ACT-R Environment Manual

Working Draft

Dan Bothell

Table of Contents

Table Of COMEENLS.....c.c.eeiiieiieiieeieeteee ettt e te et e e steestee s beessaesbeesseessseessnesnseenssseesnsses 2
PrETACE. .. ettt ettt ettt e et e e st e e b e e e e e e be e rte e bt e nsaeenba e reeenbeensaeenees 3
| E 10 o T L4 Lot (o) 1 ORI 4
Running the ENVIFONIMENL.......cccceiiiiiiiiieeriieeniieerieeerieessreessreessreessareessaaesssseessssaesssseesnnns 6
ENVIrONMENT OVEIVIEW...cc.ueiiiiieiiiieeeeiitteeeeitteeeeeitteeessreeeesssareeesesnreeessansnsssseeeeeeeeeesssssnnns 9
CUITENE MOAEL.....coeiieiieeieeteeee ettt te et e bt e s e e et e et e esbeesssesssaesssaessaeesnns 11
IMIOA L. ettt ettt ettt e s e st e st e e be e st e et e e s abeebaesabeennbeeeenbaeenans 13
(70111 o) KOTSRS 15
INSPECTIINIG. ...ttt ettt e sttt e e e et e e s eaabe e e s eara e e e s essraeessennraees e annnnnnrnnnes 29
TTACING. ¢t eeettee ettt ettt ettt e e ettt e e e ettt e e s ear et e s e s st e e e e s sabeeesensaeesasnnsaeeessnnsaeeeesessnnssnnnnnnns 43
HISEOTY TOOIS. ..ottt ettt et ettt e st e s e bt e e s sabeeeeeaaes 70
BOLD T00IS.....ttiiteeieeiteeieesiteeieeit ettt ettt te et e st e s te e st e s beessaessbeesatesnbeessnesbeenaaeenans 84
IMISCEIIANEOUS.......eeeevreeeiieeeiteeeite e tteeetee e et e esteeesstee e seeeessaeeessaeeanseesanssaeasssaansssessennnssnes 100
Window Positions and SiZes..........cccceeeuiirierieinienieeeeeieete ettt 105
Extending or Changing the ENVIrONMENL..........cccceevieiiiiniieniienieeiteeieeeeeee e 106
Available ENvironment EXITas.........cceceirieriiiinieniieiieeieeseeeieeste et e e e saee e 108
Standalone Environment TOOIS..........coccuiiiiiieiriiieiiiieerieeesiee e eeveeesree e s evaeeeeeeaens 113
AdVANCEA [SSUES......veieeiieeiieeeiie et eeiee e st e e ste e e ere e e seeeesteeesveeeesbeeessseeensseessseesseeesnnseees 115

Preface

This document is a work in progress to describe the operation of the ACT-R 6.0
Environment. The content is accurate, but may not cover all the components of the
Environment. It may also make reference to sections or other documents which are not
yet available. The hope is that although it is not yet complete, this working version will be

of some use to ACT-R modelers.

Introduction

The ACT-R Environment is a GUI written in Tcl/Tk which can be connected to ACT-R to
help users with running, inspecting, and debugging models. It also provides a way to
display a GUI with which a model is interacting for Lisps which don’t have such
capabilities, and for the standalone versions of ACT-R (pre-built applications which run
without needing to have a Lisp in which to run ACT-R) it also provides some basic text

editing capabilities for model files.

This document assumes the user has a basic understanding of ACT-R. [If you do not,
then you should probably start with the ACT-R tutorial.] It will focus primarily on
running the Environment in conjunction with ACT-R running in a separate Lisp
application. All of the same tools are available when running the standalone version, and
the documentation on the additional Environment tools included with the standalone

version of ACT-R is included in the Standalone Environment Tools section.

To generate the information displayed by the Environment it uses the same ACT-R
commands that are available to the user when using ACT-R from a command line. Thus,
for the most part, it does not provide anything new for working with ACT-R. However,
because it displays the command outputs in separate windows and updates those windows
as the model runs it can be a lot easier to use when debugging, and for some things, like
the buffer traces and BOLD response predictions, it displays the data graphically instead
of just textually.

Requirements
There are a few requirements necessary to run the ACT-R Environment:
- You need to have ACT-R 6.0.

- If you are using Windows or Mac OS X then you can use the pre-built

Environment application which is included with the distributions.

- If you are not using Window or Mac OS X or if you prefer not to use the pre-built
Environment application, then you will need a wish interpreter to run the
Environment from the Tcl/Tk source code which is included in all the ACT-R 6.0
distributions. It should run in any Tcl/Tk version 8.1 or newer, but 8.3.4 or newer

is recommended.

- The Lisp in which you run ACT-R must have the ability to open and communicate
via TCP/IP sockets, it must have multiprocessing capabilities, and there must be an
appropriate ACT-R interface for those Lisp capabilities. The ACT-R 6.0
distribution includes interfaces for Allegro Common Lisp, LispWorks, Clozure
Common Lisp (formerly OpenMCL), MCL, CMUCL, and SBCL. If your Lisp has
the necessary capabilities but is not one of those, it is possible to extend the ACT-
R interface to include it (see the Adding Lisp Support section under advanced

topics).

- You will need to have TCP functionality on your machine, but it’s not necessary to
have an active internet connection as long as you are going to run the Environment

and ACT-R on the same machine.

Running the Environment

This section assumes that you are loading ACT-R into a supported Lisp application. If
you are using a standalone version of ACT-R then you should consult the documentation
which came with it as to how to run that. The Environment runs as a separate application
from the Lisp in which ACT-R is running. It communicates with ACT-R via a TCP/IP
socket connection and can be run on the same machine or a different machine than the
Lisp running ACT-R. It is also possible to have more than one Environment connected to
the same ACT-R session. In this section the assumption will be that there is one
Environment connection occurring on the same machine which is running the Lisp with
ACT-R. For details on other situations (remote connections and multiple concurrent

Environments) see the advanced sections.

Here are the standard steps to follow to run ACT-R with the Environment on all systems

(there is a shorter alternative for some Lisp and OS combinations covered later):

1. The first thing to do is load ACT-R 6.0 into your Lisp application (see the ACT-R

reference manual for details).
2. Start the Environment application.

a. If you are using one of the pre-built applications (“Start Environment.exe”
on Windows or “Start Environment OSX” on Macs) run it like you would
any other application. Note: if you are using Mac OS 10.8 and get an error
dialog indicating that the file is "damaged and can't be opened" the issue is
probably due to permissions. Open your System Preferences and under
"Security & Privacy" set the "Allow applications downloaded from:" to
Anywhere, and then try running it again. If it successfully runs, then you

can change your preferences back to a safer setting.

b. If you are using Linux/Unix or do not want to use the prebuilt applications
then you can run the Environment from the source files. To do so you

must have Tcl/Tk installed. Then, all you need to do is either execute the

starter.tcl script found in the environment/GUI directory or you can use

wish (the Tcl/Tk interpreter) to run it i.e. "wish starter.tcl".

3. Once the Environment is running you should have seen a “Powered by ONR”
splash screen briefly and then have a window titled “Control Panel” open which

says “Waiting for ACT-R” at the top.

4. To connect ACT-R to the Environment you need to call the start-environment

function in Lisp.

5. That should result in another splash screen opening briefly to show the ACT-R
version information and then the “Waiting for ACT-R” message should be
removed from the “Control Panel” window and several buttons should appear

there instead.

Once the buttons appear the Environment is ready to use. When you are done using the
Environment you should close the connection from the Lisp by calling the stop-
environment function. That should put the “Control Panel” back into the waiting state.
At that point you can close the Environment application if you want, or you can leave it
running to connect to again when you need it. You should only close the Environment

application (the “Control Panel” window) when it is in the waiting state.

If you are using LispWorks or Allegro Common Lisp under either Mac OS X or Windows
or are using Clozure Common Lisp under Mac OS X, Windows, or Linux, then you may
be able to replace steps 2-4 listed above with a single step. After loading ACT-R 6.0 you
can call the function run-environment instead of the start-environment function. That
should automatically run the appropriate Environment application and then initiate the
connection between ACT-R and the Environment, but run-environment may not work on
all machines for a variety of reasons. If the Environment application does not start, then
you should use the standard instructions described above. If the Environment application
is slow to start and there is an “Unable to connect” message displayed in the Lisp you can
ignore those and wait for it to try again. If that happens regularly and you want to avoid

the “unable to connect” warnings, then you can increase the delay before ACT-R attempts

to connect to the Environment. The delay can be provided as an optional parameter to
run-environment indicating how many seconds to wait before connecting. The default
delay is 5 seconds. A longer delay may be necessary in some cases, and on some machines

a shorter delay will work just fine.

Environment Overview

Once it is connected the Control Panel should look similar to the image below. The

appearance may vary based on which operating system you are using, but all of the same
components should be available.

£ Control... o= e S|
L

Current Model ~ *
| No Current Model —|

Model
Load Model

Control

Resetl Reluﬂ

Stepper

Inspecting

Declarative viewer

Procedural viewer

Buffer viewer

Buffer Status viewer |

Visicon
Audicon

Parameters |

Tracing

Haoriz. Buffer Trace |

Vert. Buffer Trace

Production Graph

History
Production History

Retrieval History

Buffer History

BOLD tools
Buffer graphs

2D brain

an hrain |j

The Control Panel consists primarily of buttons which open the tools that it provides.
Those buttons are grouped into sections based on their functions. Each section of the
Control Panel and its buttons will be described below. Note that there is a scroll bar on
the right of the control panel and some of the buttons may not be visible without scrolling

the window or making it larger.

One thing to note about the Environment is that it was originally designed to work with a
single ACT-R model at a time. It has recently been extended to allow all of the tools to
work when there are multiple models currently defined within the default meta-process (it
still does not work with multiple meta-processes). Details on using the Environment with
multiple models can be found in the Current Model section below. That change to allow
support for multiple models is still a work in progress, so if you encounter any problems
with the Environment, either with a single model or multiple models, please contact Dan
(db30@andrew.cmu.edu) with details.

10

mailto:db30@andrew.cmu.edu

Current Model

The Current Model section has only one item which is a button that serves two purposes.
The text shown on the button displays the name of a currently defined model or the text
“No Current Model” if there is no model currently defined. By default, the Environment
assumes that there will only be one model defined at a time. In the single model mode the
inspecting tools will always work with the currently defined model, if there is one. Thus,
if a different model is loaded to replace the current one the open inspector windows will

then begin working with that new current model.

Multiple Models

It is possible to use the environment with multiple simultaneously defined models. To
enable that, the “Allow the environment to work with multiple models” option needs to be
set (see the Options section). When there are multiple models simultaneously defined the
button will still show the name of a single model. With multiple model support enabled,
when an environment tool is opened it will always be associated with the model that was

current when it was initialized and that model name will be shown in the title of the tool.

To change which model is current, press the button which shows the current model. That
will bring up a menu with all of the currently available models in it. That would look like

this if there were three models named count, addition, and semantic defined:

=T

count
semantic
v additian

The one with the checkmark next to the name is the one currently being used, and clicking

on one of the other names will switch that model to the current one in the Environment.

Because the inspector tools are associated with specific models when there are multiple

models defined those tools will become unusable if a model is no longer available and

11

trying to use one may result in warnings or problems within the Lisp running ACT-R.
There is an options setting which will cause the inspector tools for models which are no
longer available to be closed automatically, but that is not always desirable for a couple of
reasons and by default the option is disabled. Probably the strongest reason for not
enabling the switch is that when clear-all gets called it deletes all the current models which
means loading a model file which contains a clear-all will result in closing all the inspector
windows. The Reload button in the environment is sensitive to that and if that button is
used to reload a model it will not close the inspector windows if the option is enabled, but

any other reloading of the model file will e.g. calling the reload function from Lisp.

12

Model

The model section contains controls for working with model files. When using the
Environment with a Lisp running ACT-R it will have only one button which is described in
the next section. The standalone version of the environment has some additional buttons
which provide access to a simple text editor. Details on those buttons can be found in the

Standalone Environment Tools section later in the manual.

Load Model

The “Load Model” button can be used to load a model file into Lisp. This button will
open a file selection dialog and the file which is chosen will be loaded into the Lisp
running ACT-R.

If the compile definitions option of the Environment (described under options in the

miscellaneous section) is enabled, then that file will be compiled and loaded.

After loading the file a dialog window will be opened to show any output, warnings, or
errors which occurred during the load. If the load completed successfully then it will say

“Successful Load” at the top of the dialog like this:

_lojx

Successful Load: =
; loading e:htutorialbunitlhcount. lisp
model relosded

=

o |

If there is a problem it will indicate that by saying “Error Loading” at the top like this:

13

_lojx

Error Loading: =
; loading c:dtutorialbunitlibad count.lisp

error reloading model

error:eocf encountered on stream

#<file-simple-stream #p"c:hhtubtorialZbunitliibad count.lisp”

clo=zed q HuizZZochaar
Ok |

In either case, the “Ok” button on the resulting dialog should be pressed to close the

=

dialog before doing anything further with the Environment.

