ACT-R Tutorial 9/15/21 Unit One

Unit 1: Introduction to ACT-R

ACT-R is a cognitive architecture. It is a theory of the structure of the brain at a level of
abstraction that explains how it achieves human cognition. That theory is instantiated in the
ACT-R software which allows one to create models which may be used to explain performance
in a task and also to predict performance in other tasks. This tutorial will describe how to use the
ACT-R software for modeling and provide some of the important details about the ACT-R theory.
Detailed information on the ACT-R theory can be found in the paper “An integrated theory of the
mind” and the book “How Can the Human Mind Occur in the Physical Universe?”. More
information on the ACT-R software can be found in the reference manual which is included in
the docs directory of the ACT-R software.

The goals of this unit are to introduce the basic components of the ACT-R architecture and show
how those components are used to create and run a model in the ACT-R software.

1.1 Knowledge Representations

There are two types of knowledge representation in ACT-R -- declarative knowledge and
procedural knowledge. Declarative knowledge corresponds to things we are aware we know and
can usually describe to others. Examples of declarative knowledge include “George Washington
was the first president of the United States” and “An atom is like the solar system”. Procedural
knowledge is knowledge which we display in our behavior but which we are not conscious of.
For instance, no one can describe the rules by which we speak a language and yet we do. In
ACT-R, declarative knowledge is represented in structures called chunks and procedural
knowledge is represented as rules called productions. Chunks and productions are the basic
building blocks of an ACT-R model.

1.1.1 Chunks in ACT-R

In ACT-R, elements of declarative knowledge are called chunks. Chunks represent knowledge
that a person might be expected to have when they solve a problem. A chunk is a collection of
attributes and values. The attributes of a chunk are called slots. Each slot in a chunk has a single
value. A chunk also has a name which can be used to reference it, but that name is only a
convenience for using the ACT-R software and is not considered to be a part of the chunk itself.
Below are some representations of chunks that encode the facts that the dog chased the cat and
that 4+3=7. The chunks are displayed as a name followed by the slot and value pairs. The name
of the first chunk is action023 and its slots are verb, agent, and object, which have values of
chase, dog, and cat respectively. The second chunk is named fact3+4 and its slots are addend1,
addend?2, and sum, with values three, four, and seven.

Action023
verb chase
agent dog
object cat


http://act-r.psy.cmu.edu/?post_type=publications&p=13623
http://act-r.psy.cmu.edu/?post_type=publications&p=13623
http://act-r.psy.cmu.edu/software/

ACT-R Tutorial 9/15/21 Unit One

Fact3+4
addendl three
addend2 four
sum seven

1.1.2 Productions in ACT-R

A production is a statement of a particular contingency that controls behavior. They can be
represented as if-then rules and some examples might be:

IF the goal is to classify a person
and he is unmarried

THEN classify him as a bachelor

IF the goal is to add two digits d1 and d2 in a column
and d1 +d2=d3

THEN create a goal to write d3 in the column

The condition of a production (the IF part) consists of a conjunction of features which must be
true for the production to apply. The action of a production (the THEN part) consists of the
actions the model should perform when the production is selected and used. The above are
informal English specifications of productions. They give an overview of when the productions
apply and what actions they should perform, but do not specify sufficient detail to actually
implement a production in ACT-R.

1.2 The ACT-R Architecture

The ACT-R architecture consists of a set of modules. Each module performs a particular
cognitive function and operates independently of other modules. We will introduce three
modules in this unit and describe their basic operations. Later units will provide more details on
the operations of these modules and also introduce other modules.

The modules communicate through an interface we call a buffer. Each module may have any
number of buffers for communicating with other modules. A buffer relays requests to its module
to perform actions, it responds to queries about the status of the module and the buffer itself, and
it can hold one chunk at a time which is usually placed into the buffer as the result of an action



ACT-R Tutorial 9/15/21 Unit One

which was requested. The chunk in a buffer is available for all modules to see and modify, and
the set of chunks in all of the buffers is the information that is immediately available to the
model.

1.2.1 Goal Module

The goal module is the simplest of the modules in ACT-R. It has one buffer named goal which is
used to hold a chunk which contains the current control information the model needs for
performing its current task. The only request to which the module responds is for the creation of
a new goal chunk. It responds to the request by immediately creating a chunk with the
information contained in the request and placing it into the goal buffer.

