
ACT-R Tutorial 7/19/22 Unit Six

Unit 6: Selecting Productions on the Basis of Their Utilities

 and Learning these Utilities

Occasionally,  we have had cause  to  set  parameters  for  productions  so that  one production  will  be
preferred over another in the conflict resolution process.  Now we will examine how production utilities
are computed and used in conflict  resolution.  We will also look at how these utility values can be
learned.

6.1 The Utility Theory

Each production has a utility associated with it which can be set directly as we have seen in some of the
previous units.  Like activations, utilities have noise added to them. The noise is controlled by the utility
noise parameter s which is set with the parameter :egs. The noise is distributed according to a logistic
distribution with a mean of 0 and a variance of
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If  there  are  a  number  of  productions  competing  with  expected  utility  values  Uj the  probability  of
choosing production i is described by the formula
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where the summation j is over all the productions which currently have their conditions satisfied.  Note
however that that equation only serves to describe the production selection process.  It is not actually
computed by the system.  The production with the highest utility (after noise is added) will be the one
chosen to fire.

6.2 Building Sticks Example

We  will  illustrate  these  ideas  with  an  example  from  problem  solving.  Lovett  (1998)  looked  at
participants solving the building-sticks problem illustrated in the figure below.  This is an isomorph of
Luchins waterjug problem that has a number of experimental advantages.  Participants are given an
unlimited supply of building sticks of three lengths and are told that their objective is to create a target
stick of a particular length.  There are two basic strategies they can select – they can either start with a
stick smaller than the desired length and add sticks (like the addition strategy in Luchins waterjugs) or
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they can start with a stick that is too long and “saw off” lengths equal to various sticks until they reach
the desired length (like the subtraction strategy).  We will call the first of those the undershoot strategy
and the second the overshoot strategy.  Subjects show a strong tendency to hillclimb and choose as their
first stick a stick that will get them closest to the target stick.  

INITIAL STATE

desired:
current:

building:

UNDERSHOOT UNDERSHOOTOVERSHOOT

desired:
current:

building:

desired:
current:

building:

desired:
current:

building:

possible first moves

a b c

a b c a b c a b c

You can go through a version of this task that was written to work with ACT-R models by loading the
bst.lisp file in Lisp or importing the bst file in Python.  The function bst-test in Lisp or test in the bst
module in Python takes one parameter indicating how many sample pairs of problems to present and an
optional  second parameter which indicates whether a person or model  is performing the task.  The
default is to run the model, so to run yourself through one pair of problems you would use one of these:

? (bst-test 1 t)

>>> bst.test(1,True)

The return value will  be a list  of two numbers indicating how many times you used the overshoot
strategy on the first and second problem from the pair respectively.

The experiment will look something like this:
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To do the task you will see four lines initially.  The top three are black and correspond to the building
sticks you have available.  The fourth line is green and that is the target length you are attempting to
build.  The current stick you have built so far will be blue and below the target stick.  You will build the
current stick by pressing the button to the left of a stick you would like to use next.  If your current line
is shorter than the target the new stick will be added to the current stick, and if your current line is
longer  than  the  target  the  new  stick  will  be  subtracted  from  the  current  stick.   When  you  have
successfully matched the target length the word “Done” will appear below the current stick and you will
progress to the next trial.  At any time you can hit the button labeled Reset to clear the current stick and
start over.

As it turns out, both of the problems presented in that test set can only be solved by the overshoot
strategy.  However, the first one looks like it can be solved more easily by the undershoot strategy.  The
exact lengths of the sticks in pixels for that problem are:

A = 15  B = 200  C = 41 Goal = 103

The difference between B and the goal is 97 pixels while the difference between C and the goal is only
62 pixels – a 35 pixel difference of differences.  However, the only solution to the problem is B – 2C –
A.  The same solution holds for the second problem:

A = 10  B = 200 C = 29 Goal = 132

But in this case the difference between B and the goal is 68 pixels while the difference between C and
the goal is 103 pixels – a 35 pixel difference of differences in the other direction.  You can run the
model on these problems and it will tend to choose undershoot for the first about 75% of the time and
overshoot for the second about 75% of the time.  You can run the model multiple times using the bst-
test or test function with the number of pairs to run the model through to see the results for yourself.  If
you only run the model through one pair it will perform the task with a visible window so that you can
watch it, but if you run more than one pair it will use a virtual window to complete the task faster. 

The  model  for  the  task  involves  many  productions  for  encoding  the  screen  and  selecting  sticks.
However, the critical behavior of the model is controlled by four productions that make the decision as
to whether to apply the overshoot or the undershoot strategy. 

