation([1,2,3,4],[.3,.5,.9,1.2])
MEAN DEVIATION: 1.936
1.9358461
>>> actr.mean_deviation([1,2,3,4],[.3,.5,.9,1.2],None)
1.9358461

Miscellaneous

This section contains some additional AGI commands which may be useful for creating
experiments.

Permute-list

This command takes one parameter which must be a list and it returns a randomly
ordered copy of that list. The randomization is performed using the act-r-random
command which means that the setting of the model’s :seed parameter will affect the
results and it is possible to recreate the same randomized list again when needed.

examples:

?> (permute-list '("a" "b" "c" "d" "e"))
("b" "c" "d" "a" "e")

>>> actr.permute_list(['a','b','c','d','e'])
['e', 'c', 'a', 'd', 'b']

While

This macro is provided for use in Lisp because this simple looping construct is not part of
the ANSI Common Lisp language (there are similar constructs available, but they are
often a little more complicated to use and harder to read for those who are not Lisp
programmers). It takes an arbitrary number of parameters. The first parameter specifies
the test condition, and the rest specify the body of the loop. The test is evaluated and if it
returns anything other than nil all of the forms in the body are executed in order. This is
repeated until the test returns nil. Thus, while the test is true (non-nil) the body is
executed.

examples:

(while (null *response*)
 (process-events))

Visual Features of AGI Elements for Models

This section will describe how the visual features for the button, line, text, and image
items of the AGI displays are constructed for the model. Those features are created from
the virtual window interface of the AGI and thus will be the same on all machines. If the
visible virtual windows are used, the actual display may vary from machine to machine
for various reasons, but that is not the display which the model is actually using.

The visual-location and visual-object chunks for the model are created using the basic
visual-location chunk-types which are defined by the vision module:

(chunk-type visual-location screen-x screen-y distance kind color value height width size)

The visual object chunks are created from specific chunk-types which are subtypes of the
default visual-object chunk-type:
(chunk-type visual-object screen-pos value status color height width)

(chunk-type (text (:include visual-object)) (text t))
(chunk-type (oval (:include visual-object)) (oval t))
(chunk-type (line (:include visual-object)) (line t) end1-x end1-y end2-x end2-y)
(chunk-type (image (:include visual-object)) (image t))

For each of the items we will describe any particular details about how the items are
processed and then show examples of creating some items along with the resulting
visicon and some visual-location and visual-object chunks which the model receives. For
the examples, the window in which the items are placed is at the default location of
300,300.

Before covering the specific items, there are some general features which we will first
describe. The screen-x and screen-y position of items is always determined as their
center point and represented in global pixel coordinate (that means it takes the position of
the window itself into account along with the local window coordinates used when
creating the item). The distance is also computed in pixels and is based on the value of
the :viewing-distance and :pixels-per-inch parameters in the model. The size is the area
of the item in degrees of visual angle squared determined by multiplying the actual height
and width after converting them into degrees of visual angle using the :viewing-distance
and :pixels-per-inch parameters. Only the visual-object chunk for the item will contain
the real value of the item. The value slot of the visual-location chunks will just contain
the basic type of the item, and that same value will also be found in the kind slot.

Text items

The default processing for text items is to create a visual feature for each “word” in the
text displayed. Words are determined by segmenting the text string based on the
classification of the characters as either whitespace, alphanumeric, or other. Whitespace
consists of any character which is not graphic-char-p in Lisp as well as the space
character. Alphanumeric characters are any characters which are alphanumericp in Lisp

or which have been specified with the add-word-characters command as described in the
ACT-R reference manual. Other characters are those which are not whitespace or
alphanumeric. A word is a continuous sequence of either alphanumeric or other
characters. Thus this string “ab123--word end” would be broken into four separate words
“ab123”, “--”, “word”, and “end”.