1.2.2 Declarative Module

The declarative module stores all of the chunks which represent the declarative knowledge the
model has which is often referred to as the model’s declarative memory. It has one buffer named
retrieval. The declarative module responds to requests by searching through declarative
memory to find the chunk which best matches the information specified in the request and then
placing that chunk into the retrieval buffer. In later units we will cover that process in more
detail to describe how it determines the best match and how long the process takes. For the
models in this unit, there will never be more than one chunk which matches the request and the
time cost will be fixed in the models at 50 milliseconds per request.

The declarative memory in a model consists of the chunks which are placed there initially by the
modeler when defining the model and the knowledge which it learns as it runs. The learned
knowledge is collected from the buffers of all of the modules. The declarative module monitors
all of the buffers, and whenever a chunk is cleared from one of them the declarative module
stores that chunk for possible later use.

1.2.3 Procedural Module

The procedural module holds all of the productions which represent the model’s procedural
knowledge. It does not have a buffer of its own, and unlike other modules the procedural module
does not take requests for actions. Instead, it is constantly monitoring the activity of all the
buffers looking for patterns which satisfy the condition of some production. When it finds a
production which has its condition met then it will execute the actions of that production, which
we refer to as “firing” the production. Only one production can fire at a time and it takes 50
milliseconds from the time the production was matched to the current state until the actions
happen. In later units we will look at what happens if more than one production matches at the
same time, but for this unit all of the productions in the models will have their conditions
specified so that at most one will match at any point in time.

1.2.4 Overview

These three modules are used in almost every model which is written in ACT-R, and early
versions of ACT-R consisted entirely of just these three components. Here is a diagram showing
how they fit together in the architecture with the rectangles representing the modules and the
ovals representing the buffers:



ACT-R Tutorial 9/15/21 Unit One

Declarative

Retrieval

Procedural

The blue arrows show which modules read the information from another module’s buffer, and
the red arrows show which modules make requests to another module’s buffer or directly modify
the chunk it contains. As we introduce new modules and buffers in the tutorial, each of the
buffers will have the same interface as shown for the goal buffer -- both the procedural and
declarative modules will read the buffer information and the procedural module will modify and
make requests to the buffer.

1.3 ACT-R Software and Models

Now that we have described the basic components in ACT-R, we will step back and describe the
ACT-R software and how one creates and runs a model using it. This tutorial is written for
version 7.26 (or newer) of the ACT-R software. Current versions of the ACT-R software are
distributed primarily as applications and the tutorial instructions will assume that the user is
running one of those applications, but like the previous versions, the source code is available for
those that prefer to run from sources. The main ACT-R software is implemented in the ANSI
Common Lisp programming language, but it is not necessary to know how to program in Lisp to
be able to use ACT-R because it is essentially its own language which will be described in the
tutorial. In prior versions of the software it was necessary to interact with ACT-R through Lisp
code, and one had to write Lisp code to build experiments or other tasks for the model to
perform. However, starting with version 7.6, ACT-R provides a remote interface that can be used
to interact with ACT-R from essentially any programming language, and the tutorial materials
include a Python module (in the Python use of the term module not the ACT-R use as a cognitive
component of the architecture) which provides functions for accessing ACT-R through that
remote interface'. Using that Python module, all of the tasks for the models in the tutorial are

! The Python module included with the tutorial is sufficient for running the tasks included with the tutorial. It does
not contain functions for accessing all of the commands available through the ACT-R remote interface, and it has
some assumptions about how it will be used based on the needs of the tutorial. For more complex tasks or where
performance is of primary importance, one might be better served by creating a custom interface instead of using the
one that is built for the tutorial.



ACT-R Tutorial 9/15/21 Unit One

implemented in Python as well as in Lisp, and either version can be used with the models of the
tutorial (the models do not depend upon which version of the task is being used). There are also
examples of connecting other programming languages included with the ACT-R software, but
only Lisp and Python will be used in the tutorial.