(p decide-over 
   =goal> 
      isa       try-strategy 
      state     choose-strategy 
      strategy  nil 
   =imaginal> 
      isa       encoding 
      under     =under 
      over      =over 
   !eval! (< =over (- =under 25)) 
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  ==> 
   =imaginal> 
   =goal> 
      state     prepare-mouse 
      strategy  over 
   +visual-location> 
      isa       visual-location 
      kind      oval 
      value     "b") 

(p force-over 
   =goal> 
      isa       try-strategy 
      state     choose-strategy 
    - strategy  over 
  ==> 
   =goal> 
      state     prepare-mouse 
      strategy  over 
   +visual-location> 
      isa       visual-location 
      kind      oval 
      value     "b") 

(p decide-under 
   =goal> 
      isa       try-strategy 
      state     choose-strategy 
      strategy  nil 
   =imaginal> 
      isa       encoding 
      over      =over 
      under     =under 
   !eval! (< =under (- =over 25)) 
  ==> 
   =imaginal> 
   =goal> 
      state     prepare-mouse 
      strategy  under 
   +visual-location> 
      isa       visual-location 
      kind      oval 
      value     "c") 

(p force-under 
   =goal> 
      isa       try-strategy 
      state     choose-strategy 
    - strategy  under 
  ==> 
   =goal> 
      state     prepare-mouse 
      strategy  under 
   +visual-location> 
      isa       visual-location 
      kind      oval 
      value     "c") 
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The key information is in the over and under slots of the chunk in the imaginal buffer.  The over slot
encodes  the  pixel  difference  between  stick  b  and  the  target  stick,  and  the  under  slot  encodes  the
difference between the target stick and stick c.  These values have been computed by prior productions
that encode the problem.  If one of these differences appears to get the model much closer to the target
(more than 25 pixels closer than the other as computed by a !eval! condition for simplicity) then the
decide-under or decide-over productions can fire to choose the strategy.  In all situations, the other two
productions, force-under and force-over, can apply.  Thus, if there is a clear difference in how close the
two sticks are to the target stick there will be three productions (one decide, two force) that can apply
and if there is not then just the two force productions can apply.  The choice among the productions is
determined  by  their  relative  utilities  which  we  can  see  using  the  Procedural  tool  in  the  ACT-R
Environment, or by using the spp command (called before running the task here):

? (spp force-over force-under decide-over decide-under) 

>>> actr.spp('force-over', 'force-under', 'decide-over', 'decide-under') 

Parameters for production FORCE-OVER: 
 :utility    NIL 
 :u  10.000 
 :at  0.050 
 :reward    NIL 
 :fixed-utility    NIL 
Parameters for production FORCE-UNDER: 
 :utility    NIL 
 :u  10.000 
 :at  0.050 
 :reward    NIL 
 :fixed-utility    NIL 
Parameters for production DECIDE-OVER: 
 :utility    NIL 
 :u  13.000 
 :at  0.050 
 :reward    NIL 
 :fixed-utility    NIL 
Parameters for production DECIDE-UNDER: 
 :utility    NIL 
 :u  13.000 
 :at  0.050 
 :reward    NIL 
 :fixed-utility    NIL 

The productions’ current utility values, labeled :u, are set in the model using the spp command:
(spp decide-over :u 13) 
(spp decide-under :u 13) 
(spp force-over :u 10) 
(spp force-under :u 10) 

The :u parameters are set to 10 for the force productions and to 13 for the decide productions since
making the decision based on which one looks closer should be preferred to just guessing, at  least
initially.  The :utility value shown in the output from spp indicates the last computed utility value for the
production during a conflict-resolution event and includes the utility noise.  The value of nil in the
output above indicates that the production has not yet been used, which is the case since it hasn’t been
run yet.  If you run the model through the task and then check the parameters you will see something
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like this which shows the noisy utility values for the productions which matched the state and could
possibly have been selected during conflict-resolution:

Parameters for production FORCE-OVER: 
 :utility  7.666 
 :u  10.000 
 :at  0.050 
 :reward    NIL 
 :fixed-utility    NIL 
Parameters for production FORCE-UNDER: 
 :utility  9.705 
 :u  10.000 
 :at  0.050 
 :reward    NIL 
 :fixed-utility    NIL 
Parameters for production DECIDE-OVER: 
 :utility 15.355 
 :u  13.360 
 :at  0.050 
 :reward    NIL 
 :fixed-utility    NIL 
Parameters for production DECIDE-UNDER: 
 :utility    NIL 
 :u  13.000 
 :at  0.050 
 :reward    NIL 
 :fixed-utility    NIL 

Let us consider how these productions apply in the case of the two problems in the model.  Since the
difference between the under and over differences is 35 pixels, there will be one decide and two force
productions that match for both problems.  We can compute the probability of choosing each production
using the equation shown above with the starting utilities for the productions and the fact that the noise
parameter, s, is set to 3 in the model.