The size, height, and width values for text are based on the font-size of the text, not on
the height and width values specified when creating it (those only describe the box of the
visible display in which to draw the text). For the virtual device the values for the 12
point font (the default font size) are: letters are 10 pixels high and each character
(including the space) has a fixed width of 7 pixels wide. If there are newlines in the text
being displayed that will result in moving the text after the newline down by the current
font size pixels and starting again at the specified x position.

example:

Features:

(add-text-to-exp-window nil "single" :color 'blue)
(add-text-to-exp-window nil "multiple words" :font-size 20 :x 100 :y 100)
(add-text-to-exp-window nil (format nil "multiple~%lines") :font-size 10
 :x 200 :y 300)

Visicon:

Name Att Loc Text Kind Color Width Value Height Size
---------------- --- -------------- ---- ---- ----- ----- ---------- ------ ---------
VISUAL-LOCATION0 NEW (322 306 1080) T TEXT BLUE 42 "single" 10 1.18
VISUAL-LOCATION1 NEW (449 410 1080) T TEXT BLACK 96 "multiple" 17 4.5899997
VISUAL-LOCATION4 NEW (516 615 1080) T TEXT BLACK 30 "lines" 8 0.68
VISUAL-LOCATION3 NEW (525 605 1080) T TEXT BLACK 48 "multiple" 8 1.0799999
VISUAL-LOCATION2 NEW (539 410 1080) T TEXT BLACK 60 "words" 17 2.87

Chunks:

VISUAL-LOCATION0-0
 KIND TEXT
 VALUE TEXT
 COLOR BLUE
 HEIGHT 10
 WIDTH 42
 SCREEN-X 322
 SCREEN-Y 306
 DISTANCE 1080
 SIZE 1.18

TEXT0-0
 SCREEN-POS VISUAL-LOCATION0-0
 VALUE "single"
 COLOR BLUE
 HEIGHT 10
 WIDTH 42

 TEXT T

Buttons

A button in the display creates a feature for the button itself as well as features for all of
the text displayed on the button. The feature for the button depends on the properties
specified when creating the button as well as the :viewing-distance and :pixels-per-inch
parameters. The kind and value of the button location chunk will be oval (which reflects
the shape of the buttons on a Macintosh computer which was where the system was
originally developed and has been retained for consistency). The value of the visual
object chunk will be the text displayed on the button.

The text value provided for the button will result in text features being generated almost
the same as described above for text items. There are few differences between the text
features generated from a button and text features generated from text items. Two of
those are that the button does not provide a way to specify a font-size or color for the
text, thus a button’s text items will always be black and computed from a 12 point font.
The other difference is that the text for a button is assumed to be placed so that it is
centered on the button instead of being aligned with the upper-left corner of the item’s
placement as they are for text items. That means that if there is a single word in the text
it will have the same screen-x and screen-y values as the button itself. If there are
multiple words and/or multiple lines then their locations will be arranged such that there
are an equal number of lines above and below the screen-y of the button and each line
will be centered on the screen-x value of the button.

example:

Features:

(add-button-to-exp-window "" :text "OK" :x 100 :y 100 :height 20 :width 50 :color 'red)

Visicon:

Name Att Loc Kind Color Value Height Width Size Text Oval
---------------- --- -------------- ---- ----- ----- ------ ----- ---- ---- ----
VISUAL-LOCATION0 NEW (425 410 1080) OVAL RED "OK" 20 50 2.81 T
VISUAL-LOCATION1 NEW (425 410 1080) TEXT BLACK "OK" 10 14 0.39 T

Chunks:

VISUAL-LOCATION0-0
 KIND OVAL
 VALUE OVAL
 COLOR RED
 HEIGHT 20
 WIDTH 50
 SCREEN-X 425
 SCREEN-Y 410
 DISTANCE 1080

 SIZE 2.81

OVAL0-0
 SCREEN-POS VISUAL-LOCATION0-0
 VALUE "OK"
 COLOR RED
 HEIGHT 20
 WIDTH 50
 OVAL T

Lines

Each line added to the display will generate one feature for the model. The height, width,
and size of the line are computed based on a rectangle with the given points at opposite
corners. The value of the line is its orientation angle in degrees. The visual object for the
line will include additional slots for the pixel coordinates of the end points.

example:

Features:

(add-line-to-exp-window "" '(10 10) '(20 20) 'blue)
(add-line-to-exp-window "" '(30 30) '(20 30) 'yellow)

Visicon:

(note the names were shortened from visual-location0 and visual-location1 to fit the
visicon entries on a single line each)

Name Att Loc Line Kind End2-Y End2-X End1-Y End1-X Height Width Value Color Size
---- --- -------------- ---- ---- ------ ------ ------ ------ ------ ----- ----- ------ ----
V0 NEW (315 315 1080) T LINE 320 320 310 310 10 10 -45 BLUE 0.28
V1 NEW (325 330 1080) T LINE 330 320 330 330 0 10 90 YELLOW 0.0

Chunks:

VISUAL-LOCATION0-0
 KIND LINE
 VALUE -45
 COLOR BLUE
 HEIGHT 10
 WIDTH 10
 SCREEN-X 315
 SCREEN-Y 315
 DISTANCE 1080
 SIZE 0.28

LINE0-0
 SCREEN-POS VISUAL-LOCATION0-0
 VALUE -45

 COLOR BLUE
 HEIGHT 10
 WIDTH 10
 LINE T
 END1-X 310
 END1-Y 310
 END2-X 320
 END2-Y 320

Images

Each image added to the display will create a single feature for the model. The kind and
value slots of the visual-location chunk will have the value image. The value of the
visual object will be the text value provided and the size is based on the height and width
provided (not the actual underlying image). The :clickable parameter can be specified as
nil if you want the image to ignore mouse clicks (can be useful when using an image as a
background for other interface items to avoid unwanted interactions).

example:

Features:

(add-image-to-exp-window "" "image1" "smalllogo.gif" :x 0 :y 0 :height 50
 :width 50 :clickable nil)
(add-image-to-exp-window "" "image2" "ref-brain.gif" :x 100 :y 100 :height 100 :width 300)

Visicon:

Name Att Loc Image Kind Height Width Value Size
---------------- --- -------------- ----- ----- ------ ----- -------- ---------
VISUAL-LOCATION0 NEW (325 325 1080) T IMAGE 50 50 "image1" 7.0299997
VISUAL-LOCATION1 NEW (550 450 1080) T IMAGE 100 300 "image2" 83.84

Chunks:

VISUAL-LOCATION0-0
 KIND IMAGE
 VALUE IMAGE
 HEIGHT 50
 WIDTH 50
 SCREEN-X 325
 SCREEN-Y 325
 DISTANCE 1080
 SIZE 7.0299997

IMAGE0-0
 SCREEN-POS VISUAL-LOCATION0-0
 VALUE "image1"
 HEIGHT 50
 WIDTH 50
 IMAGE T

Other Commands
There are some additional commands available with the AGI that may be useful when
using the visible virtual windows and also a function available in the actr.py module
which can be used to access ACT-R commands which haven’t been implemented as
functions directly in that module.

Visible-virtuals-available?

visible-virtuals-available? -> [(handler*) | nil]

Remote command name:

visible-virtuals-available?

Arguments and Values:

handler ::= the name of a visible virtual window handler

This command takes no parameters. It can be used to test whether there is currently a
handler available for displaying a visible window e.g. the ACT-R Environment. If there
are any handlers available then it returns a list with the names of all the available
handlers, otherwise it return nil. This can be a useful safety test when displaying
information or tasks to a person instead of a model. Note, the corresponding function in
the actr.py module is named visible_virtuals_available because a question mark in a
function name is not valid syntax.

Select-exp-window

select-exp-window {win} -> [t | nil]

Remote command name:

select-exp-window

Arguments and Values:

win ::= the title or device list of an experiment window or nil if there is only one window

This command takes no required parameters and has one optional parameter which can
indicate a specific window (either by title or device). If no window is provided then it
will operate on the only open window if there is one. It will attempt to bring that window
to the foreground of the actual display, but that may or may not actually happen for
various reasons, like user interface settings or other programs which are obscuring its
view. If the window identifier provided corresponded to an existing window or there was

no identifier provided and only one window exists then it returns t, otherwise it will print
a warning and return nil.

call_command

call_command command {params*} -> result

Arguments and Values:

command ::= a string containing the name of the remote ACT-R command to call
params ::= any parameter values to pass to that command
result ::= the value returned from calling that command

This is a Python function available in the actr.py module included with the ACT-R
tutorial. It can be used to call any remote command provided by ACT-R. The first
parameter passed to it must be a string naming the command, and any additional
parameters provided will be passed in the order given to the indicated command. It
returns the result returned from the remote command.

examples:
>>> import demo2
>>> demo2.experiment()
 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
...
 1.035 ------ Stopped because no events left to process
'v'
>>> actr.call_command("get-time",True)
1035
>>> actr.call_command("dm")
CHUNK0-0
 LETTER "V"
TEXT0-0
 SCREEN-POS VISUAL-LOCATION0-0
 VALUE "V"
 COLOR BLACK
 HEIGHT 10
 WIDTH 7
 TEXT T
VISUAL-LOCATION0-0
 KIND TEXT
 VALUE TEXT
 COLOR BLACK
 HEIGHT 10
 WIDTH 7
 SCREEN-X 430
 SCREEN-Y 456
 DISTANCE 1080
 SIZE 0.19999999
GOAL
 STATE START
DONE
RESPOND
ATTEND
START