1.3.1 Starting ACT-R

To run the ACT-R software you need to run the startup script named run-act-r that is included
with the standalone version for your operating system (versions are available for Linux, macOS,
and Windows). That will open two windows for the ACT-R software. The one titled “ACT-R” is
an interactive Lisp session which contains the main ACT-R system and can be used to interact
with ACT-R directly. The other window, titled “Control Panel”, contains a set of GUI tools
written in the Tcl/Tk programming language and is called the ACT-R Environment. The ACT-R
Environment is an optional set of tools for interacting with the ACT-R system and the use of
some of those tools will be described during the tutorial. Additional information on running the
software can be found in the readme.txt file and there are short videos on the ACT-R software
site showing the typical OS protection warnings one may need to respond to the first time it is
run. More information on the Environment tools can be found in the Environment’s manual
included in the docs directory of the software. You may close the ACT-R Environment window
if you do not wish to use those tools (note however that for this unit the Environment tools are
necessary and it should not be closed). Closing the ACT-R window will exit the software.

For this unit there are no tasks for the models to interact with, and all the interaction with the
software can be done through the ACT-R Environment. For that reason, we will not describe
how to use the Python module yet since there is no need for it, but it will be described in the next
unit which includes interactive tasks for the models to perform.

1.3.2 Interacting with Lisp

Although it is not necessary to use the Lisp interface for ACT-R, it can be convenient and some
familiarity with Lisp syntax can be helpful since the syntax for creating ACT-R models is based
on Lisp syntax. Lisp is an interactive language and provides a prompt at which the user can
issue commands and evaluate code. The prompt in the ACT-R software window is the “?”
character. To evaluate (also sometimes referred to as “calling”) a command in Lisp at the prompt
requires placing it between parentheses along with any parameters which it requires separated by
whitespace and then hitting enter or return. As an example, to evaluate the command to add the
numbers 3 and 4 requires calling the command named “+” with those parameters. That means
one would type this at the prompt:

(+ 3 4)

and then hit the enter or return key. The system will then print the result of evaluating that
command and display a new prompt:

? (+ 3 4)
7
?


http://act-r.psy.cmu.edu/software/
http://act-r.psy.cmu.edu/software/

ACT-R Tutorial 9/15/21 Unit One

One minor issue to note is that sometimes the output from the ACT-R system will overwrite the
prompt character and it will not be visible in the ACT-R window. When that happens you can
still evaluate commands by entering them at the bottom of the window and pressing enter or
return.

1.3.3 ACT-R models

An ACT-R model is a simulated cognitive agent. A model is typically written in a text file that
contains the ACT-R commands that specify how the model works, and that model file can be
opened and edited in any application that can operate on text files. Because the ACT-R model
syntax is based on Lisp syntax using an editor which provides additional support for Lisp
formatting, like matching parentheses and automatic indenting, can be useful but is not
necessary. There is a very simple text editor included with the ACT-R Environment tools which
will do parenthesis matching, but beyond that it is a very limited text editor.

As we progress through the tutorial we will describe the ACT-R commands which one can use to
create models. Later in this unit we will introduce the commands for initializing a model and
creating the knowledge structures described above (chunks and productions).

1.3.4 Loading a model

To use an ACT-R model file it must be “loaded” into ACT-R. There are many ways to do so, but
for this unit we will simply use the button in the ACT-R Environment labeled “Load ACT-R
code”. In the next unit we will show how to load a model using an ACT-R command that can be
called from the Lisp prompt or from an external connection, like the Python module. When the
model file is loaded, the commands it contains are evaluated in order from the top down.

1.3.5 Running a model

Once a model has been loaded, you can run it. Models that do not interact with a task can
typically be run by just calling the ACT-R run command. The run command requires one
parameter, which is the maximum length of simulated time to run the model measured in
seconds. Again, for this unit we will be using the tool in the ACT-R Environment instead of
using the command itself. That tool is the “Run” button in the Environment and the text entry
box to its right is where the time to run the model can be entered. The default time in that box is
10.0 which means pressing the “Run” button will run the model for up to 10 simulated seconds.

In later units, where the models will be interacting with various tasks, just pressing the “Run”
button or calling the run command may not be sufficient because one might also have to run the
task itself. When that is the case the tutorial will describe what is necessary to run the model and
the task, and there is an additional text included with each unit which provides additional
information about how the tasks are implemented and the ACT-R commands involved (those are
the texts with a name that ends with “_code”).



ACT-R Tutorial 9/15/21 Unit One

1.4 Creating an ACT-R Model

Creating an ACT-R model requires writing the text file which contains the ACT-R commands to
specify the details of the model and the initial knowledge it contains. Also, in addition to the
model’s details, one often includes commands for controlling the general state of the ACT-R
system itself.