This button will only work if the Environment is running on the same machine as the Lisp
running ACT-R. Also, if the Lisp you are using has a menu or other easy to use
mechanism for loading and compiling files then you should use that instead of this button
because that is likely to provide much better handling of errors or other unusual

circumstances.

14

Control

The control section contains buttons for stepping through the trace of running models and

for restoring them to initial conditions.
Reset

The “Reset” button is used to return models to their initial state. Pressing the “Reset”

button is equivalent to calling the ACT-R reset command.
Reload

The “Reload” button is used to load the last model file which was loaded into the Lisp
again (a model file is defined as a file which calls the ACT-R clear-all command at the top-
level in the file). Pressing the “Reload” button is equivalent to calling the ACT-R reload
command. The “Reload” button will not function if ACT-R is currently running or if the

stepper tool is open and it will open a dialog to indicate that if it happens:

=101.x]

Error Reloading:
cantnot reload a wodel that is running or if the stepper is open.

o |

That dialog should be closed by pressing the “Ok” button before continuing with any of

[

the other tools.

Stepper

The “Stepper” button is perhaps the most useful tool in the Environment. When it is
pressed it will open the stepper if it is not already open. If it is open, then pressing this
button will bring it to the front — there can be only one stepper open in the Environment

even if there are multiple models defined. The stepper is used to “step” ACT-R through

15

its execution one event at a time.

The stepper looks like this when you first open it:

Il x|

Step | St | Fum Until:l Time —'|| [T Tutor Mode

Mext Frent:

. N

w

Al

Y

Kl
1

-,

Fs

L

[[

To use the stepper you should have it open before you start the model running. If you try
to open it while the model is currently running it will display a dialog like this indicating

that it is unavailable:

16

x

L.
\!}) You cannok open the stepper while the model is running or there is already a stepper open.

Thus, the proper way to use it is to open the stepper and then call the appropriate function
to run the model from Lisp. If you close the stepper while the model is running the model

will continue to run to its natural completion from that point.

When the stepper is open it will pause ACT-R before every event that will be printed in
the trace. The event which is about to occur will be displayed in the stepper after the
“Next Event:” heading, and for some events, additional information will be displayed in
the windows below that. ACT-R is suspended at that point and the modeler may use any
of the Environment’s inspection tools at that time to investigate the currently defined
models. The model will execute the displayed event once the user either presses one of
the buttons along the top of the stepper or closes the stepper. The details of what the
buttons do and the additional information available for some events will be described

below.

Note that when the stepper is initially opened the three buttons which will advance the

system are disabled. They only become enabled and useable while ACT-R is running.

Step

The “Step” button allows the system to continue operation. It will execute the “Next
Event” which is displayed and continue to run to the next event which will be handled by
the stepper, if there is one. This is the button that is most often used with the stepper — it

“steps” the system through its operation one event at a time.

17

Stop

The “Stop” button will stop the current run after it executes the event displayed. There
are two important things to note about the “Stop” button. First is to emphasize that the
“Next Event” shown will be executed by the model when the button is pressed — there’s
no clean way to prevent an event from occurring once it has been stepped to. The other is
that it only stops the current run. If the system is being run from Lisp code which contains
multiple calls to one of the ACT-R running functions then the system may continue to be
run by the next call from that code after the “Stop” button is pressed i.e. the stepper’s
“Stop” button does not affect the Lisp code which may be providing an experiment or

other interface for the model or models.

Run Until

The “Run Until:” button works in conjunction with the two interface items to its right
which are a selection menu and a text entry box. Pressing the “Run Until:” button will
execute the “Next Event” and allow the model to run without being paused by the stepper
until the condition specified by the combination in the selection menu and text entry box

occurs.

There are three options for the selection menu: time, production, and module. That
choice determines what should be entered into the text entry box. If an invalid value is
entered into the text entry box when “Run Until:” is pressed then a warning will be printed
in the trace indicating the issue and the system will be paused at the next available event as
if the “Step” button had been pressed. Here are the details for specifying each of the

options for “Run Until”.

Time

When “Time” is selected the text entry box should have a number entered into it which
represents the ACT-R time when the stepper should next pause the system. If that time
has already passed then the model will pause on the next event as usual. If there is no

event at that specific time, then the system will be paused at the first event after that time.

18

Production

When “Production” is selected the text entry box should have the name of a production
entered into it. The system will then be allowed to run until the next time that named
production is either selected or fired. If there are multiple models defined then the system

will step until the next time any of those models selects or fires a production of that name.

Module

When “Module” is selected the text entry box should have the name of a module entered
into it. The system will then be allowed to run until the next event which is generated by
that named module. As with the production option, if there are multiple models defined
then it will step to the first event generated by the specified module regardless of which

model generated that event.

There are two things to be careful of with the module option. The first is that the
module’s actual name is required. Some modules have the same name as their buffer, like
goal and imaginal, but others do not, for example the module which controls the manual
buffer is named :motor. That brings up the other issue. Some modules use a keyword for
a name, but the prefixed colon doesn’t actually show up in the trace when printing the
module’s name — the :motor module’s events just shows “motor” in the trace. To see the

list of all the modules’ true names you can use the ACT-R all-module-names command.

Additional Information

The bottom portion of the stepper will currently show detailed information for three
specific events within a model: the declarative module’s retrieved-chunk, the procedural
module’s production-selected, and the procedural module’s production-fired. For all

other events the lower portion of the window will be blank.

Retrieved-chunk

When a retrieved-chunk event occurs the stepper will fill in the lower boxes like this

(taken from a run of the fan model from unit 5 of the tutorial):

19

=

Stenp | Stap | Run Until:l Time —|| ™ Tutor Mods
Next Fvent: 1.094 DECLARATIVE RETRIEVED-CHUNE FP1

Possible Chunl:s Retrieval Request
pj I3A COMPREHEND-SZENTENCE
}ﬂ ARG1 HIPPIE
Chunlk
ElPl =
I3A COMPREEHEND-SENTENCE
Chunk Parameters BELATION 1IN

Declarative parameters for c = ARzl HIPFIE
hunk P1: ARGZ PARK

rAotivation 0.214

:Permanent-Noise 0.000

:Base-Lewvel 0.000

tSource—Spread 0.214

:33is ((P1 . 1.8} (IN . -1.
0390574y (HIPPIE . 0.2137056
GB) [PARE . 0.213705&6))

:Last-Retrieval-Activation

0.214

:Last-Retrieval-Time 0.585

The upper-right pane, labeled “Retrieval Request”, shows the request which was made to

the declarative module for which this chunk was retrieved.

The upper-left pane, labeled “Possible Chunks”, shows the list of chunks which matched

the request. They are ordered based on their activations with the highest activation, and

thus the chunk which is retrieved, at the top. Selecting a chunk in this list will cause the

lower two panes to be filled with the information appropriate for that chunk.

The lower-right pane, labeled “Chunk”, displays the standard ACT-R printout of the

selected chunk. The lower-left pane, labeled “Chunk Parameters”, will be empty unless

20

the subsymbolic computations are enabled for the model. If they are enabled, then that
pane will display the declarative memory parameters for the selected chunk as reported by

the sdp command.

Production-selection

When a production-selection event occurs and the “Tutor Mode” box is not checked (see
below for details when it is) the stepper will look like this (taken from a run of the building

sticks task in unit 7):

21

Stepper Y [m]
Step | Stap | Run Until:l Time || ™ Tutor Mode
MNext Fvent: 74.590 PREOCEDTRAT PEODUCTION-SELECTEDL DECIDE-UNDEER

Possible Productions Bindings
decide-under A =IMAGINAL : ENCODING9-0 =
force-over =iz0AT : TRY¥-STRATEGYE-0
force-under SUVER 2 121
=UUNDEER 1 B
~
Production
(P DECIDE-UNDER B
- =GOAL
Production Parameters I3h TRY-3TRATEGY
- . S3TATE CHOOIE-S3TEATEGY
Parameters for production = STRATECT WIL
DECIDE-UNDER: = IMAGINAL>
rukility 15,692 154 ENCODING
o 13.613 OVER =OVER
rat 0.050 UNDER. =UNDER
rreward NIL IEVAL! (< =UNDER (- =0OVER 25))
=IMAGINAT >
=GE0AT >
S3TATE PREPARE-MOUIE
STRATEGY UNDER
HISUAL-LOCATION
IS3A VISUAL-LOCATION
EIND OVAT
ICREEN-T 85 —
ek hd

The upper-left pane, labeled “Possible Productions”, shows the list of productions which
matched the current state during the last conflict-resolution event. They are ordered based
on their utilities with the highest utility, and thus the production which was selected, at the
top. Selecting a production in this list will cause the other panes to be filled with the

information appropriate for that production.

22

The lower-right pane, labeled “Production”, displays the text of the production. The
lower-left pane, labeled “Production Parameters”, will be empty unless the subsymbolic
computations are enabled for the model. If they are enabled, then that pane will display

the procedural parameters for the selected chunk as reported by the spp command.

The upper-right pane, labeled “Bindings”, shows all of the variables used in the production

and the value that they have while matching the current state.

Production-fired

When a production-fired event occurs the stepper will look like this (which is the

production firing that follows the production selection shown above):

23

Stepper Y [m]
Step | Stap | Run Until:l Time || ™ Tutor Mode
MNext Fvent: 74. 640 PREOCEDTRAT PEODUCTION-FIEED DECIDE-TUNDEER
Production Bindings
decide-under A =IMAGINAL : ENCODING9-0 -
=F0AT : TRY-3TRATEGYE-0O
=JVEER 121
=UUNDEER 1 B
EI
Production
{F DECIDE-UNDER -
- =GE0AT >
Production Parameters I3h TRY-3TRATEGY
- . S3TATE CHOOIE-S3TEATEGY
Parameters for production = STRATECT WIL
DECIDE-UNDER: = IMAGINAL>
rukility 15,692 154 ENCODING
o 13.613 OVER 121
rat 0.050 TNDER 65
rreward NIL IEVAL! (< 65 (- 121 25))
=IMAGINAT >
=GE0AT >
S3TATE PREPARE-MOUIE
STRATEGY UNDER
HISUAL-LOCATION
IS3A VISUAL-LOCATION
EIND OVAT
ICREEN-T 85 —
ek hd

The displays are similar to those for the production-selected event. Now however, only
the production which fired is listed in the upper-left pane. The “Bindings” and “Production
Parameters” panes display the same information for that production which they did for the
production-selected event. The information in the lower-right pane differs in that now it

shows the instantiation of the production instead of the production text. The production’s

24

instantiation displays the production text with the wvariables replaced with their

corresponding bindings.

Tutor Mode

The “Tutor Mode” check box is for use with the models in unit 1 of the ACT-R tutorial.

When the box is checked the stepper requires additional interaction from the user to

continue past a production-selected event. Instead of displaying the production and its
bindings for such an event the production is displayed with all of its variables highlighted
and the bindings unset like this (from the count model in unit 1 of the tutorial):

Stepper

Step | Stap | Fun Until:l

Time —! || v Tutor Maode
Next Event: 0,000 PROCEDURAT PRODTCTION-SELECTED START
Possible Productions Bindings
N <[>+ (o
=NTm1 {hinding}
Production
x| (P START

Production Parameters

=10l x|

|

START:

rukility 0.000
i 0.oo00

rat 0.030

Parameters for production =

I34a COUNT-FROM
START okl
COUNT NIL

COUNT
+RETRIEVAL>

I3a COUNT-ORDER

FIRST Fipnuchl

NUM1

[¥

25

The user is then required to click on each of the highlighted variables and enter the
appropriate binding. When one of the variables in the “Production” pane is clicked a new

dialog opens in which the binding should be entered:

o

What is the hinding for =GOAL?

Hint | Help |

If the correct value is given then the “Tutor Response” dialog will close and it will replace

the variable in the display and the value will be shown under the bindings:

26

_Ioix]
Step | Stop | Run Until:l Time | ¥ Tutor Mode
Next Event: 0.000 PROCEDTTRAT PRODUCTION-SELECTED START
Possible Productions Bindings
start Al=E0AT, : FIRST-GOAL-0 1=
=NUM1 : {hinding}
Production
~| (P START =
Production Parameters first-goal-0>
£ 4 - - I3A COUNT-FRCOM
Parameters tor production = =TAnT Banil
START: COUNT NIL
rutility 0.000
u 0.oo00
rat 0.050 COUNT IuCH
+RETREIEVAT >
I3A COUNT-ORDER
FIRST ikl
!

If an incorrect answer is given then it will indicate that the entry is incorrect and wait for

another value to be entered:

_lox

What is the binding for =GOAL?