 First, consider the probability of the decide production:
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Similarly, the probability of the two force productions can be shown to be .248.  Thus, there is a .248
probability that a force production will fire that has the model try to solve the problem in the direction
other than it appears.
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6.3 Utility Learning

So far we have only considered the situation where the production parameters are static. The utilities of
productions can also be learned as the model runs based on rewards that are received by the model.
When utility learning is enabled, the productions’ utilities are updated according to a simple integrator
model  (e.g.  see  Bush & Mosteller,  1955)..  If  Ui(n-1)  is  the  utility  of  a  production  i after  its  n-1st
application and Ri(n) is the reward the production receives for its nth application, then its utility Ui(n)
after its nth application will be:

        11  nUnRnUnU iiii 

where   is the learning rate and is typically set  at  .2 (this can be changed by adjusting the :alpha
parameter in the model).  This is also basically the Rescorla-Wagner learning rule (Rescorla & Wagner,
1972).  According to this equation the utility of a production will be gradually adjusted until it matches
the average reward that the production receives.

There are a couple of things to mention about the rewards.  The rewards can occur at any time, and are
not necessarily associated with any particular production.  Also, a number of productions may have
fired before a reward is delivered.  The reward Ri(n) that production i will receive will be the external
reward received minus the time from production  i’s selection to the reward.  This serves to give less
reward to more distant productions.  This is like the temporal discounting in reinforcement learning but
proves to be more robust within the ACT-R architecture (not suggesting it is generally more robust).
This reinforcement goes back to all of the productions which have been selected between the current
reward and the previous reward.

There are two ways to provide rewards to a model: at any time the trigger-reward command can be used
to provide a reward or the rewards can be attached to productions and those rewards will be applied
after the corresponding production fires.  Attaching rewards to productions can be the more convenient
way to provide rewards to a model when they correspond to situations which the model will explicitly
process.  For instance, in the building sticks task the rewards are provided when the model successfully
completes a problem and when it has to reset and start over, and there are productions which handle
those  situations:  read-done  detects  that  it  has  completed  the  problem and  pick-another-strategy  is
responsible  for  choosing again after  resetting.   One can associate  rewards  with these outcomes  by
setting the reward values of those productions:
(spp pick-another-strategy :reward 0) 
(spp read-done :reward 20) 

When read-done fires it will propagate a reward of 20 back to the previous productions which have
been fired, with productions earlier in the sequence receiving smaller effective reward values because of
the time to the reward being subtracted from the reward.  If pick-another-strategy fires, a reward of 0
will  be propagated  back – which  means  that  previous  productions  will  actually  receive  a  negative
reward because of the time that passed.  Consider what happens when a sequence of productions leads
to a dead end, pick-another-strategy fires, another sequence of productions fire that leads to a solution,
and  then  read-done fires.   The  reward  associated  with  read-done  will  propagate  back  only  to  the
production which fired after pick-another-strategy and no further because the reward only goes back as
far  as  the  last  reward.   Note  that  the production read-done will  receive  its  own reward,  and pick-
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another-strategy will not receive any of read-done’s reward since it will have received the reward from
its own firing.

6.4 Learning in the Building Sticks Task

The following are the lengths of the sticks and the percent choice of overshoot for each of the problems
in the testing set from an experiment with a building sticks task reported in Lovett & Anderson (1996):

  a     b      c        Goal   %OVERSHOOT
 15    250     55        125      20
 10    155     22        101      67
 14    200     37        112      20
 22    200     32        114      47
 10    243     37        159      87
 22    175     40         73      20
 15    250     49        137      80
 10    179     32        105      93
 20    213     42        104      83
 14    237     51        116      13
 12    149     30         72      29
 14    237     51        121      27
 22    200     32        114      80
 14    200     37        112      73
 15    250     55        125      53

The majority of these problems look like they can be solved by undershoot and in some cases the pixel
difference is greater than 25.  However, the majority of the problems can only be solved by overshoot.
The first and last problems are interesting because they are identical and look strongly like they are
undershoot problems. It is the only problem that can be solved either by overshoot or undershoot. Only
20% of the participants solve the first problem by overshoot but when presented with the same problem
at the end of the experiment 53% use overshoot.

The model  which  ran the  test  trials  above can also  perform the  whole  experiment,  and will  show
performance similar to the data through the utility learning mechanism which is enabled in the model
by setting the :ul parameter to t.  The bst-experiment function in Lisp and the experiment function in the
bst module for Python will run the model through the experiment multiple times averaging the results.
The following shows the performance of the model averaged over 100 iterations of the experiment:
CORRELATION:  0.772 
MEAN DEVIATION: 18.155 

Trial 1     2     3     4     5     6     7     8     9     10    11    12    13    14    15
    22.0  50.0  61.0  77.0  94.0  32.0  85.0  83.0  61.0  42.0  30.0  21.0  63.0  63.0  54.0

DECIDE-OVER : 13.2118 
DECIDE-UNDER: 10.8572 
FORCE-OVER  : 12.0410 
FORCE-UNDER : 6.6625 
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Also printed out are the average values of the utility parameters for the critical productions after each
run through the experiment.  As can be seen, the two over productions have increased their utility while
the under productions have had a drop off.  On average, the force-over production has a slightly higher
value than the  decide-under production.  It is this change in utility values that creates the increased
tendency to choose the overshoot strategy.