1.4.1 ACT-R control commands

When creating an ACT-R model, there are two ACT-R commands for controlling the system
which will almost always occur in the model file, and we will describe those commands first.

1.4.1.1 clear-all

The clear-all command will usually occur at the top of every model file. This command requires
no parameters and tells ACT-R that it should remove any models which currently exist and return
ACT-R to its initial state. It is not necessary to call clear-all in a model file, but unless one is
planning on running multiple models together it is strongly recommended that it occur as the first
command to make sure that the model starts with the system in a properly initialized state.

1.4.1.2 define-model

The define-model command is how one actually creates an ACT-R model. Within the call to
define-model one specifies a name for the model and then includes all of the calls to ACT-R
commands that will provide the initial conditions and knowledge for that model. When the
model file is loaded, define-model will create the model with the conditions specified, and then
whenever ACT-R is reset that model will be returned to that same initial state.

1.4.2 Chunk-Types

Before describing the commands for creating the model’s initial knowledge with chunks and
productions, we will first describe an additional component of the software which can be useful
when creating a model. There is an optional capability available in the ACT-R software called a
chunk-type. A chunk-type is a way for the modeler to specify categories for the knowledge in
the model by indicating a set of slots which will be used together in the creation and testing of
chunks. A chunk-type consists of a name for the chunk-type and a set of slot names. That
chunk-type name may then be used as a declaration when creating chunks and productions in the
model.

The command for creating a chunk type is called chunk-type. It requires a name for the new

chunk-type to create and then any number of slot names. The general chunk-type specification
looks like this:

(chunk-type type-name slot-name-1 slot-name-2 .. slot-name-n)

and here are some examples which could have been used in a model which created the example
chunks shown earlier:



ACT-R Tutorial 9/15/21 Unit One

(chunk-type action verb agent object)
(chunk-type addition-fact addendl addend2 sum)

The first creates a chunk-type named action which includes the slots verb, agent, and object. The
other creates a chunk-type named addition-fact with slots addend1, addend2, and sum.

It is important to note that using a chunk-type declaration does not directly affect the operation of
the model itself — the chunk-type is not a component of the ACT-R architecture. They exist in
the software to help the modeler specify the model components. Creating and using meaningful
chunk-types can make a model easier to read and understand. They also allow the ACT-R
software to verify that the specification of chunks and productions in a model is consistent with
the chunk-types that were created for that model which allows it to provide warnings when
inconsistencies or problems are found relative to the chunk-types which are specified.

Although chunk-types are not required when writing an ACT-R model, most of the models in the
tutorial will be written with chunk-type declarations included, and using chunk-types is strongly
recommended.

1.4.3 Creating Chunks

The command to create a set of chunks and place those chunks into the model’s declarative
memory is called add-dm. It takes any number of chunk specifications as its arguments. As an
example, we will show the chunks from the count model included with the tutorial that will be
described in greater detail later in this unit. First, here are the chunk-type specifications used in
that model:

(chunk-type number number next)
(chunk-type count-from start end count)

and here is the specification of the initial chunks which are placed into that model’s declarative
memory:

(add-dm

(one ISA number number one next two)

(two ISA number number two next three)

(three ISA number number three next four)

(four ISA number number four next five)

(five ISA number number five)

(first-goal ISA count-from start two end four))

Each chunk for add-dm is specified in a list — a sequence of items enclosed in parentheses. The
first element of the list is the name of the chunk. The name may be anything which is not
already used as the name of a chunk as long as it starts with an alphanumeric character and is a
valid Lisp symbol (essentially a continuous sequence of characters which does not contain any of
the symbols: period, comma, single quote, double quote, back quote, left or right parenthesis,
backslash, or semicolon). In the example above the names are one, two, three, four, five, and
first-goal. The purpose of the name is to provide a way for the modeler to refer to the chunk.



ACT-R Tutorial 9/15/21 Unit One

The name is not considered to be a part of the chunk, and it can in fact be omitted, which will
result in the system automatically generating a unique name for the chunk.

The next component of the chunk specification is the optional declaration of a chunk-type to
describe the chunk being created. That consists of the symbol isa followed by the name of a
chunk-type. Note that here we have capitalized the isa symbol to help distinguish it from the
actual slots of the chunk, but that is not necessary and in most cases the symbols and names used
in ACT-R commands are not case sensitive.

