Unit 3 Attention and Actions

Dan Bothell
Department of Psychology
Carnegie Mellon University



Perceptual-Motor Modules & Buffers

Encode the world Perform actions

(Input) (output)

o Vision Module o Motor Module
visual manual

visual-location

o Speech Module
o Audition Module vocal

aural
aural-location



Vision Module

“Where” system
o Provides information about visual locations

o Ask for locations with certain properties
X and Y location, size, color, etc.

o Very fast, places results in visual-location buffer

“What” system
o Model of visual attention

o Shift attention to an object
A chunk is created representing that object
Placed in the visual buffer

o Takes time
o Only one visual attention shift at a time



‘ Visual Icon

Done semi-automatically Visicon
(proc-display)

visual
object

feature

visual

feature

4 - feature
feature

 > feature

e feature

\ [/

A\

/

visual
feature |

object

object

visual
object

visual

>~ feature

+visual-location> _ .
=visual-location>

object

+visual>

™~

=visual>




Cognition-Vision Intertace

Requests to the “where” system (visual-location
buffer):

o Specify a set of constraints
Visual properties of the object (e.g. “color red”)
Spatial location of the object (e.g. “screen-x less-than 153”)

o Returns a result immediately
o Supports things like “pop-out” search

A request to the “what” system (visual buffer)
o Only need to specify a visual location

o Attention shifts to what is there

o Default timing is a fixed cost of 85 ms



Find- Paradigm

Three production sequence typically used to
access visual information

Find

o Request a chunk of “where” information be put
Into the visual-location buffer

o Produces a FIND-LOCATION event in the trace

o This step can occasionally be skipped



Example Find

IF
the goal is to find a red letter

and the visual-location buffer is empty

THEN

request a visual-location specifying
color and object type

(P exanple-find
"find ared text itenf

=goal >

| SA report-red
?vi sual -1 ocati on>

buf f er enpty

==>
+vi sual -l ocati on>
| SA vi sual -| ocati on
col or red
ki nd t ext



shift Paradigm

Shift

o Harvest the visual-location chunk

o Initiate an attention shift with a request to the
visual buffer

Remember to check that the module is free
o Produces a MOVE-ATTENTION event



Example Shift

IF
the goal is to find a red letter

and a visual location was found
and the vision module is not busy

THEN
shift attention to that location

(P exanpl e-shift
"Shifts attention to the object”

=goal >
| SA report-red
=vi sual - | ocati on>
| SA vi sual -l ocati on
?vi sual >
state free
==>
+vi sual >
| SA nove-attention

screen-pos =visual -l ocation



harvest Paradigm

Harvest

o After attention shifts and the item i1s encoded for
the visual buffer

takes time to move attention

The ENCODING-COMPLETE event in the trace signals
that vision is done

o Harvest the chunk from the visual buffer

10



Example Harvest

IF
the goal is to find a red letter

and a text visual object with some
value is available

THEN
press the corresponding key

(P exanpl e- har vest

"report value of the object”

=goal >
| SA
=vi sual >
| SA
val ue

report-red

t ext
=letter

press- key
=l etter

11



Visual-location Requests

Return a chunk with features that match
o If more than one matches it picks the “newest”
o If still multiple matches then randomly from those

Can use any visual-location slots in the request any
number of times with any of the modifiers
o -<,><=>=

o The inequality tests only work for numbers

Three special values that can be used

o Lowest/Highest
Only works for numbers
Match fixed specifications first
From those pick the one with the least/greatest value in the slot
If multiple relative constraints process them “left to right”

o Current
Matching the value of the last visual-location chunk attended

>

VI SUAL- LOCATI ON

SCREEN- X
SCREEN- Y
DI STANCE
KI ND
COLOR
VALUE
HEI GHT
W DTH

SI ZE

+VI SUAL- LOCATI ON>

i sa visual -1ocation
kind text

col or current

si ze highest
screen-x 50

<= screen-x 100

screen-x | owest

<= screen-y current

12



:Attended

One of the most common things to test for in a

visual-location request Is the attended state

o Not an actual slot of the visual-location chunk-type
A request parameter :attended