This  model  also turns  on the  utility  learning  trace,  the  :ult  parameter,  which  works  similar  to  the
activation trace shown in the previous unit.   If you enable the trace in the model by setting the :v
parameter to  t  then every time there is a reward given to the model the trace will  show the utility
changes for all of the productions affected by that reward.  Here is the trace from a run showing the
positive reward for successfully completing a trial and all of the productions that have fired since the
last reward was given being rewarded and having their utility updated:
     6.475   UTILITY                PROPAGATE-REWARD 20 
 Utility updates with Reward = 20.0   alpha = 0.2 
  Updating utility of production START-TRIAL 
   U(n-1) = 0.0   R(n) = 13.525 [20.0 - 6.475 seconds since selection] 
   U(n) = 2.705 
  Updating utility of production FIND-NEXT-LINE 
   U(n-1) = 0.0   R(n) = 13.575 [20.0 - 6.425 seconds since selection] 
   U(n) = 2.715 
  Updating utility of production ATTEND-LINE 
   U(n-1) = 0.0   R(n) = 13.625 [20.0 - 6.375 seconds since selection] 
   U(n) = 2.7250001 
  Updating utility of production ENCODE-LINE-A 
   U(n-1) = 0.0   R(n) = 13.76 [20.0 - 6.24 seconds since selection] 
   U(n) = 2.752 
  Updating utility of production FIND-NEXT-LINE 
   U(n-1) = 2.715   R(n) = 13.809999 [20.0 - 6.19 seconds since selection] 
   U(n) = 4.934 
  Updating utility of production ATTEND-LINE 
   U(n-1) = 2.7250001   R(n) = 13.860001 [20.0 - 6.14 seconds since selection] 
   U(n) = 4.952 
  Updating utility of production ENCODE-LINE-B 
   U(n-1) = 0.0   R(n) = 14.01 [20.0 - 5.99 seconds since selection] 
   U(n) = 2.802 
  Updating utility of production FIND-NEXT-LINE 
   U(n-1) = 4.934   R(n) = 14.059999 [20.0 - 5.94 seconds since selection] 
   U(n) = 6.7592 
  Updating utility of production ATTEND-LINE 
   U(n-1) = 4.952   R(n) = 14.110001 [20.0 - 5.89 seconds since selection] 
   U(n) = 6.7836003 
  Updating utility of production ENCODE-LINE-C 
   U(n-1) = 0.0   R(n) = 14.245 [20.0 - 5.755 seconds since selection] 
   U(n) = 2.849 
  Updating utility of production FIND-NEXT-LINE 
   U(n-1) = 6.7592   R(n) = 14.295 [20.0 - 5.705 seconds since selection] 
   U(n) = 8.26636 
  Updating utility of production ATTEND-LINE 
   U(n-1) = 6.7836003   R(n) = 14.344999 [20.0 - 5.655 seconds since selection] 
   U(n) = 8.29588 
  Updating utility of production ENCODE-LINE-GOAL 
   U(n-1) = 0.0   R(n) = 14.48 [20.0 - 5.52 seconds since selection] 
   U(n) = 2.896 
  Updating utility of production ENCODE-UNDER 
   U(n-1) = 0.0   R(n) = 14.615 [20.0 - 5.385 seconds since selection] 
   U(n) = 2.923 
  Updating utility of production ENCODE-OVER 
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   U(n-1) = 0.0   R(n) = 14.75 [20.0 - 5.25 seconds since selection] 
   U(n) = 2.95 
  Updating utility of production FORCE-OVER 
   U(n-1) = 10.0   R(n) = 14.8 [20.0 - 5.2 seconds since selection] 
   U(n) = 10.96 
  Updating utility of production MOVE-MOUSE 
   U(n-1) = 0.0   R(n) = 14.85 [20.0 - 5.15 seconds since selection] 
   U(n) = 2.97 
  Updating utility of production CLICK-MOUSE 
   U(n-1) = 0.0   R(n) = 15.358 [20.0 - 4.642 seconds since selection] 
   U(n) = 3.0716 
  Updating utility of production LOOK-FOR-CURRENT 
   U(n-1) = 0.0   R(n) = 15.708 [20.0 - 4.292 seconds since selection] 
   U(n) = 3.1416001 
  Updating utility of production ATTEND-LINE 
   U(n-1) = 8.29588   R(n) = 15.757999 [20.0 - 4.242 seconds since selection] 
   U(n) = 9.788304 
  Updating utility of production ENCODE-LINE-CURRENT 
   U(n-1) = 0.0   R(n) = 15.893 [20.0 - 4.107 seconds since selection] 
   U(n) = 3.1786 
  Updating utility of production CALCULATE-DIFFERENCE 
   U(n-1) = 0.0   R(n) = 16.028 [20.0 - 3.972 seconds since selection] 
   U(n) = 3.2056 
  Updating utility of production CONSIDER-C 
   U(n-1) = 0.0   R(n) = 16.078 [20.0 - 3.922 seconds since selection] 
   U(n) = 3.2155998 