['CHUNK0-0', 'TEXT0-0', 'VISUAL-LOCATION0-0', 'GOAL', 'DONE', 'RESPOND',
'ATTEND', 'START']
>>>

Appendix

Issues with using the AGI for human data collection

Because the AGI is intended to work with any ANSI Common Lisp implementation for
running ACT-R models, the tools provided are not tuned for high-fidelity human data
collection, and as provided, the AGI includes no guarantees as to its performance in that
regard. Thus, whether the AGI (or some other tool) is acceptable for any experimental
purpose really comes down to researching and testing to determine if it performs within
the bounds of what one needs, and timing is typically the important issue with respect to
collecting human data. Three things to consider with respect to timing related to the AGI
will be described below: the resolution of the timer, the latency between the user actions
and when the code can record them, and the latency between when a display change is
requested and when it becomes visible to the user.

From a timer resolution aspect the AGI uses the Lisp function get-internal-real-time when
not collecting data from a running model and that function does not have any
requirements for the resolution it provides. In most Lisps it returns a result that is
specified in milliseconds, but often that is not the true resolution of the timer because it
may only update once every 50ms or worse in some cases. If that timer is not sufficient
then one would need to find out if there is a better time source available in the system
they are using and whether or not that could be used instead of the provided get-time
command.

In terms of response detection latency when using the visible virtual windows there are
several potential sources of variability and delay. The interactions with the visible virtual
windows provided by the standard ACT-R Environment (the Tcl/Tk version) go through
the Tcl/Tk event handler, are transmitted over a TCP/IP socket connection to ACT-R, and
are then processed by the ACT-R dispatcher to call the monitoring functions (which if not
in Lisp would require another TCP/IP socket communication). All of those places
(Tcl/Tk, socket communication, and the ACT-R dispatcher) can potentially affect the
timing, and they would need to be profiled to determine the effects they have on the
results for a given machine.

Latency on display changes is essentially the reverse of response detection – the ACT-R
dispatcher sends the commands over a socket connection to Tcl/Tk which handles the
display, and if the originator is not in Lisp it would involve another socket
communication to get to the dispatcher initially. That chain of actions would also need to
be profiled.

All of those pieces of the ACT-R software (the internals of the dispatcher, the socket
communication, and the functioning of the ACT-R Environment) are below the level at
which support can be provided. Therefore, any investigation and profiling for suitability
in your experiment would be up to you to perform.

Command Syntax

When describing a command’s syntax the following conventions will be used:

- items appearing in bold are to be entered verbatim
- items appearing in italics take user-supplied values
- items enclosed in {curly braces} are optional
- * indicates that any number of items may be supplied
- + indicates that one or more items may be supplied
- | indicates a choice between options which are enclosed in [square brackets]
- (parentheses) denote that the enclosed items are to be in a list
- -> indicates that calling the command on the left of the "arrow" will return the

item to the right of the "arrow"
- ::= indicates that the item on the left of that symbol is of the form given by the

expression on the right

An additional indicator will be used when describing the syntax of commands available
through the remote interface when they differ from that of the Lisp command.

- <angle brackets> denote an options list for providing optional named parameters
to a command and the available parameter names and values are indicated
between the angle brackets and separated by commas

Examples

The examples shown for the AGI commands will include both Lisp examples and
examples from Python using the actr.py module included with the tutorial when there is a
corresponding function in that module. That Python module only provides functions for
accessing the remote versions of the ACT-R commands that are needed for the tutorial
and uses named parameters in Python where keyword parameters are used in Lisp. The
actual remote syntax is as shown in the description, but the Python functions often hide
some of the details to hopefully make it easier to use. If you are using the actr.py module
from the tutorial and would like to call other remote commands, the call_command
function provided can be used to call any remote command in ACT-R and is described
below in the other commands section.

Visible Virtual Window external interface

The AGI provides an interface through which one can specify a “handler” to be notified
of the calls to create and manipulate virtual windows which are specified as visible. The
handler can then create visible representations of the virtual windows (as is done through
the ACT-R Environment and the nodejs browser based interface), or just record the
information as needed for other uses. The AGI’s interface can also be used to pass
arbitrary display information to the handlers which can be used to display or record
additional information.

