
ACT-R 6.0 Software Updates
Summer ‘09 – Summer ‘10

Dan Bothell

Carnegie Mellon University

db30@andrew.cmu.edu

Overview

• Last summer’s release was r765 and this
summer’s release is r875 (currently at r891 in
archive)

• Lots of minor updates, bug fixes, tweaks, etc

• Check the commit log and file headers for details

• Discuss the notable changes and additions

Updates for external reasons

• Changes necessary for newer versions of Lisps

– ACL 8.2/9

– LispWorks 6

– RMCL 5.2.1

• Built new Mac environment application

– Universal binaries

New hooks

:utility-offsets & :activation-offsets

• Allow for multiple functions to be added

• The normal calculations are done first

• All offsets on the list called

• All numeric return values are added to the
calculation

New module in extras

• Lebiere & Best short-term inhibition of activation

• Discussed at last year’s Workshop at CogSci

• Paper, presentation, and example model also included
– extras/base-level-inhibition

Procedural Partial Matching

• Buffer slot tests can mismatch and still allow a
production to be selected

• Equality tests of slot values can match to
similar contents in the buffer chunk’s slot

– Uses the same similarity values as DM

– Must have a similarity greater than the maximum
difference

• It is enabled by setting the :ppm parameter to
a number (defaults to nil)

PPM cont.

• If there is a mismatch the utility of the
production for conflict resolution is adjusted

• Alternatively there’s a hook function which
can be set with :ppm-hook that allows for a
custom utility adjustment when mismatched

Whynot and ppm

• For debugging whynot indicates a partial
match and the details

Production STATE1 partially matches the current state:

(P STATE1

 =GOAL>

 ISA GOAL

 STATE [STATE1, STATEA, -0.1]

 ==>

 =GOAL>

 STATE STATEB

)

New threaded cognition module

• Rewrote threaded cognition as a new goal
module

– No changes to any other module’s code

– using a new type of buffer

• Performs the same as the original in test models

• Both currently available in extras/threads

– New-threads and legacy-threads

Why a new type of buffer

• Threaded cognition couldn’t be implemented
cleanly before

– Required changes to buffer and procedural code

– Difficult to maintain

– Potential issues with other extensions

• Designed a general mechanism sufficient to
implement it

• Should be useful in other contexts

• Detailed in reference manual

Multi-buffer

• A multi-buffer allows the module to maintain a set of
chunks (the buffer set) which may be placed into the
buffer without copying

• Module must maintain ownership of those chunks

• A chunk cleared from the buffer is removed from the
buffer set

– Use of overwrite-buffer-chunk and the new erase-buffer
command recommended

• Still only one chunk “in the buffer” at a time

Searchable buffer

• A multi-buffer for which the procedural
module will attempt to find a matching chunk
from the buffer set during production
matching

– A multi-buffer does not have to be searchable

• Several constraints on the searching to avoid
issues

– Multiple instantiations

– Size/complexity of the search

Search buffer match for a production

• Each search buffer may only be used once in a
production

• Search takes place after non-search bindings

• All search buffers searched in “parallel”

• Stop at first match found for each buffer

– Order can be specified by the module

• Any tests among search buffer bindings performed

– No backtracking – any inconsistency means the production
fails to match

Search buffers and conflict resolution

• After conflict set determined the production with
highest utility selected

• Module may provide a preference given the chunks
which were found

– Specify offsets to the utility based on matched chunk

• As part of production selection all necessary found
chunks are put into their buffers

– Search buffers which were not required for the selected
production are unchanged

New tool in extras

• Save the current declarative and procedural
components in a model file

• Added in r878
– So only available via subversion right now

– extras/save-model

• The command is save-chunks-and-productions
– One required parameter – file name

– Optional parameter whether or not to adjust chunk parameters to
time zero (defaults to t)

(save-chunks-and-productions "saved-model")

What gets saved

• General parameters related to declarative and procedural
– :esc, :er, :md, :rt, :le, :ms, :mp, :pas, :mas, :ans, :blc, :lf, :bll, :ol, :iu, :ul, :alpha, :ut, :nu,

:egs, :epl, :tt, :dat, :ppm

• Chunk-types

• Declarative memory chunks

• Appropriate chunk parameters
– :creation-time, :reference-count, :reference-list, :similarities

• Productions (both original and compiled)
– Marks the compiled productions so utility learning treats them correctly

• Production parameters as appropriate
– :at, :u, :reward

• Model name, current date, and the current :seed parameter saved in
comments

What isn’t saved

– Module states

– Buffer contents

– General parameters not on the saved list

– Chunks not in declarative memory

– Events on the queue

– Lisp code

– Chunk Sji settings
• Recomputed at load time by add-dm

• Specific add-sji settings are not recorded

– Chunk parameters not on the saved list

– Production parameters not on the saved list

;;; Saved version of model PAIRED at run time 1600.0 on 2010/7/2 15:23:16

(clear-all)

(define-model PAIRED-saved

(sgp

:RT -1.7

:ANS 0.5

:LF 0.4

:BLL 0.5

:ESC T

:IU 10

:UL T

:EGS 0.1

:EPL T

)

;;; (sgp :seed (25403176208 13448))

(chunk-type TASK

 STATE

 STEP

)

...

(add-dm

(

GOAL-0

 ISA TASK

 STATE NEW-TRIAL

 STEP RETRIEVING-OPERATOR

)

...

)

(sdp GOAL-0

 :CREATION-TIME -1594.63

 :REFERENCE-COUNT 160

)

...

(P PRODUCTION0

 "RETRIEVE-OPERATOR & READ-ARG1 - OP1"

 =GOAL>

 ISA TASK

 STATE START

 STEP READY

 =VISUAL-LOCATION>

 ISA VISUAL-LOCATION

 ?VISUAL>

 STATE FREE

 ==>

 =GOAL>

 STATE STIMULUS-READ

 STEP ARG1

 +VISUAL>

 ISA MOVE-ATTENTION

 SCREEN-POS =VISUAL-LOCATION

 +IMAGINAL>

 ISA ARGS

 ARG1 FILL

)

...

(spp RETRIEVE-OPERATOR :u 14.090138 :at 0.05)

...

(setf (production-user-created 'PRODUCTION0) nil)

...

)