  Updating utility of production CHOOSE-C 
   U(n-1) = 0.0   R(n) = 16.213 [20.0 - 3.787 seconds since selection] 
   U(n) = 3.2426 
  Updating utility of production MOVE-MOUSE 
   U(n-1) = 2.97   R(n) = 16.263 [20.0 - 3.737 seconds since selection] 
   U(n) = 5.6286 
  Updating utility of production CLICK-MOUSE 
   U(n-1) = 3.0716   R(n) = 16.713 [20.0 - 3.287 seconds since selection] 
   U(n) = 5.79988 
  Updating utility of production LOOK-FOR-CURRENT 
   U(n-1) = 3.1416001   R(n) = 17.063 [20.0 - 2.937 seconds since selection] 
   U(n) = 5.9258804 
  Updating utility of production ATTEND-LINE 
   U(n-1) = 9.788304   R(n) = 17.112999 [20.0 - 2.887 seconds since selection] 
   U(n) = 11.253243 
  Updating utility of production ENCODE-LINE-CURRENT 
   U(n-1) = 3.1786   R(n) = 17.248 [20.0 - 2.752 seconds since selection] 
   U(n) = 5.99248 
  Updating utility of production CALCULATE-DIFFERENCE 
   U(n-1) = 3.2056   R(n) = 17.383 [20.0 - 2.617 seconds since selection] 
   U(n) = 6.04108 
  Updating utility of production CONSIDER-C 
   U(n-1) = 3.2155998   R(n) = 17.433 [20.0 - 2.567 seconds since selection] 
   U(n) = 6.05908 
  Updating utility of production CHOOSE-C 
   U(n-1) = 3.2426   R(n) = 17.568 [20.0 - 2.432 seconds since selection] 
   U(n) = 6.1076803 
  Updating utility of production MOVE-MOUSE 
   U(n-1) = 5.6286   R(n) = 17.618 [20.0 - 2.382 seconds since selection] 
   U(n) = 8.02648 
  Updating utility of production CLICK-MOUSE 
   U(n-1) = 5.79988   R(n) = 17.668 [20.0 - 2.332 seconds since selection] 
   U(n) = 8.173504 
  Updating utility of production LOOK-FOR-CURRENT 
   U(n-1) = 5.9258804   R(n) = 17.868 [20.0 - 2.132 seconds since selection] 
   U(n) = 8.314304 
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  Updating utility of production ATTEND-LINE 
   U(n-1) = 11.253243   R(n) = 17.918 [20.0 - 2.082 seconds since selection] 
   U(n) = 12.586195 
  Updating utility of production ENCODE-LINE-CURRENT 
   U(n-1) = 5.99248   R(n) = 18.053 [20.0 - 1.947 seconds since selection] 
   U(n) = 8.404584 
  Updating utility of production CALCULATE-DIFFERENCE 
   U(n-1) = 6.04108   R(n) = 18.188 [20.0 - 1.812 seconds since selection] 
   U(n) = 8.470464 
  Updating utility of production CONSIDER-C 
   U(n-1) = 6.05908   R(n) = 18.238 [20.0 - 1.762 seconds since selection] 
   U(n) = 8.494864 
  Updating utility of production CONSIDER-A 
   U(n-1) = 0.0   R(n) = 18.373 [20.0 - 1.627 seconds since selection] 
   U(n) = 3.6746 
  Updating utility of production CHOOSE-A 
   U(n-1) = 0.0   R(n) = 18.508 [20.0 - 1.492 seconds since selection] 
   U(n) = 3.7015998 
  Updating utility of production MOVE-MOUSE 
   U(n-1) = 8.02648   R(n) = 18.558 [20.0 - 1.442 seconds since selection] 
   U(n) = 10.132784 
  Updating utility of production CLICK-MOUSE 
   U(n-1) = 8.173504   R(n) = 19.045 [20.0 - 0.955 seconds since selection] 
   U(n) = 10.347803 
  Updating utility of production LOOK-FOR-CURRENT 
   U(n-1) = 8.314304   R(n) = 19.395 [20.0 - 0.605 seconds since selection] 
   U(n) = 10.530443 
  Updating utility of production ATTEND-LINE 
   U(n-1) = 12.586195   R(n) = 19.445 [20.0 - 0.555 seconds since selection] 
   U(n) = 13.957956 
  Updating utility of production ENCODE-LINE-CURRENT 
   U(n-1) = 8.404584   R(n) = 19.58 [20.0 - 0.42 seconds since selection] 
   U(n) = 10.6396675 
  Updating utility of production CALCULATE-DIFFERENCE 
   U(n-1) = 8.470464   R(n) = 19.715 [20.0 - 0.285 seconds since selection] 
   U(n) = 10.719371 
  Updating utility of production CHECK-FOR-DONE 
   U(n-1) = 0.0   R(n) = 19.765 [20.0 - 0.235 seconds since selection] 
   U(n) = 3.9529998 
  Updating utility of production FIND-DONE 
   U(n-1) = 0.0   R(n) = 19.815 [20.0 - 0.185 seconds since selection] 
   U(n) = 3.963 
  Updating utility of production READ-DONE 
   U(n-1) = 0.0   R(n) = 19.95 [20.0 - 0.05 seconds since selection] 
   U(n) = 3.9900002 
     6.475   ------                 Stopped because event limit reached 