Creating a handler

A handler is an ACT-R command which must accept one parameter. To associate a
handler with the AGI interface the add-virtual-window-handler command must be called,
and to remove a handler which has been installed the remove-virtual-window-handler
command is used.

Add-virtual-window-handler

add-virtual-window-handler cmd {display} -> [t | nil]

Remote command name:

add-virtual-window-handler

Arguments and Values:

cmd ::= a string naming an ACT-R command to use as an AGI handler
display ::= a generalized boolean indicating whether this handler may display visible
virtual windows

This command takes one required parameter which must be a string naming an ACT-R
command which must accept one parameter. An optional parameter can be provided to
indicate whether or not this handler should be consulted when a visible display is
requested. If the command specified is a valid ACT-R command then it will be installed
as an AGI handler and will be called with AGI information as described below. If the
display parameter is provided as a non-nil value then that handler will be asked if it will
display a window whenever open-exp-window tries to open a visible window. If the
handler is installed then t is returned. If the handler is not installed nil is returned.

examples:

1> (add-act-r-command "test-agi-handler" 'test-agi-handler)
T
"test-agi-handler"

2> (add-virtual-window-handler "test-agi-handler")
T

2> (add-virtual-window-handler "test-agi-handler" t)
T

> (add-virtual-window-handler "not-a-valid-command")
NIL

Remove-virtual-window-handler

remove-virtual-window-handler cmd -> [t | nil]

Remote command name:

remove-virtual-window-handler

Arguments and Values:

cmd ::= a string naming an ACT-R command installed as an AGI handler

This command takes one required parameter which should be a string naming an ACT-R
command which was installed as an AGI handler. If the command specified is a
command which was installed as an AGI handler then that handler is removed and will
not be called by the AGI. If the handler is removed then t is returned. If the handler is
not removed then nil is returned.

examples:

1> (add-act-r-command "test-agi-handler" 'test-agi-handler)
T
"test-agi-handler"

2> (add-virtual-window-handler "test-agi-handler")
T

3> (remove-virtual-window-handler "test-agi-handler")
T

4> (remove-virtual-window-handler "test-agi-handler")
NIL

Handler interface

The handlers will always be called with a list that contains at least one value. That first
value will be a string which indicates why the handler is being called, and any remaining
values will be parameters describing the current action. When open-exp-window is called
specifying a visible window all of the handlers which specified a non-nil display value
will be called with a list containing only the string “check”. If a handler returns a non-nil

value in response that is an indication that the handler is ready and would like to be
notified of future updates for the window being opened. If any display handler returns a
non-nil value, then the window will be considered visible and all the display handlers
which returned non-nil as well as all handlers which did not specify that they were
display handlers will be provided all the interactions for that window. If no handler
responds with a non-nil value, then the window will not be considered visible, a virtual
window will be used instead, and no handlers will be notified of interactions for that
window.

When the window is considered to be visible the AGI will provide the handlers with the
messages described below. For all of the messages other than “check” the return value
from the handler is ignored, and that includes any custom messages which are sent to the
window device as described below.

open

("open" title x-pos y-pos width height)

Arguments and Values:

title ::= a string containing the title given to the window
x-pos ::= an integer indicating the x pixel position of the upper left corner of the window
y-pos ::= an integer indicating the y pixel position of the upper left corner of the window
width ::= an integer indicating the width of the window in pixels
height ::= an integer indicating the height of the window in pixels

Open is sent whenever a visible AGI window is opened with open-exp-window. It will
be the first message provided to the handlers.

select

("select" title)

Arguments and Values:

title ::= a string containing the title of an AGI window

Select is sent whenever a visible AGI window is opened with open-exp-window and
when select-exp-window is called.

close

("close" title)

Arguments and Values:

title ::= a string containing the title of an AGI window

Close is sent whenever a visible AGI window is closed explicitly with close-exp-window
or when it is closed automatically because the clear-all command has been called. This
will be the last message sent for a window.

remove

("remove" title name)

Arguments and Values:

title ::= a string containing the title of an AGI window
name ::= a string containing the name of an item in the indicated window

Remove is sent whenever an item has been removed from a visible AGI window. It
happens when clear-exp-window is called and there are items in the window or when
remove-items-from-exp-window is called.

text

("text" title name x-pos y-pos text color size)