The rest of the chunk specification is pairs of a slot name and a value for that slot. The slot-value
pairs can be specified in any order and the order does not matter. When a chunk-type declaration
is provided, it is not necessary to specify a value for every slot indicated in that chunk-type, but
if a slot which is not specified in that chunk-type is provided ACT-R will generate a warning to
indicate the potential problem to the modeler.

1.4.4 Creating Productions

As indicated above, each production is a condition-action rule. Those rules are used by the
procedural module to monitor the buffers of all the other modules to determine when to perform
actions. The condition specifies tests for the contents of the buffers as well as the general state of
the buffers and their modules. The action of a production specifies the set of operations to
perform when the production is fired, and will consist of changes to be made to the chunks in
buffers along with new requests to be sent to the modules.

The command for creating a production in ACT-R is p, and the general format for creating a
production is:

(p Name "optional documentation string"
buffer tests

==>
buffer changes and requests

)

Each production must have a unique name and may also have an optional documentation string
to describe it. That is followed by the condition for the production. The buffer tests in the
condition of the production are patterns to match against the current buffers’ contents and queries
of the buffers for buffer and module state information. The condition of the production is
separated from the action of the production by the three character sequence ==>. The
production’s action consists of any buffer changes and requests which the production will make.

In separate subsections to follow we will describe the syntax involved in specifying the condition
and the action of a production. In doing so we will use an example production that counts from
one number to the next based on a chunk which has been retrieved from the model’s declarative
memory. It is similar to those used in the example models for this unit, but is slightly simpler
than they are for example purposes. Here is the specification of the chunk-types used in the
example production:



ACT-R Tutorial 9/15/21 Unit One

(chunk-type number number next)
(chunk-type count state current)

Here is the example production, which is named counting-example:

(P counting-example
"example production for counting in tutorial unit 1 text"

=goal>
ISA count
state incrementing
current =numl
=retrieval>
number =numl
next =num2
==>
=goal>
ISA count
current =num2
+retrieval>
ISA number
number =num2

It is not necessary to space the production definition out over multiple lines or indent the
components as shown above. It could be written on one line with only a single space between
each symbol and result in the creation of the same production. Because of that, the condition of
the production is also often referred to as the left-hand side (or LHS) and the action as the right-
hand side (or RHS), because of their positions relative to the ==> separator. However, since
adding additional whitespace characters between the symbols does not affect the definition of a
production, they are typically written spaced out over several lines to make them easier to read.

The symbols used in the production definition are also not case sensitive. The symbol ISA is
only capitalized for emphasis in the example and it could have been written as isa, Isa, or any
other combination of capital and lowercase letters with the same result.

1.4.4.1 Production Condition: Buffer Pattern Matching

The condition of the counting-example production specifies a pattern to match to the goal buffer
and a pattern to match to the retrieval buffer. A buffer pattern begins with a symbol that starts
with the character “=” and ends with the character “>”. Between those characters is the name of
the buffer to which the pattern is applied. Thus, the symbol =goal> indicates a pattern used to
test the chunk in the goal buffer and the symbol =retrieval> indicates a pattern to test the chunk
in the retrieval buffer. For a production’s condition to match, the first thing that must be true is
that there be a chunk in each of the buffers being tested. Thus, if there is no chunk in either the

10



ACT-R Tutorial 9/15/21 Unit One

goal or retrieval buffer, often referred to as the buffer being empty or cleared, this production
cannot match.

After indicating which buffer to test, an optional declaration may be made using the symbol isa
and the name of a chunk-type to provide a declaration of the set of slots which are being used in
the test. In the example production, the goal buffer pattern includes a declaration that the slots
being tested are from the count chunk-type, but the retrieval buffer pattern does not declare a
type for the set of slots specified. It is recommended that one create chunk-types and use the isa
declarations when writing productions, but this one has been omitted for demonstration purposes.
The important thing to remember is that the isa declaration is not a part of the pattern to be tested
— it is only a declaration to allow the ACT-R software to verify that the slots used in the pattern
are consistent with the chunk-type indicated.

The remainder of the pattern consists of slot tests for the chunk in the specified buffer. A slot test
consists of an optional modifier (which is not used in any of the tests in this example
production), the name of a slot for the chunk in the buffer, and a specification of the value that
slot of the chunk in the buffer must have. The value may be specific as a constant value, a
variable, or the Lisp symbol nil.