Being able to see the changes that happen as a result of a reward can be helpful when trying to fit a
model to data, particularly with respect to the temporal discounting that changes the effective reward for
each production.

6.5 Other Chunk-type Capabilities

Before discussing the assignment task for this unit, we are going to point out a few of the productions in
this model which appear to be doing things differently than those in previous units.  If we look at the
actions of the productions encode-line-goal and click-mouse we see that they seem to be missing the
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cmd slot in the requests to the visual and manual buffers which we have seen previously, and instead
are only declaring a chunk-type with an isa:

(p encode-line-goal 
   =goal> 
      isa        try-strategy 
      state      attending 
   =imaginal> 
      isa        encoding 
      c-loc      =c 
      goal-loc   nil 
   =visual> 
      isa        line 
      screen-pos =pos 
      width      =length 
   ?visual> 
      state      free 
  ==> 
   =imaginal> 
      goal-loc   =pos 
      length     =length 
   =goal> 
      state      encode-under 
   +visual> 
      isa        move-attention 
      screen-pos =c) 

(p click-mouse 
   =goal> 
      isa    try-strategy 
      state  move-mouse 
   ?manual> 
      state  free 
  ==> 
   =goal> 
      state  wait-for-click 
   +manual> 
      isa    click-mouse) 

Also, the isa declarations on the LHS of the encode-line-goal and read-done productions are declaring
chunk-types other than visual-object which was previously indicated as the chunk-type that specified
the slots used for creating the representation of visual objects for the visual buffer:

(p encode-line-goal 
   =goal> 
      isa        try-strategy 
      state      attending 
   =imaginal> 
      isa        encoding 
      c-loc      =c 
      goal-loc   nil 
   =visual> 
      isa        line 
      screen-pos =pos 
      width      =length 
   ?visual> 
      state      free 
  ==> 
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   =imaginal> 
      goal-loc   =pos 
      length     =length 
   =goal> 
      state      encode-under 
   +visual> 
      isa        move-attention 
      screen-pos =c) 

(p read-done 
   =goal> 
      isa    try-strategy 
      state  read-done 
   =visual> 
      isa    text 
      value  "done" 
  ==> 
   +goal> 
      isa    try-strategy 
      state  start) 

These productions are relying on two other capabilities that can be used when creating chunk-types: the
specification of default values for slots and the ability to create a hierarchy of types.  Even though the
chunk-types  themselves  are  only  a  declaration  that  does  not  become part  of  the  production,  these
mechanisms do allow  a chunk-type declaration to have  an effect on the contents of the production.
Details on those mechanisms can be found in the code document for this unit.

6.6 Learning in a Probability Choice Experiment

Your assignment is to develop a model for a "probability matching" experiment run by Friedman et al
(1964).  However, unlike the assignments for previous units, you are not provided with the code that
implements the experiment this time.  Therefore you will need to first write the experiment, and then
develop the model, which more closely represents the typical modeling situation. The experiment to be
implemented is very simple.  Here is the basic procedure which is repeated for 48 trials:

1. The participant is presented with a screen saying "Choose"

2. The participant either presses the ‘h’ key for heads or the ‘t’ key for tails

3. When the key is pressed the screen is cleared and the feedback indicating the correct answer, either
"Heads" or "Tails", is displayed.

4. That feedback stays on the screen for exactly 1 second before the next trial is presented. 

Friedman et al arranged it so that heads was the correct choice on 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, and 90% of the trials (independent of what the participant had done).  For your experiment
you will only be concerned with the 90% condition.  Thus, your experiment will be 48 trials long and
“Heads” will be the correct answer 90% of the time.  We have averaged together the data from the 10%
and 90% conditions (flipping responses) to get an average proportion of choice of the dominant answer
in blocks of 12 trials.  These proportions are 0.664, 0.778, 0.804, and 0.818.  This is the data that your
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model is to fit.  It is important to note that this is the proportion of choice for heads, not the proportion
of correct responses – the correctness of the response does not matter.

Your model  must  begin with a 50% chance of saying heads, then based on the feedback from the
experiment it must adjust its choice through utility learning so that it averages responding heads close to
66% over the first block of 12 trials, and increases to about 82% by the final block.  You will run the
model through the experiment many times (resetting before each experiment) and average the data of
those runs for comparison.  As an aspiration level, this is the performance of the model that I wrote,
averaged over 100 runs:

CORRELATION:  0.998 
MEAN DEVIATION:  0.010 
 Original     Current 
   0.664       0.655 
   0.778       0.785 
   0.804       0.819 
   0.818       0.823 

In achieving this, the parameters I worked with were the noise in the utilities (set by the :egs parameter)
and the rewards associated with successful and unsuccessful responses.

The starting model for this task, found in the choice-model.lisp file of the unit, only contains the calls to
clear ACT-R to its initial state and create a model named choice which has no content.  You will need to
write the whole model.