Arguments and Values:

title ::= a string containing the title of an AGI window
name ::= a string containing a unique name for this text item in the indicated window
x-pos ::= an integer indicating the x pixel position of the upper left corner of the text in
the window
y-pos ::= an integer indicating the y pixel position of the upper left corner of the text in
the window
text ::= a string of the text to display
color ::= a string naming a color for the text
size ::= a number indicating the font size of the text

Text is sent whenever a text item is added to a visible AGI window. It happens when
add-text-to-exp-window is called explicitly and when a text item is added using add-
items-to-exp-window.

button

("button" title name x-pos y-pos width height text color)

Arguments and Values:

title ::= a string containing the title of an AGI window
name ::= a string containing a unique name for this button item in the indicated window
x-pos ::= an integer indicating the x pixel position of the upper left corner of the button in
the window
y-pos ::= an integer indicating the y pixel position of the upper left corner of the button in
the window
width ::= an integer indicating the width of the button in pixels
height ::= an integer indicating the height of the button in pixels
text ::= a string of the text to display on the button
color ::= a string naming a color for the background of the button

Button is sent whenever a button item is added to a visible AGI window. It happens
when add-button-to-exp-window is called explicitly and when a button item is added
using add-items-to-exp-window.

line

("line" title name x1-pos y1-pos x2-pos y2-pos color)

Arguments and Values:

title ::= a string containing the title of an AGI window
name ::= a string containing a unique name for this line item in the indicated window
x1-pos ::= an integer indicating the x pixel position for the first end of the line in the
window
y1-pos ::= an integer indicating the y pixel position for the first end of the line in the
window
x2-pos ::= an integer indicating the x pixel position for the second end of the line in the
window
y2-pos ::= an integer indicating the y pixel position for the second end of the line in the
window
color ::= a string naming a color for the line

Line is sent whenever a line item is added to a visible AGI window. It happens when
add-line-to-exp-window is called explicitly and when a line item is added using add-
items-to-exp-window.

image

("image" title name x-pos y-pos file width height)

Arguments and Values:

title ::= a string containing the title of an AGI window
name ::= a string containing a unique name for this image item in the indicated window
x-pos ::= an integer indicating the x pixel position of the upper left corner of the image in
the window
y-pos ::= an integer indicating the y pixel position of the upper left corner of the image in
the window
file ::= a string of file name provided for the image
width ::= an integer indicating the width of the image in pixels
height ::= an integer indicating the height of the image in pixels

Image is sent whenever an image item is added to a visible AGI window. It happens
when add-image-to-exp-window is called explicitly and when an image item is added
using add-items-to-exp-window.

click

("click" title name)

Arguments and Values:

title ::= a string containing the title of an AGI window
name ::= a string containing the name of a button item in the indicated window

Click is sent whenever a button item in a visible AGI window is clicked by the model. It
is provided for the purposes of updating the view of the button (showing it click) if
desired, but should not be used to trigger any actions. The AGI will call any associated
button function automatically, and monitoring the click-mouse action should be done for
detecting mouse clicks in general.

remove

("remove" title name)

Arguments and Values:

title ::= a string containing the title of an AGI window
name ::= a string containing the name of an item in the indicated window

Remove is sent whenever an item has been removed from a visible AGI window. It
happens when clear-exp-window is called and there are items in the window or when
remove-items-from-exp-window is called.

attention

("attention" title model x-pos y-pos color)

Arguments and Values:

title ::= a string containing the title of an AGI window
model ::= the name of a model
x-pos ::= an integer indicating the x pixel position of a visual attention action in global
coordinates (not window local)
y-pos ::= an integer indicating the y pixel position of a visual attention action in global
coordinates (not window local)
color ::= a string naming a color to use in displaying any indicator

Attention is sent whenever the vision module updates the model’s currently attended
location and it falls within the boundaries of an open AGI window. It is passed the name
of the model and the global coordinates of the model’s current visual attention along with
a suggestion of a color to use when displaying an indicator for that. There should only be
one marker per model. Therefore, it may be necessary for the handler to keep track of
which window has drawn it so that it can be removed before drawing it in a different
window. Note that the color value can be set arbitrarily by the modeler thus care should
be taken in handling it to make sure that it is a usable color name.

clearattention

("clearattention" title model)

Arguments and Values:

title ::= a string containing the title of an AGI window
model ::= the name of a model