Incorrect.
goal is not the binding for =GOAL in this instantiation.

Hint | Help |

27

The two buttons at the bottom of the “Tutor Response” dialog will provide additional

information to help the user get the correct answer.
Hint

Hitting the “Hint” button will display a suggestion in the “Tutor Response” dialog
indicating which other tool in the Environment may be used to help find the correct

danswer:

o

What is the hinding for =GOAL?
I

Use the buffer viewer to determine the chunl: in the GOAL buffer.

Hint | Help |

Help

Hitting the “Help” button will print the correct answer in the “Tutor Response” dialog:

_inix

What is the hinding for =GOAL?
I

The binding of =GOAL is first-goal-0

Hint | Help |

28

Inspecting

The inspecting section of the Control Panel contains buttons for viewing detailed
information about particular components of the model(s). The inspection buttons can be
useful in conjunction with the stepper to view the current state of things before and after a

particular event occurs.

The contents of the windows opened by the inspection tools are automatically updated as
the system runs. However, if the system is running at “full speed” i.e. not in real time and
without the stepper open, then the windows may not be able to refresh fast enough and
the contents could lag behind the running system. Even in real time mode, if there are a

lot of inspection windows open they may start to fall behind the current model state.

Declarative Viewer

The declarative viewer allows the user to inspect the chunks in a model’s declarative
memory. Pressing the “Declarative viewer” button opens a new declarative window for
inspecting the declarative memory of the currently selected model and any number of such
windows may be open at the same time. This is what a declarative viewer will look like

(from the count model in unit 1 of the tutorial):

29

Why not? | Filter: I ™ Cutrent types only

The list on the left shows all the chunks in declarative memory by default (see filter below
for how to change that). Selecting one of those chunks will then cause the details of that

chunk to be displayed in the window on the right:

Why not? | Filter: I none ™ Current types only

Declarative parameters for chunk F: #
:hctivation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000

F

I5a4 COUNT-CEDER
FIRST 3
SECOND &

The chunk will be printed in the window, and if the subsymbolic computations are enabled

then the window will also show the chunk’s parameters as reported by sdp at the top.

30

Filter

At the top of the window is a filter which allows one to restrict the display to only chunks
of a particular chunk-type. The default of “none” means that all chunks in declarative
memory will be displayed. To change the filter, click on the box containing the current
chunk-type used as the filter, and then select the chunk-type which you would like to be
displayed from all the available chunk-types listed in the selection box below the current

filter setting:

Why not? |Fill:E:r: [T Current types only

one i:ers for chunk F: #
abstract-letter |

=l
abstract-nmnher 0.000
abstract-object

nogign finst

=

ISha COUNT-ORDER
FIRST 35
SECCND 6

After selecting the “count-from” chunk-type only chunks of that type are displayed, which

in this case is only the chunk first-goal:

31

Why not? | Filter: | count-from [Current types only

first-goal

If the box labeled “Current types only” is clicked then the list of chunk-types displayed for
filtering will only include the chunk-types of chunks currently in declarative memory

instead of all possible chunk-types.

Why not?

The “Why not?” button at the top of the declarative window can be used to get
information about whether a chunk was retrieved or not during the last retrieval request
the model made. Pressing the “Why not?” button will open another window and display
the results of calling the ACT-R whynot-dm command for the currently selected chunk in

the declarative viewer.

The Whynot window will display the last retrieval request the declarative memory module
received and then display the details of the selected chunk and indicate whether or not it
matched that request. Here is a Whynot display for the chunk b .1 seconds into the run

(after the model makes its first retrieval request):

32

Eetrieval request made at time 0.05:
I54 COUNT-CEDER
FIEST 2

B
IS4 COUNT-CELDER
FIRST 1
SECCHND 2

Declarative parameters for chunk B:
rhctivation 0.000
:Permanent-Hoise ©0.000
:Base-Level 0.000

B did not match the regquest

Here is a Whynot window showing results for the chunk c:

33

Eetrieval request made at time 0.05:
I54 COUNT-CEDER
FIEST 2

IS4 COUNT-CELDER
FIRST 2
SECCHND 3

Declarative parameters for chunk C:
rhctivation 0.000
:Permanent-Hoise ©0.000
:Base-Level 0.000
:Last-Retrieval-Activation 0.000
:Last-Retrieval-Time 0.030

matched the regquest
was the chunk chosen to be retrieved

Procedural Viewer

The procedural viewer allows the user to inspect the productions in the model’s
procedural memory. Pressing the “Procedural viewer” button opens a new procedural
window for inspecting the productions of the currently selected model and any number of
such windows may be open at the same time. This is what a procedural viewer will look

like (from the count model in unit 1 of the tutorial):

34

procedurall {count)

_|O] x|
Why not? I
start - ;'
ircrernent
stop
= =

The list on the left contains all of the productions in the model. Selecting one of those

productions will cause the details of that production to be displayed in the window on the
right:

35

.procedurall {count) =10l x|
Why not? I

Parameters for production 3ITART: =

increment sutility NIL

stop tu 0. aoo
:at 0.050

[P START
=GOAL>
ISA COUNT-FRCM
START =NUM1
COUNT NIL

=GE0AT
COUNT =NUM1
+RETRIEVAT
I3ha COUNT-ORDER
FIRAT =NUM1 |

= ~|

The production’s text will be printed in the window, and if the subsymbolic computations
are enabled then the production’s parameters from spp are displayed at the top of the

window.
Why not?

The “Why not?” button at the top of the procedural window is an important debugging
aid. Pressing the “Why not?” button will open another window and display the results of
calling the ACT-R whynot command for the currently selected production in the

procedural viewer along with some other relevant information.

The Whynot window will display the time at which the whynot was generated and whether
or not the LHS of that production currently matches. If it does match, that will be
followed by the instantiation of the production. If it does not match, then it will print the

text of the production and indicate the first condition which did not successfully match.

Here is a Whynot display for the start production in the count model at the beginning of

36

the run when it matches:

Whynot start in model counkt O] x|

Time: 0.0 ;I

Production START matches:
[P START
=iE0AL
IZA COUNT-FROM
START &
COUNT NIL
==
=iz0AT >
COUNT 2
+RETRIEVAT >
IZA COUNT-ORDER
FIRIT 2

=

Here is a Whynot window showing the increment production at that same time which does

not match:

37

Whynot increment in model counk -0 x|

Time: 0.0 :J

Production INCREMENT does NOT match.
[P INCREMENT
=iE0AL
IZA COUNT-FROM
COUNT =NUM1
- END =HNUmM1
=RETRIEVAL>
I3A COUNT-ORDER
FIRIT =NTmM1
SECOND =NTIMZ

=iz0AL
COUNT =NUMZ
+RETRIEVAL>
I3A COUNT-ORDER
FIRIT =NTIMZ
IOUTEUT! (=NTIM1)
!
It fails because:
The COUNT slot of the chunk in the &0AL buffer is
empty.

[

Buffer Viewer

The buffer viewer allows the user to inspect the chunks in the currently selected model’s
buffers. Pressing the “Buffer viewer” button opens a new buffer window for inspecting
the buffer chunks and any number of such windows may be open at the same time. This is

what a buffer viewer will look like:

38

=0 |
retrieval N =
irriaginal
triatmal

goal
itnagitial-action
wocal

aural
production
wrisual-location
aural-location
temporal

mrignal

[[

The list on the left shows the names of all the buffers in the model. Selecting a buffer
from that list will cause the title of the window to change to show the buffer being
displayed and to show the contents of that buffer in the window on the right. If the buffer
is empty then it will print that:

imadginal Buffer viewer (counkt) - |EI|5|

etrieval “|Buffer i= Empty -l

triatmal

goal
itnagitial-action
rocal

aural
production
risual-location
aural-location
termporal

rignal

| !

If there is a chunk in the buffer, then that chunk will be displayed using the buffer-chunk

command (this is from the count model in unit 1 of the tutorial):

39

RI=TES
retrieval “leoan: FIRST-coAT-O [FIRST-GOAT] ~l
irnagital FIRST-GOAL-0

rriatnal I2A COUNT-FROM

START 2

itnagitial-action END 4

vocal COUNT NIL

aural

production

risual-location

aural-location

termporal

risual B _|

Buffer Status viewer

The buffer status viewer allows the user to inspect the results of the queries which can be
made through the currently selected model’s buffers. Pressing the “Buffer Status viewer”
button opens a new buffer status window for inspecting the buffer queries and any number
of such windows may be open at the same time. This is what a buffer status viewer will
look like:

=TS
retrieval N =
imaginal
rraral

zoal
irnaginal-action
wrocal

aural
production
wisual-locatiog
aural-location
ternporal

wrisual

[/ [~

The list on the left of the window shows the names of all of the buffers in the model.

Selecting a buffer from that list will cause the title of the window to change to show the

40

buffer status being displayed and then show the results of the buffer-status command for
that buffer on the right:

Lo
[= TRIEVAL: =
irnaginal buffer empty : T
rmaral buffer full : NIL
goal buffer requested : NIL
irnaginal-action buffer unrequested : NIL
rocal state free : T
autral state busy : NIL
production state error : NIL
risual-location recently-retrieved nil: NIL
aural-location recently-retrieved £t @ NIL
temporal
risual

- -

The buffer-status command shows the queries available for the buffer along with whether

or not that query is currently true (t) or false (nil).

Visicon

Pressing the “Visicon” button will open a window showing the information currently
available to the currently selected model’s vision module. Only one such window will
exist in the environment for each available model. If a visicon window is already open for
the current model, then pressing the button will bring that window to the front. The
visicon window displays the information returned by the print-visicon command and here

is an example using the sperling model from unit3 of the tutorial:

41

o
Loc ALt Eind Walue Zolor ID 1=
[B0 111} HER TEET ot ELACE VISUAL-LOCATIONO

[a0 1el; HEW TEET Tt ELACEK VISTAL-LOCATION]L

[a0 211y HEW TEET Tt ELACEK VISTAL-LOCATIONZ

(130 111 HER TEET n' ELACE VISUAL-LOCATIONS

(130 161} HER TEET et ELACE VISUAL-LOCATIONG

(130 211) HER TEET "j" ELACE VISTAL-LOCATIONS

(1a0 111y HEW TEET b L ELACEK VISTAL-LOCATIONGE

(130 1gl) NEW TEXT Tl BLACK VISTAL-LOCATIONT

(180 Z11) HER TEET =0 ELACE VISUAL-LOCATIONS

230 111) HER TEET et ELACE VISTAL-LOCATIONS

(230 1ely HEW TEET b 4 ELACEK VISTAL-LOCATIONLO

[230 211y HEW TEET e ELACEK VISTAL-LOCATIONLL :]

Audicon

Pressing the “Audicon” button will open a window showing the information currently
available to the currently selected model’s audio module. Only one such window will exist
in the environment for each available model. If an audicon window is already open for the
current model, then pressing the button will bring that window to the front. The audicon
window displays the information returned by the print-audicon command and here is an

example using the sperling model from unit3 of the tutorial:

Audicon (sperling) 10l x|
=
Found event Att Detectable EKind Content location onset offget Sound ID
AUDIO-EVENTO NIL NIL TONE 1000 EXTERNAL 0.150 0.650 TONED
E

42

Tracing

The tracing tools provide a graphic representation of a model’s operation. The first two
tools in this section work similarly and will be described in the Graphic Trace section
below. The other tool provides a different view focused on the sequence of productions

which fired and is described in the Production Graph section.

Graphic Trace

The graphic trace is similar to the buffer trace which can be displayed when a model runs
instead of the default event based trace. Other than the orientation of the display, both

tracing tools work the same and will be described together.

Pressing the “Horiz. Buffer Trace” button will open a new “Horizontal Graphic Trace”
window for the currently selected model and pressing the “Vert. Buffer Trace” button will
open a new “Vertical Graphic Trace” window for the currently selected model. Any
number of either type of window may be open at any time. When opened, the window
will look like this:

43

Horizontal Graphic Trace {sperling) — |E||i|

A | o

Notes:

Gettrace | Redisplay |Remove Text| Save1P | Savemuni | Savedata | Readoata |

+ = Range: | to |

There will be no information displayed in the window until the model is run and the

information is requested as described below.

To use the tracing tools you must either set the parameter :save-buffer-trace to t in the
model or open a trace tool window prior to running the model. After the model has been
run, the graphic trace can be displayed by pressing the “Get trace” button in the tracing
window. Here are the horizontal and vertical traces from running the count model from

unit 1 of the tutorial;

44

Horizontal Graphic Trace {count} — |E||i|

imaginal
manual

goal

first-goal

imaginal-action

wocal

increme increme

aural-location

temporal
0.000 0.050 0.100 0.150 ©0.200 0.250 0.300
K I
Notes:
Gettrace | Redisplay |Remove Text| Save1P | Savemuni | Savedata | Readoata |
Done
+ = Range:| t0|
¥Yertical Graphic Trace {count) - | Ellil
retrieval imaginal manual goal imaginal-a wvooal production
0000 Tivstgoal 2
0.030
0.100
0.