Three possible values
o T, meaning the location is marked as attended
2 NIL, meaning it is not marked as attended

o NEW, meaning it is not marked as attended
AND the item is a new entry into the visicon (last 500 ms)

Shifting attention to a location will automatically
mark it as attended

o even if the result is never explicitly harvested

13



Attention markers

The attended markers for visual-locations are
called Finsts (fingers of instantiation)

They are limited both in number and duration

Defaults to 4 finsts that last 3 seconds
o Can be changed with parameters

When limit exceeded the oldest one Is reused

o The feature that was marked as attended t then
reverts to attended nil

14



Audition

Works a lot like vision

Find happens via aural-location request  aural -1 ocati on>

o Very often not needed 'sa audi o-event
Shift auditory attention with an aural +aural >
request for sound | sa sound |
event =aur al -1 ocati on
Harvest result from the aural buffer _aural >
i sa sound

The timing is different from vision
o Events take time to enter the audicon
o Attentional latency is longer than vision

o Detection and encoding depend on type of
sound
Tones, words, numeric digits, user defined

15



Buffer Stuffing

Previously mentioned not needing a visual-
location or aural-location request

Modules have limited bottom-up control

When there Is a change In the world the
perceptual modules may put an item into the
*-location buffer

o If the buffer is currently empty and an appropriate
item exists

What gets selected can be controlled
o Default for visual-location is left-most unattended item
o Default for aural-location is any sound

16



Motor Module

Movement is divided into two phases:
preparation and execution

Can only prepare one movement at a time,
and can only execute one movement at a
time

o But, can prepare one while executing another

Manual buffer queries allow testing detailed
state

0 preparation free/busy

o execution free/busy

17



Motor Module actions

Movement styles (types of movement):

o Punch: simple downstroke followed by an upstroke of a finger,
for pressing a key that is already directly below a given finger

o Peck: directed movement of a finger to a location followed by a
keystroke, all as one movement

o Peck-recoil: same as "peck" above, but the finger moves back to
the location at which it started

o Ply: moves a device (e.g. mouse) to a location in space
Complex movements typically built on these movements

o move-cursor is a ply with a visual-location or visual-object
destination

o press-key is either a punch or peck-recoil depending on the key

18



Example

Simple typing can be done with the
PRESS-KEY “macro™

o +manual>
ISA press-key
key HC”
o which is really just a macro for...

a +manual>
ISA  peck-recaoll
hand left
finger middle
r 1
theta 1.57

19



Movement Style Components

“Punch” the key beneath a finger

o 3 features:
Movement style itself “punch”
Hand
Finger
“Peck-recoil” — hit a key not below the finger
o Adds 2 more features:
Distance
Direction
Move the mouse to a new location
o Has 4 features:
Movement style itself “ply”
Hand
Distance
Direction

20



Preparation Time

Time to prepare a movement is determined by
the number of features that need to be prepared

2 50 ms per feature

The Motor Module remembers the last
movement that was prepared and will re-use
features when it can

Features are hierarchical:

o A new style will always result in no savings

o If only finger changes, only that feature needs to be
prepared

o If hand changes, both hand and finger need prep
o Style > hand > finger

21



Execution Time

Depends entirely on the movement being
made

Some movements (e.g. “punch”) have a
fixed, short duration

Other movements (e.g. mouse moves) have
a variable duration that is determined by the
properties of the movement

o In the case of an aimed movement, Fitts’ law Is
used

22



‘ Preparation + Execution Example

= Press same key twice:

0.050
0.050
0.050
0.300
0.350
0.450
0.600
0.650
0.650
0.650
0.650
0.700
0.800
0.950