Clearattention is sent whenever the vision module stops attending to any location (this is
not the same as moving attention to a new location which generates an attention
message). It is passed the name of the model and the name of the window that was last
sent an attention message. If that window has an attention marker drawn it should
remove it in response to this message.

cursor

("cursor" title model x-pos y-pos color)

Arguments and Values:

title ::= a string containing the title of an AGI window
model ::= the name of a model
x-pos ::= an integer indicating the x pixel position of the mouse device in the window
y-pos ::= an integer indicating the y pixel position of the mouse device in the window
color ::= a string naming a color to use in displaying any indicator

Cursor is sent whenever the mouse device updates its position. It is passed the AGI
window in which it is located, the name of the model for which that mouse device is
installed, and the window local coordinates of the cursor along with a suggestion of a
color to use when displaying an indicator for it. Note that the color value can be set
arbitrarily by the modeler thus care should be taken in handling it to make sure that it is a
usable color name.

clearcursor

("clearcursor" title model)

Arguments and Values:

title ::= a string containing the title of an AGI window
model ::= the name of a model

Clearcursor is sent whenever the mouse device is moved out of an AGI window. It is
passed the name of the window in which it was located and the name of the model for
which the device is installed. If that window has drawn a marker to indicate the cursor it
should remove it in response to this message. Unlike the attention/clearattention
messages from the vision module, the cursor device will automatically send a clearcursor
when the cursor moves out of a window.

Adding Custom visible virtual window handler messages

It is possible to pass custom messages to a visible virtual window handler, which can be
useful when adding an extension or feature that could be displayed in the window (the
location of the model’s eye fixation point with the EMMA extra for example). To pass a
new message requires using the notify-device command. That is a general command
which is passed a device and an arbitrary data item. For the experiment window device,
the data must be a list with a string as the first item. That list will then be used to create a
message which will be passed to all of the current visible virtual window handlers for that
window. The message will be constructed as a list with the string that is the first element
from the list passed to notify-device, followed by the name of that window device, then
the name of the current model, and that will be followed by the remaining items from the
list passed to notify-device (if there are any). Of course, just passing a new message is
only half of the process. One would also need to add the appropriate code to the handler
that is receiving the message so that it can take an appropriate action. The handlers for
the visible virtual windows used by the Tcl/Tk based ACT-R Environment include a

mechanism for easily extending its message processing to use new items. That
functionality however is beyond the scope of this manual, but if one is interested in
adding new display capabilities to those windows one can look at the
environment/gui/dialogs/999-*.tcl files to see how that was used to add the eye spot for
EMMA, the image items, and the finger positions from the act-touch extension.

	Table of Contents
	Introduction
	Background
	Devices
	Virtual Windows
	Visible Virtual Windows
	UWI
	Older ACT-R Devices
	Native GUI Windows

	The AGI
	Visual Scene
	Typical Experiment Design
	Window Control (Steps 1 and 2)
	Open-exp-window
	examples:

	Close-exp-window
	examples:

	Clear-exp-window
	examples:

	Displaying Items (step 3)
	Item IDs
	Colors
	AGI Items
	Text
	Buttons
	Lines
	Images
	General Commands
	Remove-items-from-exp-window
	Add-items-to-exp-window

	Waiting on user interaction (step 4)
	Process-events

	Response collection (step 5)
	Monitorable Actions
	Output-key
	Output-speech
	Move-cursor
	Click-mouse

	Response Time
	Get-time
	examples:

	Data analysis (step 8)
	Correlation
	examples:

	Mean-deviation
	examples:

	Miscellaneous
	Permute-list
	examples:

	While
	examples:

	Visual Features of AGI Elements for Models
	Text items
	example:
	Features:
	Visicon:
	Chunks:

	Buttons
	example:
	Features:
	Visicon:
	Chunks:

	Lines
	example:
	Features:
	Visicon:
	Chunks:

	Images
	example:
	Features:
	Visicon:
	Chunks:

	Other Commands
	Visible-virtuals-available?
	Select-exp-window
	call_command
	examples:

	Appendix
	Issues with using the AGI for human data collection
	Command Syntax
	Examples

	Visible Virtual Window external interface
	Creating a handler
	Add-virtual-window-handler
	Remove-virtual-window-handler
	Handler interface
	open
	select
	close
	remove
	text
	button
	line
	image
	click
	remove
	attention
	clearattention
	cursor
	clearcursor

	Adding Custom visible virtual window handler messages