Il
Notes:

Get Trace | Redisplay |[Remove Te>c| Save 1P Save ru1ulti.| Save data | Read data |

Done

+ = Range:| to|

45

For a longer trace it may take some time for the display to be fully drawn. While the
display is being drawn the word “Busy” will be shown in the lower left corner of the
window, and it will display the word “Done” in the lower left corner (as seen above) once
it finishes drawing the trace. None of the other controls should be used until the drawing

is complete.

The “+” and “-” buttons at the bottom of the window can be used to zoom in or out on
the trace. Pressing the “+” button for that display will zoom in and result in this display

which better shows the information in the boxes:

Horizontal Graphic Trace {count} 10| x|
imaginal
manual
1
Eh first-goal

imaginal-action

wocal

pdeUCtiDn - - _

aural-location

temporal

0. o0 0. 050 n.100 n.150 n.200 0. 250 n.3o0n
o i
Notes=:
Gettrace | Redisplay |Remove Text| Save1p | Savemuti | Savedata | Read data |
Done
+ = Range:| t0|

Each row of the horizontal trace or column of the vertical trace corresponds to one of the
buffers in the model. The time runs along the bottom of the horizontal trace and along the
left edge of the vertical trace. Boxes in a row or column indicate a time period during
which that particular buffer reports that its module was busy, and typically represents the
module’s processing of a request. The text in the box shows two things. Generally, the
text at the top of the box represents the chunk-type of a request that was made to the

buffer, if there was one, and the text at the bottom shows the name of the chunk which

46

was placed into the box as a result of that request.

There are a couple of exceptions however in the text displayed. The first is for the buffer
named “production” in the trace. That does not represent a “real” buffer in the model and
instead represents when the procedural module fires productions. The text in those boxes
is for the name of the production which was selected and fired during that time. Another
exception occurs in the vertical trace when an action takes no time i.e. the box is only a
line. In that case only the lower line (the chunk name) is displayed. [Note that for the
event at time O in the goal buffer on the horizontal trace shown above there also isn’t a top
line of text. In that case however, it is because the chunk was not created by a module

request since it was set directly with the goal-focus command.]

If the trace is larger than the window the scroll bar along the edge of the trace can be used
to scroll the display, or the “Range:” boxes at the bottom of the window can be used to
restrict the trace to a particular segment of the run. To restrict the display to a particular
range of the trace times must be entered into both of the boxes. The times are measured
in seconds and the first box must have a time less than the time entered into the second

box. Then the “Redisplay” button must be pressed to have the trace redrawn.

Here is part of the sperling model from unit 3 scrolled to the time of the first retrieval:

47

Horizontal Graphic Trace (sperling) - IEllﬂ

text text
text0-0 textd-0

retrieval

imaginal

report-row

goal report-rowil
imaginal-action
wvocal
n
nl-0
aural-location
temporal
move-attention
1.000 1.050 1.100 1.150 1.200
A | i
Hotes:

Gettrace | Redisplay |Semove Texi Save 1P | Save Multi.l Save data | Read data |

Done
+ - Range:| tnl

Below is that same trace restricted to the range of 1.0 seconds to 1.25 seconds:

48

Horizontal Graphic Trace (sperling) - IEllﬂ

text text
texto-0 textd-0

retrieval

imaginal

report-row
1
Els report -rowl

imaginal-action

wvocal

aural-location

temporal
move-attention
1.000 1.050 1.100 1.150 1.200 1.250
Kl I
Hotes:

Gettrace | Redisplay |Semove Texi Save 1P | Save Multi.l Save data | Read data |

Done

+ = RangeJl.d tn|1.25

Placing the mouse cursor over a box in the trace will cause some additional details to be
shown in the bottom of the display. In the lower left corner it will show the length of the
box in seconds followed by the start and stop times. Also, along the line which starts with
“Notes:” it will display some additional information. By default, that will be the name of
the chunk (the lower line of the box) if there is one available and the request/production
(the top line of the box) if not, but it is also possible to add some code to the model to

override the default notes with something else. How to do that is described below. Here

is a section of the trace from the sperling task with the mouse positioned over the box in

the aural buffer column:

49

¥Yertical Graphic Trace {(sperling) - | Ellil
retrieval imaginal manual goal imaginal-a wocal production

iun:]

D.4350

n_ann

HNotes: toned

GetTrace | Redisplay |[Remove Te>c| Save 1P | Save hulti. | Save data | Read data |

0.285: 0.285 - 0.570

+ = Range:| to|

Sometimes, it’s not important to see the text details in the boxes of the trace, for example
when zooming out on a large trace to get a more general view for what is happening in the
model. In cases like that hitting the “Remove Text” button will clear the text and show
only the boxes. Here is a trace of a run of the zbrodoff model from unit 4 of the tutorial

zoomed out to see a couple of trials of the task with the text removed:

50

Horizontal Graphic Trace (zbrodoff) - IEllﬂ

manual
goal

imaginal-action

I”IIIIII’”IIIIIII’”IIIIIIIIIII’”I

aural-location

temporal HH H HHH” HHH” HHHH
Hotes: Eiﬂi““"m““m"“I"““““m“"m““““Immm""“I“"I“m“““m“m""'""""""'""'"“'""'''"'“""'I"lmmlmuunuuuil..l

Gettrace | Redisplay |Semove Texi Save 1P | Save Multi.l Save data | Read data |

Done

+ - Range:| tn|

Hitting the “Redisplay” button will redraw the window and restore the text if desired.

Saving Graphic Traces

The remaining four buttons on the graphic trace window are for use in saving or restoring

the data from a trace.
Save 1P

The “Save 1P” button can be used to save an image of the graphic trace as an
Encapsulated PostScript file. Pressing that button will bring up a file creation dialog in
which you must provide the name for the file in which to save the data. The image will be
saved as a single page graphic which contains the whole trace, or the currently displayed

range if one is specified. Encapsulated PostScript files can be imported in many

51

applications which are used for word processing and generating presentations.
Save Multi.

The “Save Multi.” button can be used to save an image of the graphic trace as a
PostScript file. Pressing that button will bring up a file creation dialog in which you must
provide the name for the file in which to save the data. The image will be saved as a
multiple page document, and for the horizontal trace the page is generated in landscape

mode.

Save data and Read data

The “Save data” button can be used to save the internal data needed to generate the
graphic trace to a file. Pressing that button will bring up a file creation dialog in which
you must provide the name for the file in which to save the data. That data can then be
loaded back in later using the “Read data” button to recreate the trace. Pressing the
“Read data” button in a graphic trace window will open a file selection dialog. A graphic
trace data file which was saved using the “Save data” button should be selected. The
trace data in that file will be used to draw the trace in the current graphic trace window.
Note that the data saved is orientation specific i.e. if it was saved from a vertical trace it

can only be loaded and drawn correctly in another vertical trace window.

Inspecting Items

For the Retrieval and Production entries of the graphic traces one can click on the boxes
and open the appropriate inspecting tool. Clicking on a box in the retrieval row for which
there is a chunk retrieved will open a “Declarative viewer” window and display the
information for the chunk which is indicated in the retrieval box. Similarly, clicking on a
box in the production row will open a “Procedural viewer” window and display the
information for the production which is specified in the box. Note that if the model for
which the trace was generated is no longer available then the inspectors will not be

opened.

52

Display Options

There are commands and parameter settings in ACT-R which can be used to control what
gets displayed in the graphic trace and configure how things are displayed. Those options

are described in the following sections.

Buffers

By default, all of the buffers in the model are displayed and the order in which they are
displayed is not specified and may not always be the same. However, it is possible to
restrict the set of buffers which are used and to specify the order in which they are
displayed. The :traced-buffers parameter in the model is used to specify which buffers
should appear in the trace and the order in which to draw them. The parameter should be
set to a list of buffer names and only those buffers will be drawn in the order specified (left
to right for the vertical trace or top to bottom in the horizontal trace). Here are the traces

from the count model of unit 1 with the :traced-buffers parameter set like this:

(sgp :traced-buffers (production goal retrieval))

53

¥ertical Graphic Trace {count) - | Ellil

Notes:

production

ﬂ.lnnIIIIIIIIIIIIIIIIIIIIII
0. 150

Done

goal

retrieval

irst-goal

Get Trace

Redisplay

7|

Rermava Te>c| Save 1P Save Multi. | Save data | Read data |

+

Range:| to|

Horizontal Graphic Trace {count)

=10 x|

pdeUCtiDn - -
goal first-goal
rEtrieval - .
D.000 0.050 0. 100 0.150 D.200 0.250
1| | i
Hotes:
Gettrace | Redisplay |Semove Texi Save 1P | Save Multi. | Save data | Read data |
Done
+ - Range:| tn|
Buffer widths

Note that for the vertical trace when there are fewer buffers displayed the boxes are drawn
wider. The width of the columns in the vertical trace can be specified using the :graphic-
column-widths parameter in the model. There is no corresponding setting for the
horizontal trace. That parameter can be set to a list of numbers where each number
represents the width in pixels of the corresponding column in the trace. If there are fewer
numbers specified than there are buffers (columns), then the remaining ones are drawn in
the default width. There is no restriction in the setting of how wide the trace can be
drawn, but because the vertical trace window does not have a horizontal scroll bar you
may not be able to see the entire trace if you make it wider than your monitor can display.

Here is a vertical trace of the count model with the following settings in the model:

(sgp :traced-buffers (production goal retrieval))
(sgp :graphic-column-widths (150 75 100))

55

¥ertical Graphic Trace {count) - | Ellil

production goal retrieval

. 000 -
irst-goal —I
0. 050

100
b.200
B -
n_nn

Notes:

7|

GetTrace | Redisplay |[Remove Te>c| Save 1P Save Multi.l Save data | Read data |

Done

+ = Range :| to|

Buffer Colors

By default, the colors chosen for each column (or row) are taken from a predefined list of
colors. However, it is possible to specify a particular color for each column or row. Like
the :graphic-column-widths parameter described above, the :buffer-trace-colors
parameter can be set to a list of color designators and those colors will be used for the

columns.

A color designator is a Lisp string which is either 4, 7, or 10 characters long. It must start
with the character # and the remaining items represent three hexadecimal values for the
red, green, and blue value of the color. Each of the color components can be specified
using either 1, 2, or 3 hex digits (depending on the color depth desired) and they all must
have the same number of digits. Thus, fully saturated red could be specified as “#F00”,
“#FF0000”, or “#FFF000000”. Any combination of red, green and blue values may be

given in a particular color designator, but the actual color displayed will depend on the

monitor and video capabilities of the machine.

Here is a horizontal trace from the beginning of a run of the zbrodoff model from the

tutorial with these settings in the model:

(sgp :traced-buffers (production visual imaginal vocal))
(sgp :buffer-trace-colors ("#FOQ0" "#OOFFOO" "#000000fff" "#880088"))

Horizontal Graphic Trace (zbrodoffF)

production
vizual
imaginal
wvocal

0. 000 0. 050 0. 100 0.150 0.200 0. 250

K1l il
Hotes:

Gettrace | Redisplay |Remove Texi Save 1P | Save Multi.l Save data | Read data |
Done
+ = Range:| to‘

Production Colors

In addition to being able to control the color of each buffer column or row, for the
production boxes it is possible to specify a particular color for each production. If no

color is given to a production then it is drawn in the color specified for the production

column or row i.e. that is the default color for a production. To specify a color for a
production you need to setf the production-color value of the production’s name to a
color designator (as described above for the buffer colors). For example, to set the color
for a production named read-first to blue you would add this to the model after the

definition of the read-first production:

(setf (production-color 'read-first) "#00f")

Below is a section of the zbrodoff model trace with these settings in the model:

(sgp :traced-buffers (production visual imaginal vocal))
(sgp :buffer-trace-colors ("#F00" "#QOFFOO" "#000000fff" "#880088"))

(setf (production-color 'read-first) "#aaa")
(setf (production-color 'read-second) "#00bbcc")
(setf (production-color 'read-third) "#990888000")

Yertical Graphic Trace {zbrodoff) o = |
production wvisual imaginal wvocal

D.050 ﬂ
D.100
D.150
D.200
D.250
D.300
0.350
D.400
D.450
D.500
D.550
D.600
_— I

GetTrace | Redisplay |RemoveTedt| SavetP | Savemuti | Savecats | Reavoata |

Done

+ = Range:| t0|

Adding custom “Notes”

The ACT-R add-buffer-trace-notes command can be used to place additional notes into
the buffer trace. It takes two parameters which are the name of a buffer and something to
store in the trace (it can be anything). It adds that note to the buffer trace at the time
which it is called. When the mouse is placed over a box in the graphic trace tools, if there
are any custom notes which have been added for that buffer during the time the box
covers, then the last such custom note is printed on the “Notes:” line using the ~a

argument in a format call.