PROCEDURAL
PROCEDURAL
MOTOR
MOTOR
MOTOR
MOTOR
MOTOR
PROCEDURAL
PROCEDURAL
MOTOR
MOTOR
MOTOR
MOTOR
MOTOR

PRODUCTION-FIRED PRESS-KE\
MODULE-REQUEST MANUAL
PRESS-KEY r
PREPARATION-COMPLETE
INITIATION-COMPLETE

OUTPUT-KEY #(4 3) _
FINISH-MOVEMENT

PRODUCTION-FIRED PRESS-KE™Y

MODULE-REQUEST MANUAL
PRESS-KEY r
PREPARATION-COMPLETE
INITIATION-COMPLETE

OUTPUT-KEY #(4 3)
FINISH-MOVEMENT

400 ms

150 ms

23



Speech Module

Rough approximation for short

utterances

o Execution time is a linear function of the
number of characters to be spoken

Same kind of prepare-execute

system as Motor Module

Only two commands:

o SPEAK
Output speech which the model and
others may hear

o SUBVOCALIZE

Output speech which only the model can
hear

+vocal >
| sa speak
String "hell 0"

+vocal >
| sa subvocali ze
String "cheese"

24



Serial & Parallel Processing

Serial Parallel
o Procedural module o The modules can all
fires one production at a operate in parallel
time o Internal mechanisms of
o Other modules a module could be
Only perform one request at highly parallel
a time

Conflict resolution
Making a retrieval
Finding a visual-location

Put a single chunk into their
buffers

25



‘ ACT-R and Parallelism

= See something, type it

Horizontal Graphic Trace

wizual

retrieval

production

manual

wocal

Notes:

=10l x|

| T —

] 50 100 150 200 250 300 350 400 450 500
4| | »]
Gettrace Redisplay |Zemove Teﬂ Save 1F | Save ru1ulti.| Save data | Fead data |

+

Range:l tDI

26



‘ ACT-R and Parallelism

= See something, type it, look at next

Horizontal Graphic Trace

wizual

retrieval

production

manual

wocal

Notes:

50

=10l x|

| —

100

150

200 250 300 350 400 450 500

4| | »]
Gettrace Redisplay |Zemove Teﬂ Save 1F | Save ru1ulti.| Save data | Fead data |

+

Range:l tDI

27



‘ ACT-R and Parallelism

= See something, type it, say it, look at next

Gettrace

28



‘ ACT-R and Parallelism

See something, type it, say it, look at next, remember something

Horizontal Graphic Trace =10 x|

retriewval

production -
manusl

wooal

0 50 100 150 200 250 300 350 400 450 500 55

al | i

Gettrace Redisplay |Zemove Teﬂ Save 1F | Save ru1ulti.| Save data | Fead data |
+ = Range:l tDI

Notes:

29



Data Fitting

From now on the assignment models will be
compared to human performance

o Mostly Response time
Correlation and Mean deviation

Provides a way to compare and judge the
models

Not the only way

o Plausibility

o Generality

o Simplicity

Make sure the model does the right thing before
trying to tune it with parameters!

30



Example: Sperling

Classic visual icon experiment

o Present three rows of letters very briefly
o Report back as many as you can

o Row cued by tone (high, middle, low)

The ACT-R model

o Uses slightly different timing for reasons explained in
the unit

o Starts encoding items at random until tone is processed
o Once tone is processed, encode only from the cued row
2 When everything disappears, report

Good idea to make sure you understand this
model before you start the assignment

31



Assignment: Subitizing

Simple task: A bunch of objects appear on the
display, report the number

o Model must respond by speaking the answer
Model starts with the counting facts from 0-11

Will need to manage visual attention

o Make sure the model gets to every item

o Needs to know when its done

o Given 10 finsts with a long duration to start
Do not have to use that if you do not want to

Should not need to adjust parameters to get a
reasonable fit to the data

32



Debugging Tips

Check the visicon
o Call (print-visicon) at the prompt
o Visicon button in the environment

a2 Will show you where things are, what they are, and
their attended state

Check the state of the buffers and their modules
with the (buffer-status) command or environment
button

Always have the stepper and Why not? tools.

33



‘ Questions?

34