The initial code for this task can be found in the choice.lisp and choice.py files.  It contains the call to
load the starting model, specifies the experimental data, a global variable for collecting a response, and
includes two functions.  The first function is used as a monitor for the output-key action and just sets a
global variable to record the response (as was done in many of the previous tasks).   The other function,
called choice-person in the Lisp version and person in the Python version, is a correct implementation
of the task described for running a person through a single trial,  and it returns the key which was
pressed.

You should write a similar function to run the model through one trial, which should be named choice-
model (in Lisp) or model (in Python).  You will also need to write a function that takes one parameter
and runs the whole experiment that many times and prints out the average results of the runs and the
correlation and deviation of the average data to the experimental data.  That function should be named
choice-data (in Lisp) and  data (in Python).  That function does not have to be able to run a person
through the task.  It only needs to be able to run the model.  

My suggestion would be to first write the single trial function making sure that it correctly represents
the experiment described, including the timing.  Then write a model that is able to perform that task
correctly.  Next write a function to run a block of 12 trials and test that to make sure the model works
correctly when going from trial to trial.   Then write a function to iterate over 4 blocks for running one
pass of the experiment and test that.  After that is working write the function to run the experiment
multiple times.  Only then should you be concerned with actually fitting the model to the data, once you
are sure everything else works. 
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To write the experiment for the model you will need to use some of the ACT-R commands that were
discussed in the previous units’ code texts in addition to those already used in the function for running a
person.  The necessary commands will be described again here briefly, and the experiments you have
seen up to this point should provide plenty of examples of their use.

The reset function initializes ACT-R. It returns the model to the initial state as specified in the model
file.  It is the programmatic equivalent of pressing the “Reset” button in the ACT-R Environment.

The run function can be used to run the model until either it has nothing to do or the specified amount
of time has passed. It has one required parameter, which is the maximum amount of time to run the
model in seconds.  

The run-full-time/run_full_time function can be used to run the model for a specific amount of time.
It takes one parameter which is the amount of time to run the model in seconds.

The install-device/install_device function takes one parameter which specifies a device the model will
interact with and the value returned from opening the experiment window is the device of interest for
this task.

In  addition  to  those  functions  you  will  also  want  to  use  the  correlation and  mean-
deviation/mean_deviation functions.  Those calculate the correlation and mean-deviation between two
lists of numbers.

6.6.1 Example experiment functions

The paired associate task from unit 4 is a good example to look at for creating your experiment, and the
do-experiment function in the Lisp version and the do_experiment function in the Python version have a
very similar structure to what you will need for presenting a trial of this choice experiment.  The paired
associate functions are a little more complicated than the function you will need for this assignment
because they can run either a person or the model and are also recording response times and averaging
the data over multiple runs which your single trial function will not need to do.  They also call  reset
which you should not do in your single trial function because you want the model to continue to learn
from trial to trial.  You should only call  reset at the start of each pass through the whole experiment.
Ignoring those complications, it performs a similar sequence of operations to those necessary to do this
experiment: open a window, tell the model to interact with that window, present an item of text, run the
model, clear the screen, display another item of text, and then run the model again. Those functions are
copied here (without the comments) and the relevant operations are highlighted in green.  

Lisp
 (defun do-experiment (size trials human)
  
  (if (and human (not (visible-virtuals-available?)))
      (print-warning "Cannot run the task as a person without a visible window available.")
    (progn
      (reset)
      
      (let* ((result nil)
             (model (not human))
             (window (open-exp-window "Paired-Associate Experiment" :visible human)))
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        (when model
          (install-device window))
        
        (dotimes (i trials) 
          (let ((score 0.0)
                (time 0.0))
            
            (dolist (x (permute-list (subseq *pairs* (- 20 size)))) 
              
              (clear-exp-window window)
              (add-text-to-exp-window window (first x) :x 150 :y 150)
              
              (setf *response* nil)                   
              (let ((start (get-time model)))
                
                (if model
                    (run-full-time 5)
                  (while (< (- (get-time nil) start) 5000)
                    (process-events)))
                
                (when (equal *response* (second x))      
                  (incf score 1.0)    
                  (incf time (- *response-time* start)))
                
                (clear-exp-window window)
                (add-text-to-exp-window window (second x) :x 150 :y 150)
                (setf start (get-time model))
                
                (if model
                    (run-full-time 5)
                  (while (< (- (get-time nil) start) 5000)
                    (process-events)))))
            
            (push (list (/ score size) (if (> score 0) (/ time score 1000.0) 0)) result)))
        
        (reverse result))))) 