Adding custom notes is something which would most likely occur in the module’s request
processing code to make that additional information available, but it could be called from
the user code or perhaps from one of the event hook functions as well. Here is some code
which creates an event hook in the model which looks for any set-buffer-chunk actions

and then adds a note for that buffer indicating the chunk-type which was set:

(defun note-buffers-chunk-type (x)
(when (eq (evt-action x) 'set-buffer-chunk)
(add-buffer-trace-notes
(first (evt-params x))
(format nil "buffer set to chunk of type: ~A"
(chunk-chunk-type-fct (second (evt-params x)))))))

(add-pre-event-hook 'note-buffers-chunk-type)

Here is a trace of the demo2 model from unit 2 of the tutorial with that hook function

added and the mouse cursor placed over the first box in the visual buffer’s row:

59

Horizontal Graphic Trace {demo2} - IEllﬂ

retrieval
imaginal
manual

goal
imaginal-action

wvocal

find-unattende

production

visuwal-location

aural-location

temporal

D.000 0.050
A |

Notes: buffer set to chunk of type: text

Gettrace | Redisplay

=lal-locationd-0

move-attention

texto

0.100 0.150 0.200 0. 250

i

Jemove Texi Save 1P | Save Multi. | Save data | Read data |

0.085: 0.100 - O.185

+ =

Range:| tn|

60

Production Graph

Pressing this button opens a new “Production Graph” window for the current model and
any number of those windows may be open. The tool provides a graph of the production

transitions which occurred in the model run. Here is a display of the window without any

data shown (how it will always appear upon opening):

€

1| 1 |

,_'.J of _"_J
All Transitions Frequencies 1 Cycles | Unique Cycles] Runs] Unigue Runs Utilities
Save as eps Save as dot [Hide unused productions

To use the tool either a “Production Selection History” (described later in the manual) or
“Production Graph” window needs to be open before running the model or the :save-p-
history parameter needs to be set to t in the model to make sure that the data is recorded.
After running the model you need to press one of the seven data display buttons: “All
Transitions”, “Frequencies”, “Cycles”, “Unique Cycles”, “Runs”, “Unique Runs”, or
“Utilities” to have the data displayed. All of the buttons work similarly, but each provides
a slightly different view of the data. The similar operation will be described first, and then

the specific details of each will be discussed.

After pressing one of the data display buttons the window will show the word “Busy” in
the lower-left corner and all of the controls will be disabled. When it completes it will

show the data, print the word “Done” in the corner, and the buttons will be available

61

again. Here is the display after running the count model from unit 1 of the tutorial and

pressing the “All Transitions” button:

-~
Istart

¥

(:J;?crement

¥

Istopl

4

211 Tramsit: - 1 of 1 + I
All Transitions Frequencies | Cycles | LInigque Cycles | Ru

Done Save as .eps Save as .dot [Hide unusad productions

The display will be a state chart diagram for the productions in the model indicating the
order in which they were selected and fired. Each production in the model will be drawn
in a box, and like the “Production History” tool, if you click on the name of a production
then it will open a new Procedural Viewer window with that production. If the border of
the box is black then that production was selected and fired at some time during the run of

the model for which the data was recorded. If the box border is gray then that production

62

was not selected and fired. [If the “Hide unused productions” box is checked before
pressing a data display button then the gray boxes will not be displayed.] The box with
the green highlight indicates the first production which was selected during the data period
being displayed and the box with the red highlight was the last one selected. The arrows
indicate the sequencing of the productions. An arrow from a production A to a
production B means that production B was in the conflict set after production A fired. If
the arrow is a solid black line then production B was selected and fired after production A,
but if the arrow is dashed and gray then production B was not selected and fired even

though it did match the current state.

Below the display it will show which type of graph is being displayed along with how
many different graphs are available (which can differ based on the button pressed to
display the data) and which one of those is currently being shown. When there is more
than one graph available the “+” and “-” buttons allow you to change which of those

available graphs is shown.

The differences between the displays for each button will be described next and examples
for most will be shown for running the paired model from unit 4 of the tutorial using the

command (paired-task 1 4).

The “All Transitions” button will always show only one graph. It will contain all of the
transitions which occurred in the production data which was recorded. That data may
involve multiple cycles in the graph (a loop which passes through a production multiple
times) and there is nothing in the display to separate different cycles. Here is what that

shows for the paired task:

63

gEEm e

attend-probe I

¥

read-probe

cannot-recall recall

detect—-study-item

L 4

as=sociate

E
4 F
All Transitic - | 1 of 1 + |
All Transitions | Frequencies | Cycles | Lnigue Cycles | Runs
Done Save as .eps Save as .dot ™ Hide unused productions

Pressing the “Frequencies” button will display the same graph as is shown for “All
Transitions” except that the thickness of the links will indicate their relative frequencies

with thicker lines being more frequent. Here is the result of that from the example run:

64

B

attend-probe I

read-probe

m

cannot-recall recall

detect—-study-item

as=sociate

4

Frequencies - 1 of 1 i

All Transitions | Frequencies | Cycles | Lnigue Cycles | Runs
Done Save as .eps Save as .dot [Hide unused productions

Pressing the “Cycles” button will break the data up into one display for each cycle which

65

occurs (and possibly an incomplete cycle at the end if it does not form a loop). For each
of the cycles displayed it will also show the model’s time at the start and end of that cycle

at the bottom of the window. Here are two of the cycles from the example run:

(8 Y m

attend-probe attend-probe

read-probe read-probe

cannot-recall | recall cannot-recall | recall

W

detect-study-item detect-study-item

associate associate

»

«
Cycles - 3 of 4 +
All Transitions Frequencies Cycles ‘ Unigue Cycles Runs Unigue Runs

Done Save as .eps | Save as .dot ‘ I Hide unused productions 20.0 - 30.

«
Cycles - 1 of 4 +
All Transitions Frequencies Cycles | Unigue Cycles Runs Unigue Runs

Done Save as .eps | Save as .dot | I Hide unused productions 0.0 - 10.0

The “Unique Cycles” button works similar to the “Cycles” button, except that it only
provides one copy of each different cycle which occurs in the data and does not provide
the timing information. In the example run there are only 3 unique cycles among the 4

cycles of the data.

The “Runs” button will break the data up into graphs based on when one of the ACT-R
running commands is called, and will provide a separate graph for each run during which
at least one production selection occurred. It will show the start and stop times for that

run at the bottom of the display. Here are two of the “Runs” graphs from the example:

66

~H

recall recall

I cannot-recall I cannot-recall |

m
m

detect-study-item | detect-study-item |
Eﬂssﬂcjate

1] 3 | (3
Runs - 1 of] < Runs - 2 of] <
All Transitions Frequencies Cycles | Unigue Cycles Runs Unigue Runs; All Transitions Frequencies Cycles ‘ Unigue Cycles Runs Unigue Runs;

Done Save as _eps | Save as _dot | I Hide nnused productions 0.0 - 5.0 Done Save as eps | Save as dot ‘ I Hide nnused productions 5.0 - 10.0

The “Unique Runs” button works similar to the “Runs” button, except that it only
provides one copy of each different run which occurs in the data and does not provide the
timing information. In the example run there are only 3 unique runs among the 8 runs

which occurred.

The “Utilities” button works similar to the “Runs” button except that the data is broken
into graphs based on when the model receives rewards. Each reward marks the end of a
graph, and there may be one additional graph at the end which does not represent a
reward being presented if the model has fired additional productions after receiving the
last reward. The display for the “Utilities” graph is slightly different than the others. First,
all of the productions are represented in boxes of the same width instead of being sized
based on the production names. In addition to that each production box may have a blue
bar displayed along both the top and bottom of the box. Those bars represent the relative
utility of that production (the true utility not counting any noise which may have occurred
during the run). The bar along the top represents the utility prior to the reward being
provided and the bar along the bottom represents the utility after the reward has been

propagated. The utilities are scaled across all productions and all graphs so that the

67

maximum utility which any production has is represented by a bar which fills the box from
left to right. Here is an example showing part of the graph after running the building
sticks learning model from unit 6 of the tutorial. On this trial we can see that the force-
over production was selected among the strategy selection productions and that its utility

went up when read-done provided a reward.

[~ "

— ————
ncode-line-c | encode-line-goal | encode-line-current
|--- ———————————————

— —
| | encode—under

——
consider—c
——

————
check-for-done
————————

force-under force—over I decide—under

read-done

————
click-mouse
——

[l [m b

Utilities = of 20 +
All Transitions Frequencies Cycles Unique Cycles | Runs | Unique Runs | Utilities
Done Save as .eps Save as .dot [Hide unused productions 28.734 - 35.151

The “Save as .eps” button at the bottom of the display can be used to save an image of the

current production graph as an Encapsulated PostScript file.

68

The “Save as .dot” button at the bottom of the display can be used to save a text
description of the currently displayed graph in DOT format for use with Graphviz or other
purposes. There is one minor issue currently with the DOT files and that is that the
frequency graphs do not currently include any information about the link thickness. Thus,
the DOT file for the frequency graph will look exactly like the DOT file for the all
transitions graph.

There are two parameters which can be set in the model to adjust the spacing of the
productions in the display. The :p-history-graph-x parameter specifies the horizontal
pixel spacing between the production boxes in a row and defaults to 40. That also
determines the maximum thickness of a link for the “Frequencies” display which will be 14
of the horizontal spacing. The :p-history-graph-y parameter specifies the vertical

spacing between rows of productions and defaults to 90.

69

History Tools

The history tools can be used to record the history of production matching, declarative
retrievals, and buffer changes which occur while a model runs and then display that
information after the run. Each of those tools operates differently and they will be

described individually below.

Production History

Pressing this button opens a new “Production Selection History” window for the current
model and any number of those windows may be open. The tool works similar to the
horizontal and vertical buffer tracing tools described above. Here is a display of the

window without any data shown (how it will always appear upon opening):

_ioix

« | 3

Gethistary | Grid | Save 1P
+ | - | Save Multi. [Hide ernptyr colurans

70

To use the tool either the “Production Selection History” window needs to be open before
running the model or the :save-p-history parameter needs to be set to t in the model to
make sure that the data is recorded. After running the model you need to press the “Get
history” button in the lower-left corner of the “Production Selection History” window to
get the history data displayed. While that is being generated the window will show the
word “Busy” in the lower-left corner and the other controls will be disabled. When it
completes it will show the word “Done” in the corner and the buttons will be available

again. Here is the display after running the count model from unit 1 of the tutorial:

plracez = O] X
=10l

0.0 0.05 0.1 0.15 0.2 l];l
start

inecrement

stop

Kl | ﬂ

Gethistary | Grid | Save 1P
Done + | - | Save Multi. [Hide ernptyr colurans

The left column displays all the names of the productions in the model, one per row, and if
you click on the name of a production then it will open a new Procedural Viewer window
with that production selected for viewing the production’s text and parameters (assuming

that the model is still currently available in the Environment). To the right of that there is

71

a column for each time that there was a conflict-resolution event in the model with the
time of that event listed at the top (times increasing to the right). By default each conflict-
resolution event will have a column. However, there is a parameter called :draw-blank-
columns, which defaults to t, but can be set to nil if you do not want to display columns
for conflict-resolution events that did not result in the selection and firing of a production.
Alternatively, you can check the “Hide empty columns” box at the bottom of the window
which will cause it to redraw the graph with the empty columns removed. Here is that

same display after checking the “Hide empty columns” box:

1=
]
start
inecrement
stop

4 3
Gethistary | Grid | Save 1P
Done + | - | Save Multi. IV Hide ernptyr colurans

The color of the cell for a production’s row in a column indicates whether or not that
production matched during that conflict-resolution event and whether or not it was the
production which was selected. If the cell is green, then the production matched and was

selected. If the cell is orange then the production matched but it was not selected, and if

72

the cell is red then the production did not match. The colors used can be changed by
setting the :p-history-colors parameter. It takes a list of three color string values (as
described for the tracing tools) and uses those colors for the selected, matched, and
mismatched items respectively. If a production was generated later in a run, typically
through production compilation, then for the columns of the times before it existed it will

not have any of those colors and will show up as the background white.

The scroll bar along the bottom of the display allows you to scroll through the history.
The “+” and “-” buttons allow you to zoom in or out on the display, and the “Grid” button
cycles through three options for whether or not the black grid lines are drawn for the

columns and rows: both drawn, only the row lines, none of the lines.

