
ACT-R 6.0 Software Updates
Summer ‘08 – Summer ‘09

Dan Bothell

Carnegie Mellon University

db30@andrew.cmu.edu

Overview

• Updates and changes over the past year
– Documentation

– Extras

– Environment

– New functionality

– Performance

– Miscellaneous

• Recommend that you update if using the
winter ‘08 release [r723]

Documentation

• Manual Updated

– More sections related to adding modules

• Reference manual for the Environment added

– Covers all the existing tools & the new ones

• New unit 5

– Siegler model is now an example

– Assignment is modeling learning in a game

• 1-hit blackjack

New Extras

• Blending Module
– Christian’s blended retrieval mechanism

– Requires normal Declarative memory module

– Works in parallel with it – independent state

• Threaded Cognition
– Dario and Niels’ theory of concurrent multitasking

– Extends the goal module to hold a set of goals

– Modifies procedural module to match against that
set of goals

Environment

• New command – run-environment

– Use instead of start-environment

– Spawns the external app. and makes the
connection automatically

– Works in LispWorks and ACL under Mac OS X and
Windows

• Added feature in the graphic traces

– Clicking on a retrieved chunk or a production
name opens the appropriate viewer for that item

Environment (cont.)

• 3 new tools to display history of events

– Production selections

– Retrieval requests

– Buffer changes

• Not installed by default

– In extras/history

Production history

Retrieval history

Buffer history

New for Declarative module

• New parameter :w-hook

– Allows one to adjust the Wkj values in the
spreading activation equation

– Set to a function like other hooks

• Passed two parameters
– buffer name, k

– slot name, j

– If it returns a number that overrides the default
Wkj value

New for Vision module

• New query for visual buffer
– Scene-change

• Alternate way for detecting screen changes
– Not based on theory at this point

• Modeling convenience

– More reliable than visual-location buffer stuffing

– Has a settable change threshold
• :scene-change-threshold

• Default is .25

Scene-change

• The query

?visual>

 scene-change t

• Will be true when all of these are true
– there has been a proc-display within :visual-onset-span

– The change in the visicon was >= to the threshold

– The notice has not been explicitly cleared

Scene-change (cont)

• Change is defined as:

o: The number of features in the visicon prior to the update

d : The number of features which have been deleted from the original visicon

n: The number of features which are newly added to the visicon by the update

• Can be explicitly cleared with a clear-scene-change request or
the existing clear request

+visual>

 isa clear-scene-change

+visual>

 isa clear

no

nd
Change






“New” chunk name normalizing

• New parameter :dcnn (dynamic chunk name
normalizing)

• Works in conjunction with :ncnar

• When both are true (the default values)

– Chunk names are normalized as the model runs

– When chunks merge all slots of ALL chunks which
have the merged name are updated to the true name

– Basically how the older versions of ACT-R worked

More on :dcnn

• Primarily for model debugging
– Won’t see multiple names for one chunk

– Should not affect the operation of models

• May or may not be faster that normalizing at the end
– Depends on how much merging occurs, the interrelations

among the chunks, and how many chunks the model has

• Does require extra storage to hold the back-links
– So a larger memory footprint is required to use it

• For best performance :ncnar should still be set to nil
– Disables all the normalizing

Simple :dcnn example

 (add-dm (name isa chunk))

 (p start

 ?goal> buffer empty

 ==>

 +goal> isa goal

 +retrieval> isa chunk)

 (p set-up

 =goal> isa goal

 =retrieval> isa chunk

 ==>

 =goal>

 slot =retrieval)

 (p report

 =goal>

 isa goal

 slot =val

 ==>

 !output! (the value is =val)

 !stop!)

CG-USER(12): (sgp :dcnn nil)

(NIL)

CG-USER(13): (run 10)

 0.050 PROCEDURAL PRODUCTION-FIRED START

 0.050 GOAL SET-BUFFER-CHUNK GOAL GOAL0

 0.050 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL NAME

 0.100 PROCEDURAL PRODUCTION-FIRED SET-UP

 0.150 PROCEDURAL PRODUCTION-FIRED REPORT

THE VALUE IS NAME-0

 0.150 ------ BREAK-EVENT Stopped by !stop!