Python
def do_experiment(size, trials, human):

    if human and not(actr.visible_virtuals_available()):
        actr.print_warning("Cannot run the task as a person without a visible window.")
    else:

        actr.reset()

        result = []
        model = not(human)
        window = actr.open_exp_window("Paired-Associate Experiment",visible=human)

        if model:
            actr.install_device(window)

        for i in range(trials):
            score = 0
            time = 0

            for prompt,associate in actr.permute_list(pairs[20 - size:]):
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                actr.clear_exp_window(window)
                actr.add_text_to_exp_window (window, prompt, x=150 , y=150)

                global response
                response = ''
                start = actr.get_time(model)

                if model:
                    actr.run_full_time(5)
                else:
                    while (actr.get_time(False) - start) < 5000:
                        actr.process_events()

                if response == associate:
                    score += 1
                    time += response_time - start
            
                actr.clear_exp_window(window)
                actr.add_text_to_exp_window (window, associate, x=150 , y=150)
                start = actr.get_time(model)
           
                if model:
                    actr.run_full_time(5)
                else:
                    while (actr.get_time(False) - start) < 5000:
                        actr.process_events()

            if score > 0:
                average_time = time / score / 1000.0
            else:
                average_time = 0

            result.append((score/size,average_time))

        return result

   

In  the  choice  files  provided,  the  function  for  running  a  person  provides  the  general  structure  for
performing a trial in this task: it opens a window, creates a monitor for recording the key press, adds the
choose prompt to the screen, clears that prompt, and then displays the feedback.  However, instead of
running a model it waits for a person to press the key and waits for 1 second of real time to pass.

Lisp

(defun choice-person ()
  (when (visible-virtuals-available?)
    (let ((window (open-exp-window "Choice Experiment" :visible t)))
      
      (add-act-r-command "choice-response" 'respond-to-key-press "Choice task key response")
      (monitor-act-r-command "output-key" "choice-response")
      
      (add-text-to-exp-window window "choose" :x 50 :y 100)
      
      (setf *response* nil)
      
      (while (null *response*)        
        (process-events))
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      (clear-exp-window window)
      
      (add-text-to-exp-window window (if (< (act-r-random 1.0) .9) "heads" "tails") :x 50 :y 100)
      
      (let ((start (get-time nil)))
        
        (while (< (- (get-time nil) start) 1000)
          (process-events)))
      
      (remove-act-r-command-monitor "output-key" "choice-response")
      (remove-act-r-command "choice-response")
      
      *response*))) 

Python

def person():
    global response

    if actr.visible_virtuals_available():
        window = actr.open_exp_window("Choice Experiment",visible=True)
    
        actr.add_command("choice-response",respond_to_key_press,"Choice task key response")
        actr.monitor_command("output-key","choice-response")

        actr.add_text_to_exp_window (window, 'choose', x=50, y=100)

        response = ''
            
        while response == '':
            actr.process_events()

        actr.clear_exp_window(window)
    
        if actr.random(1.0) < .9:
            answer = 'heads'
        else:
            answer = 'tails'

        actr.add_text_to_exp_window (window, answer, x=50, y=100)

        start = actr.get_time(False)
            
        while (actr.get_time(False) - start) < 1000:
            actr.process_events()

        actr.remove_command_monitor("output-key","choice-response")
        actr.remove_command("choice-response")
 
        return response

What you must do is write the corresponding function that has the appropriate interaction for the ACT-R
model to perform the task.  The code with a line through it is only a safety test for running a person and
should  not be  included  in  your  model  running  version.  The  code  colored  red  above  handles  the
interaction for a person doing the task, and that is not the same as what will be needed to run a model.
It should be replaced with the appropriate code for the model to interact with the task, which will be
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similar to the green code from the paired example above – the important difference is that the timing
for the paired task is not the same as the timing in this task so you will have to adjust that  appropriately.

Something else to think about is that the exact placement of the choose prompt and the feedback of
heads and tails is not specified in the description of the task.  Therefore, your model should not assume
anything about their locations i.e. your model should still be able to do the task regardless of where on
the screen the choose prompt and the feedback occur.  In the given function for running a person, the
answer is presented in the same location as the word “choose”, but your model should also be able to
perform the task if they are presented in different locations.

One final thing to note is that the paired associate task is an example of the “trial at a time” approach to
building an experiment as discussed in the unit 4 code documentation, and that is probably the easiest
way to approach this task.  However, it is also possible to write this experiment using the “event-driven”
style which was also discussed in the unit 4 code documentation.  If you want to use that approach it
will require a little more work to program because it does not analogize as neatly to one of the previous
units’ tasks.  If you would like to try to write the experiment in that way you should look at the zbrodoff
experiment from unit 4 as an example instead of the paired associate experiment.  In fact, the different
ways to write the experiment can actually have an effect on the data fitting for this model because they
will likely result in slightly different timing on the events which will affect the rewards received by the
productions.  For the paired associate task the style of the experiment was not an issue because the
lengths of the trials were fixed, but in this case, because the trials are supposed to transition when the
key press occurs, an event-driven experiment will provide a more veridical timing sequence. That is
because the screen change will happen exactly when the key press occurs, which will not be the case if
the model is run until it stops first.  However, that will be a very minor difference and since you will be
fitting the parameters in your model to the task you have written, that difference should not matter for
matching the data, and either approach is acceptable for the assignment.
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