Below is a run from the bst-nolearn model from unit 6 of the tutorial zoomed out and
scrolled to see some productions which competed, in this case the force-over, decide-

under, and force-under productions:

73

=10l x|

003 1.0%) 1.14 |1.225|1.273|1.3259|1.3713| 1.46 (1.575(1. 6%

start-trial
find-next-line
attend-line
encode—line—-a
encode—-line-h
encode-line—c
encode—-line-goal
encode—under
encode—over
encode—line-current
caloculate-difference
check-for-done
find-done
read-done
consider—co
chooze-c
consider—a
chooze—-a

reset
decide-owver
force-over
decide—under
force—under
move-mouse
click-mouze

look-for-current

mAirmlr—ormthar—obratamrr

i _l_l
Get history | Grid | Save 1F

Done + | - | Save hMulti. [T Hide erapty colurans

Placing the mouse cursor over the cells in the display will result in additional information
being displayed along the bottom of the window. If the cell is orange or green, because
the production did match during that conflict-resolution event, then both the noisy utility
value of that production at that time (which is what determined which one was chosen)

and the true U(n) value of the production at that time will be displayed. Here is that

74

display with the mouse over the force-over production’s cell at time 1.275:

ErrEE—— —iBix)

003 1.09 | 1.14 (1.225(1.275|1.325|1.373| 1.46 |1.575(1. 6 =
start-trial
find-next-line
attend-line
encode—line—a
encode—line-h
encode-line-c
encode—-line-goal
encode—under
encode—over
encode—line-current
calculate-difference
check-for-done
find-done
read-done
consider—c
choose-o
conaider—a
choose-a
reset
decide-over
force-owver
decide—under
tforce-under
move-mouse
click-mouse

look-for—-current

mimlr—ormtlhar—otratarr

4
GEHﬂﬂDWI Grid | Save 1P |Ttility: 12.415084 Tin): 10
Done + | - | Save Multi. ™ Hide eraptyr colurans

If the mouse is placed over one of the red cells, a production which did not match at that
time, then the reason returned from the ACT-R whynot command at that time is displayed
to indicate why that production did not match. Here is the display with the mouse over

the encode-over cell at time 1.14:

75

=] p.3
003 1.09 | 1.14 (1.225(1.275|1.325|1.373| 1.46 |1.575(1. 6 =
start-trial
find-next-line
attend-line
encode—-line-a
encode—-line-k
encode—-line-co
encode—-line-goal
encode—under
encode—over
encode—line-current
calculate-difference
check-for-done
find-done
read-done
consider—c
choose—c
conaider—a
choose-a
reset
decide-ower
force-over
decide—under
force—under
move-—mouse
click-mouse

look-for-current

mAirmlr—ormthar—obratamrr

1
GEHﬂHDWI Grid | Save 1P |Whynot: the wvisual buffer is empty.
Done + | - | Save hMulti. [T Hide erapty colurans

One potential use for this tool is in investigating the productions which are generated
through production compilation. Often many new productions are generated and it can be
difficult to determine which ones are becoming generally useful or which ones are never
being used. This tool would provide some graphic feedback to help locate the learned
productions which are never matching and those which are matching and being selected

often.

76

The “Save 1P” and “Save Multi.” Buttons at the bottom of the display can be used to save
an image of the entire production matching grid in the same way the buttons with those
names can be used save the graphic trace displays. The “Save 1P” button saves an image
of the graphic trace as an Encapsulated PostScript file as a single page graphic. The “Save
Multi.” button saves an image of the graphic trace as a PostScript file saved as a multiple

page document generated in landscape mode.

77

Retrieval History

Pressing this button opens a new “Retrieval History” window for the current model and
any number of those windows may be open. Here is a display of the window without any

data shown (how it will always appear upon opening):

.retrieval_history1l 10| x|

Get History | Matiching Chunks Details
Times = =

-

Request

=
w F

Kl
Kl

Activation

I

Al 2]

To use the tool either a “Retrieval History” window needs to be open before running the
model or the :save-dm-history parameter and the :sact parameter need to be set to t in
the model to make sure that the data is recorded. After running the model you need to
press the “Get History” button in the upper-left corner of the “Retrieval History” window

to get the history data displayed. Here is what the window shows after pressing “Get

78

History” following a run of the fan model from unit 5 of the tutorial for the sentence “the

hippie is in the park”:
-1l
Get History Matching Chunks Details
Times = -
0235 =l
0.485
0.585
K| 3 i
Request
B
-l - =
Artivation
[~
kil 2 d|

The left column displays all the times at which a retrieval request was made. Selecting one
of those times will cause the “Matching Chunks” section of the window to list all of the
chunks that were in declarative memory and matched the request at that time. The item at
the top of the list is the one which was retrieved, or will be the keyword :retrieval-failure if
no chunk was retrieved. The rest of the chunks in the list are in no particular order. The

“Request” section of the window will display the request which was made at that time.

Selecting one of the chunks from the “Matching Chunks” list will result in the “Details”
section being filed with a printing of the chunk along with the parameter values for that

chunk at the time of the retrieval request. Note that the tool assumes the normal

79

operation of the system in which chunks in declarative memory cannot be changed. Thus,
while the parameters were recorded at the time of the request the printing of the chunk
itself is based on the chunk at the current time in the model. The “Activation” section of
the display will show the detailed activation trace of how that chunk’s activation was
computed at that time. Here is the tool after selecting the 0.585 second time and the first

chunk on the resulting list, p1:

.retrieval_history1l 10| x|
Get History Matching Chunks Details
Times ~Ir1 =
0,235 ;IpB I5A COMPREHEND-SENTENCE
d485 D RELATION IN

ARGl HIPPIE
ARGZ PARK

Declarative parameters for chunk P1:

tAvtivation 0.214

rPermanent-Noise 0.000

:Base-Level 0.000

iSource-Spread 0.214

:3jis ((P1 . 1.6} (IN . -1.0390574) (HIPPIE . 0.213"—

:Last-Retrieval-Activation 0.214
1] |

Request
I3 COMPREHEND-SENTENCE
ARGl HIPFIE

p

4
4
X

Activation

Computing activation for chunk P1

Computing base—level

Starting with blc: 0.0

Total base-lewvel: 0.0

Computing activation spreading from buffers

Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-3ENTENCEO-O
zsourcez of activation are: [(HIPFIE PAERK)

Spreading activation 0.10685283 from source HIPPIE level 0.5 times 33i 0.21370566
Spreading activation 0.10685283 from source PARE level 0.5 times 33i 0.21370566
Total spreading activation: 0.21370566 e

Adding transient noise 0.0

Al 21|

|»

80

Buffer History

Pressing this button opens a new “Buffer History” window for the current model and any
number of those windows may be open. Here is a display of the window without any data

shown (how it will always appear upon opening):

=10l x|
Get History | Buffers Details
Times - =l
-
= = =

To use the tool either a “Buffer History” window needs to be open before running the
model or the :save-buffer-history parameter needs to be set to t in the model to make
sure that the data is recorded. After running the model you need to press the “Get
History” button in the upper-left corner of the “Buffer History” window to get the history
data displayed. Here is what the window shows after pressing “Get History” following a

run of the fan model from unit 4 of the tutorial for the sentence “the hippie is in the park”:

81

=101x]
Get History | Euffers Details
Times petrieval = =
0.0 = |fmaginal
tratnal
0.05
01 goal
’ itnaginal-action
0.185
0,235 wocal
EI.25 autral
IZI.3 production
’ wizual-location
0.35 .
aural-location
0.435
temporal
0.485 vl
0.535 e
0.585
1.094
1.144
1.444
= hd [

The left column displays all the times at which a change occurred in some buffer, where a
change is any of: the buffer clearing, a chunk being placed into the buffer, the chunk in the
buffer being modified, or a change in one of the buffer queries of “state free”, “state busy”
or “state error”. The middle column shows the names of all the buffers in the model.
Selecting a time and one of the buffers will result in the “Details” section being filed with
the results from calling buffer-chunk and buffer-status for that buffer at the time

specified. Here is the tool after selecting the 0.25 seconds time and the imaginal buffer:

82

i)
Get History Buffers Details
Times Eetneval | 1MAGINAT: COMPREHEND-SENTENCEQ-O =
335 tranual COMPREHEND-SENTENCEO-0O
01 gﬂﬂ. . I3A COMPREHEND-SENTENCE
0125 itraginal-action EELATICON NIL
0,235 vocal ARGl NIL
025 | aural ARGZ NIL
03 pro duction .
0.35 rizual-lo capnn
0435 aural-location IMAGINAL:
0425 t@ﬂpnﬁﬂ buffer enpty : NIL
0535 risual buffer full : T
0585 buffer reguested : T
1 004 buffer unreguested : NIL
| 144 state free 1 T
| 444 state busy : NIL
gtate error : NIL
- | =l

One thing to note is that the information shown for the buffer is how it was reported at the
“end” of the time selected. There may have been multiple changes occurring in the buffer

during that time step (multiple concurrent events), but only the final state is recorded.

83

BOLD tools

The BOLD tools section provides graphic representations of the BOLD (Blood Oxygen
Level Dependent) response prediction data which a model generates. A full description of
how that is computed is beyond the scope of this document, but a very brief description

will be given here before describing the tools.

For each buffer in ACT-R the pattern of use, as shown in the graphic traces, can be
recorded. That recorded pattern of use over a run can then be considered as a metabolic
demand on the brain which can be combined with a hemodynamic response function to
create a prediction of a BOLD response. Past research has lead to associating each of the
buffers in ACT-R with a particular region of the brain. Thus, the patterns of use of the

buffers lead to predictions for a BOLD response seen across various areas of the brain.

Similar to the Tracing tools, the BOLD tools require that you set the parameter :save-
buffer-trace to t in the model to record the data required to produce these displays. As
with the Tracing tools, some of the BOLD tools can be opened in advance of running the
model and will set that parameter automatically, but others will not and should only be
opened after the model is done running. The descriptions below will indicate when a

particular tool should be used relative to running the model.

Buffer graphs

The “Buffer graphs” button will open up a new “BOLD Graphs” window for the current
model which looks like this:

84

BOLD Graphs {paired) =1oj x|
™ Seale across regions Redisplay | 3tart Stop + | - |

retriewval
itmaginal
rranal

goal
inaginal-action
wocal

anral
production
wisual-location
aural-location
tetnporal
wigual

i 3

Any number of such windows may be open at a time. Opening this window before the

model runs will automatically set the :save-buffer-trace parameter to t.

The column on the left side lists all the buffers in the model. Selecting a buffer from the
list will result in a graph being drawn in the pane on the right of the window showing the
data returned by the ACT-R predict-bold-response command for that buffer scaled into
the range 0.0-1.0. Here is the graph for the retrieval buffer after running the paired

associate learning model from unit 4 of the tutorial for two items five trials each:

85

JRI=TEY
[Seale across regions Redisplay 3tart Stop s | - |
M . E 1.00_ =l

:nmaf’uglal 0.05]
a0al 0.90]
imaginal-action 0.850
rocal n.80f
aural 0.75]
production 0. 70
visual—lnca_tinn 0.6 5"
aural-location T
temporal u.e0l
risual 0.551
0.50]
0.45]
0.40]
0.35]
0.30]
0.25]
0.z20]
0.15]
0.10]
0.05]
0.o0 1 1 1
} i }
0.00 1.50 3.00 4.50 -
=] | ﬂ

The “+” and “-” buttons at the top can be used to zoom in or out on the graph and here is

that same graph after zooming out to show more of the data:

86

BOLD Graphs {paired) =]

[Seale across regions

inaginal
rranal

goal
irnaginal-action
hrocal

Anral
production
wisual-location
ral-location
temporal
hrigual

Redisplay Start Stop + | - |
! =

ha KN | r

The Start and Stop boxes can be used to restrict the display to a particular segment of the

run. Each box can have a time in seconds entered in it. If the Start box is empty then the

data is started at time Os, and if the Stop box is empty then the end time is the current

model time. After adjusting the Start and Stop values you must hit the “Redisplay” button

to have the graph redrawn. Here is that same trace restricted to the time between 10 and

20 seconds in the run at a different zoom level:

87

BOLD Graphs {paired) =1oi=l
[Seale across regions Redisplay | Start |10 Stop |20 s | - |
rEtrieva = [;I

=1
=
imaginal-action -85
wocal .80
anral .75
production 70
visual—lnca_tinn e
aural-location
tetnporal 50
wizual £33
.50
.45
.40
.35
.30
.25
.20
.15
.10
.05
00 : : : : : :
.00 10.50 1Z.00 13.50 15.00 16.50 15.00 -
4] | Il

Note that the data may not always fit into exactly the times specified. That is because the
data is generated based on an interval specified in the model with the :bold-inc
parameter which defaults to 1.5 seconds, and adjusting the Start and Stop times does not
change the interval used. It always starts incrementing from time O and plots the data

based on the middle of each the interval.