Here is the goal buffer pattern from the example production again for reference:

=goal>
ISA count
state incrementing

current =numl

The first slot test in the pattern is for a slot named state with a constant value of incrementing.
Therefore for this production to match, the chunk in the goal buffer must have a slot named state
which has the value incrementing. The next slot test in the pattern involves the slot named
current and a variable value.

The “=" prefix on a symbol in a production is used to indicate a variable. The name of the
variable can be any symbol, and it is recommended that the variable names be chosen to help
make the production easier for a person reading it to understand. Variables are used in a
production to generalize the condition and action, and they have two basic purposes. In the
condition, variables can be used to compare the values in different slots, for instance that they
have the same value or different values, without needing to know all of the possible values those
slots could have. The other purpose for a variable is to copy a value from a slot specified in the
condition to another slot specified in the action of the production.

There are two properties of variables used in productions which are important. Every slot tested
with a variable in the condition must exist in the chunk in the buffer for the pattern to match.
Also, a variable is only meaningful within a specific production -- using the same variable name
in different productions does not create any relation between those productions.

Given that, we could describe this production’s test for the goal buffer like this:

11



ACT-R Tutorial 9/15/21 Unit One

There must be a chunk in the goal buffer. It must have a slot named state with the value
incrementing, and it must have a slot named current whose value we will refer to using the
variable =numl1.

Now, we will look at the retrieval buffer’s pattern in detail:

=retrieval>
number =numl
next =num2

The first slot test it has tests the slot named number with the variable =numl. Since the
variable =num1 was also used in the goal buffer test, this is testing that the number slot of the
chunk in the retrieval buffer has the same value as the current slot of the chunk in the goal
buffer. The other slot test for the retrieval buffer is for the slot named next using a variable
named =num?2.

Therefore, the test for the retrieval buffer can be described as:

There must be a chunk in the retrieval buffer. It must have a slot named number which has the
same value as the slot named current of the chunk in the goal buffer, and it must have a slot
named next whose value we will refer to using the variable =num2.

There is one other detail to note about the buffer pattern tests on the LHS of a production.
Notice that the specification of a buffer pattern begins with the character “=" which is also used
to indicate a variable in a production. The start of a buffer pattern is also specifying a variable
using the name of the buffer. In this production that would be the variables =goal and =retrieval.
Those variables will refer to the chunk that is in the goal buffer and the chunk that is in the
retrieval buffer respectively, and those variables can be used just like any other variable to test a
value in a slot or to place that chunk into a slot as an action.

This example production did not include all of the possible items which one may need in writing
the condition for a production, but it does cover the basics of the pattern matching applied to
chunks in buffers. We will describe how one queries the buffer and module state later in this
unit, and additional production condition details will be introduced in future units.

1.4.4.2 Production Action

The action of a production consists of a set of operations which affect the buffers. Here is the
RHS from the example production again:

=goal>
ISA count
current =num2
+retrieval>
ISA number

12



ACT-R Tutorial 9/15/21 Unit One

number =num?2

The RHS of a production is specified much like the LHS with actions to perform on particular
buffers. To indicate a particular action to perform with a buffer a symbol is used which starts
with a character that indicates the action to take, followed by the name of a buffer, and then the
character ">". That is followed by an optional chunk-type declaration using isa and a chunk-type
name and then the specification of slots and values to detail the action to perform. There are five
different operations that can be performed with a buffer. The three most common will be
described in this unit. The other operations will be described later in the tutorial.

1.4.4.2.a Buffer Modifications, the = action

nm_mn

If the buffer name is prefixed with the character then the action will cause the production to
immediately modify the chunk currently in that buffer. Each slot specified in a buffer
modification action indicates a change to make to the chunk in the buffer. If the chunk already
has such a slot its value is changed to the one specified. If the chunk does not currently have that
slot then that slot is added to the chunk with the value specified.

Here is the action for the goal buffer from the example production:

=goal>
ISA count
current =num2

It starts with the character "=" therefore this is a modification to the buffer. It will change the
value of the current slot of the chunk in the goal buffer (since we know that it has such a slot
because it was tested in the condition of the production) to the value referred to by the variable
=num?2 (which is the value that the next slot of the chunk in the retrieval buffer had in the
condition). This is an instance of a variable being used to copy a value from one slot to another.
