
Unit 3 Attention and Actions

Dan Bothell
Department of Psychology
Carnegie Mellon University

Perceptual-Motor Modules & Buffers

� Encode the world
(input)

� Vision Module

� Perform actions
(output)

� Motor ModuleVision Module
� visual
� visual-location

� Audition Module
� aural
� aural-location

Motor Module
� manual

� Speech Module
� vocal

2

Vision Module

� “Where” system
� Provides information about visual locations
� Ask for locations with certain properties

� X and Y location, size, color, etc.
� Very fast, places results in visual-location buffer

� “What” system
� Model of visual attention
� Shift attention to an object

� A chunk is created representing that object
� Placed in the visual buffer

� Takes time
� Only one visual attention shift at a time

3

Visual Icon

Window

Ok

Done semi-automatically
(proc-display)

Visicon

feature

feature

feature

feature

visual
object

visual
object

visual
object

4

+visual>+visual-location>

feature

feature

feature

feature

=visual-location>

=visual>

visual
object

visual
object

feature

Cognition-Vision Interface

� Requests to the “where” system (visual-location
buffer):
� Specify a set of constraints

� Visual properties of the object (e.g. “color red”)
� Spatial location of the object (e.g. “screen-x less-than 153”)
Returns a result immediately� Returns a result immediately

� Supports things like “pop-out” search

� A request to the “what” system (visual buffer)
� Only need to specify a visual location
� Attention shifts to what is there
� Default timing is a fixed cost of 85 ms

5

Find-shift-harvest Paradigm

� Three production sequence typically used to
access visual information

� Find� Find
� Request a chunk of “where” information be put

into the visual-location buffer
� Produces a FIND-LOCATION event in the trace
� This step can occasionally be skipped

6

Example Find

IF
the goal is to find a red letter

and the visual-location buffer is empty

THEN

(P example-find

"find a red text item"

=goal>

ISA report-red

?visual-location>

buffer empty

==>
THEN
request a visual-location specifying

color and object type

==>

+visual-location>

ISA visual-location

color red

kind text

)

7

Find-shift-harvest Paradigm

� Shift
� Harvest the visual-location chunk
� Initiate an attention shift with a request to the

visual buffervisual buffer
� Remember to check that the module is free

� Produces a MOVE-ATTENTION event

8

Example Shift

IF
the goal is to find a red letter

and a visual location was found

and the vision module is not busy

(P example-shift

"Shifts attention to the object"

=goal>

ISA report-red

=visual-location>

ISA visual-location

?visual>
and the vision module is not busy

THEN
shift attention to that location

state free

==>

+visual>

ISA move-attention

screen-pos =visual-location

)

9

Find-shift-harvest Paradigm

� Harvest
� After attention shifts and the item is encoded for

the visual buffer
� takes time to move attention
� The ENCODING-COMPLETE event in the trace signals

that vision is done

� Harvest the chunk from the visual buffer

10

Example Harvest

IF
the goal is to find a red letter

and a text visual object with some
value is available

(P example-harvest

"report value of the object"

=goal>

ISA report-red

=visual>

ISA text

value =letter

THEN
press the corresponding key

==>

+manual>

ISA press-key

key =letter

)

11

Visual-location Requests

� Return a chunk with features that match
� If more than one matches it picks the “newest”
� If still multiple matches then randomly from those

� Can use any visual-location slots in the request any
number of times with any of the modifiers
� -,<,>,<=,>=

The inequality tests only work for numbers

VISUAL-LOCATION

SCREEN-X

SCREEN-Y

DISTANCE

KIND

COLOR

VALUE

HEIGHT

WIDTH

� The inequality tests only work for numbers

� Three special values that can be used
� Lowest/Highest

� Only works for numbers
� Match fixed specifications first
� From those pick the one with the least/greatest value in the slot
� If multiple relative constraints process them “left to right”

� Current
� Matching the value of the last visual-location chunk attended

SIZE

+VISUAL-LOCATION>

isa visual-location

kind text

color current

size highest

> screen-x 50

<= screen-x 100

screen-x lowest

<= screen-y current

12

:Attended

� One of the most common things to test for in a
visual-location request is the attended state

� Not an actual slot of the visual-location chunk-type
� A request parameter :attended

� Three possible values� Three possible values
� T, meaning the location is marked as attended
� NIL, meaning it is not marked as attended
� NEW, meaning it is not marked as attended

AND the item is a new entry into the visicon (last 500 ms)

� Shifting attention to a location will automatically
mark it as attended
� even if the result is never explicitly harvested

13

Attention markers

� The attended markers for visual-locations are
called Finsts (fingers of instantiation)

� They are limited both in number and duration
� Defaults to 4 finsts that last 3 seconds� Defaults to 4 finsts that last 3 seconds

� Can be changed with parameters

� When limit exceeded the oldest one is reused
� The feature that was marked as attended t then

reverts to attended nil

14

Audition

� Works a lot like vision

� Find happens via aural-location request
� Very often not needed

� Shift auditory attention with an aural
request for sound

+aural-location>

isa audio-event

+aural>

isa sound

event =aural-location
request for sound

� Harvest result from the aural buffer

� The timing is different from vision
� Events take time to enter the audicon
� Attentional latency is longer than vision
� Detection and encoding depend on type of

sound
� Tones, words, numeric digits, user defined

event =aural-location

=aural>

isa sound

15

Buffer Stuffing

� Previously mentioned not needing a visual-
location or aural-location request

� Modules have limited bottom-up control
� When there is a change in the world the

perceptual modules may put an item into the perceptual modules may put an item into the
*-location buffer
� If the buffer is currently empty and an appropriate

item exists

� What gets selected can be controlled
� Default for visual-location is left-most unattended item
� Default for aural-location is any sound