It is also possible to select more than one buffer in the column on the left. Each selected
buffer will be drawn in the current display. The selection color of the buffer corresponds
to the color of that buffer’s data in the graph. Here is the data from the retrieval and

visual buffers both shown in the same display for that task:

88

BOLD Graphs {paired) =]

™ Seale across regions Redisplay 3tart Stop + | - |
) =
3

]

itnaginal
rranal
goal
imaginal-action 3
rocal
Aral 3
production .
wisual-location
ral-location
tetnporal

a K1 | r

If the “Scale across regions” box is unchecked then for each buffer the BOLD data is
scaled to the range of 0.0-1.0 for display based on the maximum value for that buffer. If
the “Scale across regions” box is checked, then the data for all buffers is scaled to the 0.0-
1.0 range based on the maximum value among all the buffers. This allows one to see the
effects more clearly for a given buffer or to compare the results from different regions

when desired. Here is the same data with the “Scale across regions” box checked:

89

JRI=TEY
¥ Scale across regions Redisplay 3tart Stop s | - |
! =
irnaginal :
trianal
goal i
imaginal-action 3
rocal 1
ural 3
production .
visual-location 1
aural-location i
tetnporal i
|
1
3
]
3
1
3
]
3
]
3
| ~
a1 | r
2D brain

The “2D brain” button will open a “BOLD Brain” window for the current model if there is
not already one open or bring it to the front if it is already open because there can be only
one open “BOLD Brain” window per model. The “BOLD Brain” window shows image
slices of a reference brain and displays the BOLD data values for the buffers as color
coded boxes in the images in the areas with which the corresponding buffer has been
associated. This tool should only be opened after the model runs because it does not
refresh its data after it has been opened. Because of that, it does not set the :save-buffer-

trace parameter. Here is what the window looks like:

EEE

[~ Show hox horders

matnal

zoal
wiocal
rnaginal

retrieval

procedural

0 6é

The buffers for which a brain association is defined are displayed on the left in the color
which will be used to draw them in the images and in the order in which they are drawn in
the images i.e. the manual buffer is drawn in the top slices and the visual buffer in the
lower ones. If the “Show box borders” button is selected then a colored box will be
displayed for each buffer whether or not there is any activity. This can be used to see
where the regions are in the absence of any activity and looks like this without any other

data displayed:

91

EEE

¥ Show hox horders

matnal

zoal
wiocal
rnaginal

retrieval

0 6é

The slider along the bottom allows one to select the specific scan from the run for which
the data should be displayed. The scans occur based on the value of the :bold-inc
parameter, with a scan occurring every :beld-inc seconds. On each scan the brightness of
the corresponding boxes indicates the BOLD activity in that buffer. Each buffer has its
BOLD data scaled from 0.0-1.0 individually and that is used as a brightness value in
displaying the color. Thus, if there is no activity, a value of 0, then the box will be black
and if there is a lot of activity, a value near 1.0, then the box will be brightly colored.

Here is an image from the paired associate model as run for the graphing data at scans 2-4

92

showing activity in several buffers increasing at the start of the task:

EEE

[~ Show hox horders

matial
zoal
wiocal
Itiaginal

retrieval

0 6é

93

BOLD Brain {paired)

[~ Show hox horders

procedural

6é

94

EEE

[~ Show hox horders

matnal

zoal
wiocal
rnaginal

retrieval

procedural

0 6é

3D brain

The “3D brain” button will open the “3d BOLD viewer” window for the current model if
it is not already open or bring it to the front if it is already open because there can be only
one open per model. The “3d BOLD viewer” window shows the same information as the
2d viewer described above, except instead of the using images from a reference brain the

boxes are drawn in a crude three-dimensional wireframe brain model. Like the 2D viewer,

95

the data for the display is not updated after opening the window and thus it should not be

opened until after the model has been run. Here is what the window looks like by default:

3d BOLD viewer {paired) -|O ﬂ

Irruaginal

The buffers for which a brain association is defined are displayed on the left in the color
which is used to draw the outline of the region’s box in the image. The default view is
top-down with the front of the brain to the left, but the brain can be rotated and moved by
clicking on it and moving the mouse. If the left mouse button is clicked and held moving
the mouse will rotate the brain around its center point. If the right mouse button is clicked

and held moving the mouse up and down will zoom in and out on the image, and if the

96

middle mouse button is clicked and held moving the mouse will move the brain around in
the window without rotating it. Here is a view of the image after it has been moved and

rotated:

3d BOLD viewer {paired)

Irraginal

The slider along the bottom allows one to select the specific scan from the run for which
the data should be displayed in the same way that it does for the 2D viewer. On each scan
the boxes for each buffer will be filled with a gray-scale color which indicates the BOLD
activity in that buffer with the reference colors indicated by the gradient shown in the

upper left of the window. The box outlines will always be drawn with the brightly colored

97

edges. Each buffer has its BOLD data scaled from 0.0-1.0 individually and that is used as
a brightness value in displaying the color and that number is also shown on the left of the
window after the buffer name. Here is an image from the paired associate model as run

for the graphing data on scan 4 showing activity in several buffers:

3d BOLD viewer {paired)

1.000

Irnaginal 0989

0.aa7

0512

Run-time 3D brain

The “Run-time 3D brain” button will open the “3d BOLD run-time viewer” window for

98

the current model if it is not already open or bring it to the front if it is already open
because there can be only one open per model. The “3d BOLD run-time viewer” window
shows the same information and works the same way as the 3D brain viewer described
above, except that it does not have a slider bar for picking scans and instead is updated as
the model runs. It should be opened before the model is started. It automatically sets the
:save-buffer-trace parameter and will update as the model runs. This should only be used
if the model is running in real time or if the stepper is being used because otherwise the
display will not be able to keep up with the model data and all of the Environment’s tools

will become non-responsive as a result.

99

Miscellaneous

The Miscellaneous section contains the controls which are not involved with the actually
modeling and thus do not belong to one of the other sections. The only control in the
current Environment is the Options button which allows the user to specify some settings

for how the Environment should operate.

Options

Pressing the “Options” button will bring up the “Options” window if it is not already open
or bring it to the front if it is open because there can only be one such window open at a

time. Here is what the “Options” window looks like:

¥ Use an environment window for the Experiment display
[T Compile definitions when model opened or reloaded
v Auptomatically zave an open model when reload prezszed
¥ Show the ACT-R copyrights screen
¥ Save a backup every time

[T Allow the environment to work with multiple models

[T Close inspector windows for deleted models when multiple models are defined

Save | Apply | Cancel

It has several options which can be enabled or disabled by checking or unchecking them.
When the window is opened the current setting of the options will be shown in the
selections. Some of the options are only meaningful when using the editor with the
standalone version of the Environment, but they will all be described below for
completeness. First, the buttons at the bottom of the window will be described, and then

each of the options themselves.

100

Save

Pressing the “Save” button will apply the current selections to the Environment as well as
save them to a file so that the next time the environment is started those settings will be
used instead of the defaults. It will also close the “Options” window after saving the

settings.

Apply

Pressing the “Apply” button will apply the current selections to the Environment to
change how it operates. It does not save those setting for future use nor does it close the

window.

Cancel

Pressing the “Cancel” button will close the window without applying or saving any of the

changes which have been made to the options since the last save or apply occurred.

Revert

Pressing the “Revert” button will return all of the options to the values which they had
when last applied or saved, undoing any changes that have been made. It does not close

the window, nor does it save or apply the values.

Use an Environment window for the Experiment display

This option is only meaningful if ACT-R is running in a Lisp which has GUI tools
available and which also has the appropriate support in the ACT-R graphics interface. At
this time those Lisps would be ACL w/IDE, LispWorks, MCL, and CCL. If ACT-R is

running in any other Lisp, then the selection of this box is ignored.

The default for this option is selected (enabled) which means that when the Environment is
connected to ACT-R any experiment window opened with the ACT-R open-exp-window

command which is visible will be displayed in a window opened by the Environment in

101

Tcl/Tk instead of with the Lisp’s native GUI tools. If the option is disabled then the
Lisp’s native GUI tools will be used to display visible windows opened with the open-

exp-window command.

Compile definitions when model opened or reloaded

This option controls how models are loaded or reloaded through the Environment. If the
box is unchecked (the default) then files which are loaded or opened with the “Load
Model” or “Open Model” buttons (note that “Open model” is only available by default
with the standalone version) are loaded directly with the Lisp command load, and when

the “Reload” button is pressed the ACT-R reload command is called with no parameters.

If the option is enabled then when a file is loaded or opened the file is first compiled with
the Lisp command compile-file and then that compiled file is loaded with the load
command. When the “Reload” button is pressed with this option enabled the value of t is
provided as the optional parameter to the reload command which will cause it to also
compile the file before loading. One thing to note about having the parameter enabled is
that if you directly load a compiled file then the “Reload” button will not work for that file
because it will not be able to compile the already compiled file and it will print this

warning instead:

#|Warning: To use the compile option the pathname must have type lisp. |#
Automatically save an open model when reload pressed

This option only affects the operation of the Environment when using the “Open model”
button available with the standalone version (or enabled by the user as described in the
Extending or Changing the Environment section). If this option is enabled, which is the
default, then any changes made to the currently open model file will be saved before the
reload command is called in response to pressing the “Reload” button. If this option is
not checked then the changes will not be saved by the Environment prior to the reload

command being called and thus the previously saved version will be loaded.

102

Show the ACT-R copyrights screen

This option controls whether or not the window showing the ACT-R copyright
information is displayed every time the Environment is started. If it is enabled then the

window will be displayed and if it is disabled then it will not be displayed.

Save a backup every time

This option only affects the operation of the Environment when using the “Open Model:”
button. If this option is enabled, then whenever the model file is saved (including the
automatic saving upon reload if enabled) a backup copy of the existing file is made first.
The backup copy will have the same name as the original file with an increasing number
added to the end of the file’s extension. It will be written to the same directory as the
original file. Thus, if the count.lisp file were opened and then reloaded a file named
count.lisp-O would be created in the same directory as the original count.lisp file and
would be a copy of the file count.lisp before any current changes are saved into it. If it

were reloaded again then a file named count.lisp-1 would be created, and so on.

These backup files are intended only as protection against a crash of the system or other
error which may cause the loss of the file being worked on. The original file will always
be the most recently saved version of the model and you should not open or load the
backup files directly unless absolutely needed. After the Environment has been
successfully closed you should feel free to delete any and all of the backup files. If the
system does crash or for some other reason you would like to use one of the backup files
you should first rename it to something meaningful if you plan to open it in the
Environment because otherwise it will also have backups made of it which would then

look something like count.lisp-1-0 and that can become confusing very quickly.

Allow the environment to work with multiple models

This option controls whether the Environment assumes there will only ever be one model
defined at a time, or if it will provide separate tools for multiple simultaneously defined

models. The default setting is off. In that case if more than one model is defined this

103

warning will be displayed:

Multiple models not enabled x|

] ': You musk enable multiple model support i the Options before the kools will work correctly when more than one model is defined.
*

If the setting is enabled, then it will show this dialog when that change is made:

Enabling multiple models suppork 5'

L] "_.,‘ You must call stap-environment and then skark-environment From Lisp ta Fully enable multiple model support,
L

To change the Environment safely from single model mode to multiple model mode
requires stopping and starting the connection to Lisp. Thus, when making that change the
“Save” button should always be used to make the change because the “Apply” button’s

settings do not persist across a stopping and starting of the Environment.

Close inspector windows for deleted models when multiple models are defined

»

This option only matters if the “Allow the environment to work with multiple models
option is enabled. If that is enabled then this controls what happens to the inspector
windows for models which are no longer defined. If the option is set then when a model is
deleted the inspector windows for that model will automatically be closed in the
Environment. If it is not set then the windows for deleted models will remain open, but
will no longer function correctly and trying to use them may result in warnings in the Lisp
running ACT-R.

104

Window Positions and Sizes

When the Environment is closed it will save all of the settings for the window sizes and
positions that were used while it was running. The next time that the Environment is run

it will then use those same sizes and positions for all of the windows.

This is generally desirable, but can lead to problems if one uses the same machine with
different displays or monitors which have different resolutions which could result in
windows or tools no longer being within the bounds of the current display. To
accommodate that there is a test performed when the Environment first starts to check
whether or not the same screen space is available by testing the current height and width
as well as the maximum window size as reported by the system. If those differ, then it will
display this dialog before starting with the option of restoring everything to the default

size and location instead of using the saved values:

M Screen resolution changed b

1 'j The screen resalubion is nok the same as it was the last time the Environment was used, Shodld the window positions reset to the defaulks?
L

If the “Yes” option is chosen then the default window positions will be used instead of

those in the saved configuration.

If for some reason the Environment doesn’t detect that your screen has changed or you
are having some other problems whereby the tools are no longer available because they
are opening in windows outside of the screen then you can manually remove the file with
the saved settings in it and force things into their default positions the next time the
Environment is started. The settings are saved in the Environment’s GUl/init directory in
the file named 10-userguisettings.tcl. If you delete that file then the next time the

Environment starts all of the windows will revert to their default sizes and positions.