CG-USER(9): (sgp :dcnn t)

(T)

CG-USER(10): (run 10)

 0.050 PROCEDURAL PRODUCTION-FIRED START

 0.050 GOAL SET-BUFFER-CHUNK GOAL GOAL0

 0.050 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL NAME

 0.100 PROCEDURAL PRODUCTION-FIRED SET-UP

 0.150 PROCEDURAL PRODUCTION-FIRED REPORT

THE VALUE IS NAME

 0.150 ------ BREAK-EVENT Stopped by !stop!

Performance Overview

• Added a set of test models to measure
performance issues

• Bunch of little internal changes

– Things users shouldn’t notice

• Some more noticeable changes

– Chunks

– Vision module

– Procedural module

Chunk changes

(let* ((ht1 (make-hash-table))

 (s1 (hash-table-size ht1))

 (ht2 (make-hash-table :size s1))

 (s2 (hash-table-size ht2)))

 (= s1 s2))

• Fixed how chunks are copied so they don’t keep
growing in some Lisps

• Changed how declarative module stores fan info

– Fan-out list is gone now

Vision module & device interface

• Fewer chunks created
– The virtual devices reuse chunks across proc-display calls

• Deletes chunks when not needed
– The virtual devices delete their chunks when items are

removed from the display

• New parameter :delete-visicon-chunks
– If true vision module will delete unneeded internal chunks

– Defaults to t

– May need to set to nil to work with some extensions (EMMA)

Procedural module

• Production matching
– Easy target
– Sizeable component of most model run times

• Two initial changes
– Internal production representation
– Custom buffer matching code

• Tested with a simple model (one of the performance test

models)
– Lots of productions
– Each tests goal buffer type and single slot
– Only one matches the chunk in the buffer

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000

R
e

al
 t

im
e

 in
 s

e
co

n
d

s

Number of productions

Run for 1000 simulated seconds

ACT-R 6 [r690]

ACT-R 6 [r719+]

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000

R
e

al
 t

im
e

 in
 s

e
co

n
d

s

Number of productions

Run for 1000 simulated seconds

ACT-R 6 [r690]

ACT-R 5

ACT-R 6 [r719+]

Can it do better?

• Try a bigger change

– Algorithmic instead of just improvements

• Why not use RETE?

– Doesn’t really fit our situation

• No search required in matching

• We have a fairly small and volatile set of items to match

• Added a simple decision tree

Decision tree

• Nodes represent the conditions (basic tests)
– Branches for possible values

• Leaves are a set of productions
• Which may need further testing

• Use the ID3 algorithm to build it
– Add condition which has the most information gain
– Heuristic favors smaller depth trees
– Add a cut-off if the info. gain is consistently negative

• Happens at load time
– Does not need to rebuild on a reset

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000

R
e

al
 t

im
e

 in
 s

e
co

n
d

s

Number of productions

Load and run for 1000 simulated seconds

ACT-R 6 [r690]

ACT-R 6 [r719+]

ACT-R 6 [tree]

0.8

0.85

0.9

0.95

1

1.05

1.1

3 4 4 4 5 5 5 6 6 7 7 8 10 10 11 11 12 27 27 9(89)

%
 r

u
n

 t
im

e
 w

it
h

 t
re

e

10 seconds of run time

test models

Notes for the procedural tree

• Not enabled by default

– need to set the :use-tree parameter to t

• Considerations

– Time to build the tree

• Reloading can be more costly

– Space to hold the tree

• Trading off space for time savings

• More useful for models with lots of productions

• Works for tutorial and test models

– Could benefit from more user testing

Miscellaneous (1)

• Added appropriate tests to work with RMCL
– Updated MCL that works on Intel Macs through Rosetta

• New parameter :short-copy-names
– Defaults to nil

– If set to t then copies of copies don’t append a new -0 and
just increment #

 visual-location3-1 instead of visual-location3-0-0

Miscellaneous (2)

• P* doesn’t verify slot names in modification
requests
– Allows a module to extend chunk-types “on the fly” if needed in

addition to the procedural module’s ability to extend them

(p* test

 =buffer>

 isa some-type

 ...

 ==>

 ...

 =buffer>

 =slot-name =value)

(p* test

 =buffer>

 isa some-type

 ...

 ==>

 ...

 +buffer>

 =slot-name =value)