16

Motor Module

� Movement is divided into two phases:
preparation and execution

� Can only prepare one movement at a time,
and can only execute one movement at a
timetime
� But, can prepare one while executing another

� Manual buffer queries allow testing detailed
state
� preparation free/busy
� execution free/busy

17

Motor Module actions

� Movement styles (types of movement):
� Punch: simple downstroke followed by an upstroke of a finger,

for pressing a key that is already directly below a given finger
� Peck: directed movement of a finger to a location followed by a

keystroke, all as one movement
Peck-recoil: same as "peck" above, but the finger moves back to � Peck-recoil: same as "peck" above, but the finger moves back to
the location at which it started

� Ply: moves a device (e.g. mouse) to a location in space
� Complex movements typically built on these movements

� move-cursor is a ply with a visual-location or visual-object
destination

� press-key is either a punch or peck-recoil depending on the key

18

Example

� Simple typing can be done with the
PRESS-KEY “macro”:
� +manual>

ISA press-key
key “C”

� which is really just a macro for...
� +manual>

ISA peck-recoil
hand left
finger middle
r 1
theta 1.57

19

Movement Style Components

� “Punch” the key beneath a finger
� 3 features:

� Movement style itself “punch”
� Hand
� Finger

� “Peck-recoil” – hit a key not below the finger
Adds 2 more features:� Adds 2 more features:
� Distance
� Direction

� Move the mouse to a new location
� Has 4 features:

� Movement style itself “ply”
� Hand
� Distance
� Direction

20

Preparation Time

� Time to prepare a movement is determined by
the number of features that need to be prepared
� 50 ms per feature

� The Motor Module remembers the last
movement that was prepared and will re-use
features when it can
movement that was prepared and will re-use
features when it can

� Features are hierarchical:
� A new style will always result in no savings
� If only finger changes, only that feature needs to be

prepared
� If hand changes, both hand and finger need prep
� Style > hand > finger

21

Execution Time

� Depends entirely on the movement being
made

� Some movements (e.g. “punch”) have a
fixed, short durationfixed, short duration

� Other movements (e.g. mouse moves) have
a variable duration that is determined by the
properties of the movement
� In the case of an aimed movement, Fitts’ law is

used

22

Preparation + Execution Example

� Press same key twice:

0.050 PROCEDURAL PRODUCTION-FIRED PRESS-KEY
0.050 PROCEDURAL MODULE-REQUEST MANUAL
0.050 MOTOR PRESS-KEY r
0.300 MOTOR PREPARATION-COMPLETE 400 ms

23

0.300 MOTOR PREPARATION-COMPLETE
0.350 MOTOR INITIATION-COMPLETE
0.450 MOTOR OUTPUT-KEY #(4 3)
0.600 MOTOR FINISH-MOVEMENT
0.650 PROCEDURAL PRODUCTION-FIRED PRESS-KEY
0.650 PROCEDURAL MODULE-REQUEST MANUAL
0.650 MOTOR PRESS-KEY r
0.650 MOTOR PREPARATION-COMPLETE
0.700 MOTOR INITIATION-COMPLETE
0.800 MOTOR OUTPUT-KEY #(4 3)
0.950 MOTOR FINISH-MOVEMENT

150 ms

Speech Module

� Rough approximation for short
utterances
� Execution time is a linear function of the

number of characters to be spoken

� Same kind of prepare-execute
system as Motor Module

+vocal>

Isa speak

String "hello"

system as Motor Module
� Only two commands:

� SPEAK
� Output speech which the model and

others may hear
� SUBVOCALIZE

� Output speech which only the model can
hear

+vocal>

Isa subvocalize

String "cheese"

24

Serial & Parallel Processing

� Serial
� Procedural module

� fires one production at a
time

Other modules

� Parallel
� The modules can all

operate in parallel
� Internal mechanisms of

a module could be � Other modules
� Only perform one request at

a time
� Put a single chunk into their

buffers

a module could be
highly parallel
� Conflict resolution
� Making a retrieval
� Finding a visual-location

25

ACT-R and Parallelism

� See something, type it

26

ACT-R and Parallelism

� See something, type it, look at next

27

ACT-R and Parallelism

� See something, type it, say it, look at next

28

ACT-R and Parallelism

� See something, type it, say it, look at next, remember something

29

Data Fitting

� From now on the assignment models will be
compared to human performance
� Mostly Response time

� Correlation and Mean deviation

� Provides a way to compare and judge the
modelsmodels

� Not the only way
� Plausibility
� Generality
� Simplicity

� Make sure the model does the right thing before
trying to tune it with parameters!

30

Example: Sperling

� Classic visual icon experiment
� Present three rows of letters very briefly
� Report back as many as you can
� Row cued by tone (high, middle, low)

� The ACT-R model� The ACT-R model
� Uses slightly different timing for reasons explained in

the unit
� Starts encoding items at random until tone is processed
� Once tone is processed, encode only from the cued row
� When everything disappears, report

� Good idea to make sure you understand this
model before you start the assignment

31

Assignment: Subitizing

� Simple task: A bunch of objects appear on the
display, report the number
� Model must respond by speaking the answer

� Model starts with the counting facts from 0-11
� Will need to manage visual attention � Will need to manage visual attention

� Make sure the model gets to every item
� Needs to know when its done
� Given 10 finsts with a long duration to start

� Do not have to use that if you do not want to

� Should not need to adjust parameters to get a
reasonable fit to the data

32

Debugging Tips

� Check the visicon
� Call (print-visicon) at the prompt
� Visicon button in the environment
� Will show you where things are, what they are, and

their attended statetheir attended state

� Check the state of the buffers and their modules
with the (buffer-status) command or environment
button

� Always have the stepper and Why not? tools.

33

Questions?

34