105

Extending or Changing the Environment

It is possible to add new tools or capabilities to the Environment. Like the ACT-R loader,
when the Environment starts it will automatically load source files located in some of its
directories. Thus, putting new files into those directories will cause that additional code
to be loaded and become a part of the Environment. Changes to the operations can also
be made on the Lisp side of the Environment (which may affect how things are displayed
or otherwise generated for display on the Tcl/Tk side) by placing files into the ACT-R

directories that get loaded automatically.

When the Environment starts it first loads all of the .tcl files in the GUl/init directory.
Then, it opens the Control Panel window and loads all of the .tcl files located in the

GUI/dialogs directory. The files are loaded in ascending order based on their file names.

It is also possible to remove tools that you don’t need, if you don’t want them included in
the Environment, by deleting those files from the GUI/dialogs directory. Each of the tools
in the Environment is generally implemented in a separate file located in the dialogs
directory and the names of the files indicate the tool that they implement, for example “38-
visicon.tcl” implements the “Visicon” button. Deleting that file will remove the “Visicon”
button from the Environment. The numbers on the fronts of the names are used to ensure

that they are loaded and created in a specific order.

Most of the tools are independent and can be deleted without affecting the others, but
there are a couple of exceptions. First, the “00-copyrights.tcl” file should not be deleted
because it also controls the initial connection between ACT-R and the Environment. To
eliminate the copyright window you should instead disable the “Options” setting which
controls it. Also, the standalone version of the Environment’s buttons for closing and
saving model files depend on operations defined in the open model tool. Thus, if the open

button is removed the save and close buttons should also be removed.

There are some additional controls or modifications for the Environment included with the
ACT-R extras which can be used and are described in the sections below. There are also

some disabled buttons (like the Open button mentioned above) included in the

106

GUl/dialogs directory. They were disabled by changing the extension on the file name

from .tcl to .tcx. Returning that to .tcl will enable that button.

107

Available Environment Extras

In the extras directory of ACT-R 6 there are two additional tools which can be added to
the Environment. Each of those will be described below along with how to add it to the

Environment.

Sorted Items

There is a file called “sort-environment-lists.lisp” in the extras/environment-sorter
directory. To use this file it should be moved to the other-files directory before loading
the main ACT-R load file. With this file loaded the list boxes of items in the inspector
windows will have their values sorted alphabetically instead of the default ordering
returned by ACT-R. This will affect the listings in the Declarative, Procedural, Buffer,

and Buffer Status tools.

One minor note about the sorted items modification is that it is currently incompatible with
the retrieval and buffer history tools. If the sort-environment-lists.lisp file is used it will

result in errors occurring if either of those tools is attempted to be used.

DM Tree Viewer

In the extras/chunk-tree-viewer directory are several files which describe and implement a
declarative viewer with an alternative display of chunks. The representation was
developed by Andrea Heiberg, Jack Harris, and Jerry Ball working at the Air Force
Research Laboratory and is described in detail in the HeibergHarrisBall.pdf file found in
that directory. The tool for the Environment is a slight modification to their

representation and is described in detail below.

To use the tool the chunk-tree.lisp file must be placed into the ACT-R other-files directory
and the 35a-declarative-tree.tcl file should be placed into the Environment’s GUI/dialogs
directory. Doing so will add a new button called “DM Tree viewer” to the Inspection

section of the Control Panel.

Pressing that button will open a new declarative_tree window for the current model and

108

any number of those windows may be open at a time. Here is what the window will look
like after running the fan model from the tutorial unit 5 (note that the sorted items addition

described above is also loaded here):

.declarative_tree4 {fan) O] x|
Filter:l none Save |

[T Show nil slots
hand 4| =
heach
captain
castle
Cave
church
cotnprehend-sentenced-0 —
debutante
dungeon
ear]
fitretmat
fotrest
giarit
auard
hippie

-,
it | 4] j

Like the normal declarative viewer the list on the left shows the names of all the chunks in
the model’s declarative memory and the filter at the top can be used to restrict that list to
chunks of a particular chunk-type. The difference in the display of the selection along

with the additional controls available for this dialog will be described below.

Selecting one of the chunks from the list will result in an image being generated to show
the contents of that chunk. The chunk name will be displayed at the top of the window in
light green and then for each slot a blue line will be drawn below that name with the name
of the slot written in blue italic text at the end of the line. Below the slot name the
contents of the slot will be displayed. If the content is not a chunk then it will be displayed
in black with nothing below it. If the content is a chunk, then it will be displayed in one of
three ways. If it is a chunk which is not in the model’s declarative memory and which
doesn’t occur further up in the current branch of the tree then it will be displayed in dark

green text with its slot contents displayed recursively below it. If it is a chunk which does

109

occur in the model’s declarative memory and which doesn’t occur further up in the current
branch of the tree then it will be displayed in light green text and its slots will be
recursively displayed below it. If it is a chunk which has already been displayed in the
current branch of the tree (a circular reference) then it will be displayed in red text and its
slots will not be displayed. Here is the display for the comprehend-sentence0-0 chunk

after the model has done a trial for “the hippie is in the park™:

declarative_treed (fan) - |EI|£|
Filter:l none Save |

[T Show nil slots

comprehend-sentencel-0

7\

2ol 2 gl

hippie park

ms wc el
rrhippierr rrparkrr

hippie

3
it >| 4] E

It shows the contents of the argl and arg2 slots as the chunks hippie and park and each of

those chunks has a word slot which contains the string representation of that word.

The “Show nil slots” checkbox at the top of the window controls whether or not slots
with a value of nil (empty slots) are drawn in the display. If it is unchecked (the default)
then they are not. If it is checked then all of the slots will be displayed. Here is that same

chunk shown with the box checked now showing the unused relation slot in that chunk:

110

.declarative_treed {fan) =10l x|
Piherﬂ naone Save |

¥ Show nil slots

handc = =
heach comprehend-zentencel-0
captain
castle
Cave
church ralation 2l 2os
nil hippie park

Az ed Az
"hippie" "park”

' 3
[E=Nrrati - I 1 I k

For demonstration purposes these commands have been executed to define some

additional chunks for the model and to add a new chunk to the model’s declarative

memory:

(chunk-type demo-type slotl slot2)

(define-chunks (simple isa chunk)
(circular isa demo-type slotl simple slot2 circular))

(add-dm (demo-chunk isa demo-type slotl circular slot2 simple))

Thus, the demo-chunk is in the model’s declarative memory while the simple and circular
chunks are not, and the chunk named circular has a slot with a circular reference to itself.

Here is the display showing the chunk named demo-chunk being drawn:

111

.declarative_treed {fan) =10l x|
Filter:l dermo-type S awe |

¥ Show nil slots

detro-chunls ;l
deno-chunk
s5lobl slotlr
circular zinple
s5lobl s5lobZ
simple circular
.
vI L | I F

Any of the light green chunks in the display (the chunks which are in the model’s
declarative memory) can be clicked on to open the Environment’s default declarative

viewer with that chunk selected to see the parameters and text representation of that
chunk.

Pressing the “Save” button at the top right of the declarative tree viewer window will
allow you to save an image of the chunk as an Encapsulated PostScript file. A file

creation dialog will be opened and the image will be saved into the file which you provide.

112

Standalone Environment Tools

The standalone version of the Environment includes some additional buttons in the model

section of the Control Panel;

Model
Load Model

Cpen Model: | Existing —'|

Save Maodel

Close Model |

Running

These buttons provide access to a very basic text editor which can be used to edit or

create models.

Open Model:

The “Open Model:” button will either create a new text file or open an existing file
depending on the setting of the option menu to its right. If the option menu says
“Existing” then a dialog will open for you to select a file to open and edit. If the option
menu says “New” then a dialog will open asking you for the name and location to save the
new file. To change the option menu you can press it to bring up the options which will
look like this:

I¥iuue L

Load Model
T
E v Existing p3ing —

M e g

The one with the checkmark is the currently selected option and clicking the other will

make it the current option.

In addition to opening the file for editing, it will also be loaded as if it had been chosen

using the “Load Model” button. There can only be one model opened for editing in the

113

Environment at any time. If you try to open a second one it will display a warning dialog

indicating that you must close the currently open model first:

i

L "_'q You must close the current model before wou can open another one.
[

You can close an open model using the “Close Model” button on the Control Panel or by

just closing the window in which it is being edited.

Save Model

The “Save Model” button will save the contents of the currently opened model file. If
there is no model currently opened for editing, then this button has no effect other than to

display a dialog indicating that there is not an open model:

x

L] "_u., Mo model open,
L

If the “Save a backup every time” option is enabled, then before the file is saved a backup

copy of the previous file will be made as described in the Save a backup every time

section.

Close Model

The “Close Model” button will save the contents of the currently opened model file and

close the window in which it is being edited.

114

Advanced Issues

The sections below contain information about advanced capabilities of the Environment.

These mechanisms will likely not be of much use to most users, but are available if needed.

115

Running the Environment on a Separate Device

It is possible to run the Environment on a device other than the machine which is running
the Lisp with ACT-R. To do that one would perform the same steps described in the
Running the Environment section using two separate devices, one to run the Lisp and one
to run the Environment, with one exception. In step 4, instead of just calling start-

environment to make the connection one of two alternatives must be done.

4’. Set the system parameter :default-environment-host to the IP address of the
device running the Environment or the full hostname of that device before calling run-

environment.

4’. Use the connect-to-environment command instead of start-environment and
pass the IP address of the device running the Environment or the full hostname of that
device as the host parameter e.g. (connect-to-environment :host “192.168.123.254”) or

(connect-to-environment :host “foo.bar.edu”).

You can still call stop-environment to put the Environment back to the waiting state.
Unlike when the Environment is running on the same machine as the Lisp application, it is
possible to quit the Environment application without first stopping the connection from
the Lisp side. If that happens then ACT-R will print a message indicating that the
Environment has been closed and stop the connection automatically. When the
Environment connection is stopped in that way there might also be some notices in the
Lisp indicating a problem with the connection being closed or reaching an end of file
signal. Such warnings/errors can be safely ignored. That happens because of issues with
how the processes handling the Environment in Lisp are shut down and is a known issue

to be fixed.

116

Running More than One Environment

In addition to running the Environment on a device other than the one running the Lisp as
described above, it is also possible to connect more than one Environment to the same
Lisp running ACT-R. Without changing the Environment files, it is only possible to run
one instance of the Environment on a device, but any number of devices each running an

Environment may be connected to the same Lisp running ACT-R.

To connect the first Environment, use either the regular method described in the Running
the Environment section if it’s on the same machine or the method described in the

Running the Environment on a Separate Device if it’s on a separate device. Then, to
connect the second and all subsequent Environments you must use connect-to-

environment specifying the host address and also the keyword parameter clean must be
specified as nil i.e. (connect-to-environment :host “192.168.123.254” :clean nil). If you
don’t specify the :clean nil parameter all previously connected Environments will be
deactivated. To put all of the connected Environments back into the waiting state you

now must call close-all-connections instead of stop-environment.

117

	Table of Contents
	Preface
	Introduction
	Running the Environment
	Environment Overview
	Current Model
	Multiple Models

	Model
	Load Model

	Control
	Stepper
	Step
	Stop
	Run Until
	Time
	Production
	Module

	Additional Information
	Retrieved-chunk
	Production-selection
	Production-fired

	Tutor Mode
	Hint
	Help

	Inspecting
	Declarative Viewer
	Filter
	Why not?

	Procedural Viewer
	Why not?

	Buffer Viewer
	Buffer Status viewer
	Visicon
	Audicon

	Tracing
	Graphic Trace
	Saving Graphic Traces
	Save 1P
	Save Multi.
	Save data and Read data

	Inspecting Items
	Display Options
	Buffers
	Buffer widths
	Buffer Colors
	Production Colors
	Adding custom “Notes”

	Production Graph

	History Tools
	Production History
	
	Retrieval History
	Buffer History

	BOLD tools
	Buffer graphs
	2D brain
	3D brain
	Run-time 3D brain

	Miscellaneous
	Options
	Save
	Apply
	Cancel
	Revert
	Use an Environment window for the Experiment display
	Compile definitions when model opened or reloaded
	Automatically save an open model when reload pressed
	Show the ACT-R copyrights screen
	Save a backup every time
	Allow the environment to work with multiple models
	Close inspector windows for deleted models when multiple models are defined

	Window Positions and Sizes
	Extending or Changing the Environment
	Available Environment Extras
	Sorted Items
	DM Tree Viewer

	Standalone Environment Tools
	Open Model:
	Save Model
	Close Model

	Advanced Issues
	Running the Environment on a Separate Device
	Running More than One Environment

