
Unit 8: Advanced Production Techniques

In this unit we will describe two additional mechanisms which can be used in the
procedural system of ACT-R. They are called procedural partial matching and dynamic
pattern matching. These capabilities allow for a lot more flexibility in the procedural
system, and they can make it easier to create models which are able to work in situations
where all of the details of the task are not know in advance and thus cannot be explicitly
encoded within the model.

8.1 Procedural partial matching

Procedural partial matching is very similar to the partial matching of declarative memory
as was described in unit 5 of the tutorial. When procedural partial matching is enabled by
setting the :ppm parameter to a number, a production may be selected to fire even when
its conditions do not perfectly match the current buffer contents. This mechanism applies
to all productions being tested and it modifies the conflict resolution process used when
multiple productions match under the looser definition of matching. Other than that
however it does not change any of the other operations of the procedural system and all
other procedural functionality is as described in the previous units.

8.1.1 Condition testing with procedural partial matching

When procedural partial matching is enabled the slot tests for the buffer chunk’s values
are slightly relaxed, but most of the conditions in a production are still tested explicitly.
These conditions must still be true for the production to match: if the production tests a
buffer then that buffer must contain a chunk and the chunk must be of the appropriate
type, all queries must be true as specified, all inequality tests on slots (negations, less-
than, and greater-than comparisons) must be true, and all special conditions specified
with eval or bind operators must be true. The only tests which do not have to be true are
equality tests on the buffer slot contents i.e. tests that specify a specific value for a slot or
tests with variables which are comparing two or more slots. If all of the equality tests are
true, then the production matches just as it would without procedural partial matching
enabled. If some of them are not true the production may still be considered a match
under procedural partial matching.

If a value specified for a buffer’s slot in the production does not match the buffer’s slot’s
current value, then in order for it to be considered a match under procedural partial
matching the mismatching values must be similar. Similarity is defined in the same way
that it is for declarative memory. Thus they must be chunks for which a similarity value
has been specified either through the set-similarities command or a modeler provided
similarity hook function which provides a similarity between the items. [Note, if the
items are not both chunks then they could still be similar if there is a similarity hook
function set as was done for numbers in the 1-hit blackjack model.] The only difference
between the procedural partial matching and declarative partial matching is that for
procedural partial matching items are only considered to be similar if they have a

similarity value which is greater than the current minimum similarity (as set with the :md
parameter). That additional constraint on the similarities is done for practical reasons
because by default, all chunks have a similarity of the :md value to all other chunks.
Without that constraint, any chunk could potentially be a partial match to any other in the
production matching, and that would lead to a lot of difficulty in specifying the control
flow through the model’s productions since explicit state markers could not be used to
guarantee ordering. By disallowing procedural partial matching from using the default
minimum similarity value it allows the modeler to control which items are allowed to be
partial matched in productions.

8.1.2 Conflict resolution with procedural partial matching

If only one production matches then it is selected and fired. When there is more than one
production which matches (including partially matched productions) the production with
the highest utility is the one selected and fired. The only difference when procedural
partial matching is enabled is that productions which are not a perfect match receive a
reduction to their utility. The equation for the utility of production i when procedural
partial matching is enabled is:

() ()),(* jj
j

ii vdsimilarityppmtUtUtility ∑++= ε

Ui(t): Production i’s current true utility value.

ε: The noise which may be added to the utility.

j: The set of slots for which production i had a partially matched value.

ppm: The value of the :ppm parameter.

dj : The desired value for slot j in production i.

vj: The actual value in slot j of the chunk in the buffer.

Thus, the production’s utility is decreased by the similarity of each mismatched value
multiplied by the :ppm setting.

That adjusted utility value is only used for the purposes of conflict resolution. It does not
affect the Ui(t) value used in the utility learning equation or the utility values used during
production compilation learning.

8.1.3 Simple procedural partial matching model

The simple-ppm-test model included with the tutorial unit shows a very simple example
of procedural partial matching. If you open that model you will see that it has only three

productions and there is no Lisp code for an experiment. Everything there except the
:ppm and :cst parameters has been described in previous units, so it should be easy to
understand. The goal buffer starts with a chunk which looks like this:

TEST0-0
 ISA TEST
 VALUE SMALL

and there are three productions which simply test the value slot of the goal chunk and
then output the value from that slot:

(p small (p medium (p large
 =goal> =goal> =goal>
 isa test isa test isa test
 value small value medium value large
 value =val value =val value =val
 ==> ==> ==>
 !output! =val !output! =val !output! =val
 -goal>) -goal>) -goal>)

If you load the model and run it as it is, with procedural partial matching disabled, you
will see a trace like this:

> (run 1.0)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
(P SMALL
 =GOAL>
 ISA TEST
 VALUE SMALL
 VALUE SMALL
 ==>
 !OUTPUT! SMALL
 -GOAL>
)
Parameters for production SMALL:
 :UTILITY 0.000
 :U 0.000
 0.000 PROCEDURAL PRODUCTION-SELECTED SMALL
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED SMALL
SMALL
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.050 ------ Stopped because no events left to process

As expected the production small is selected and fired. Before describing the results with
procedural partial matching enabled the additional output in the trace will be described.

8.1.3.1 The conflict set trace parameter

The :cst parameter which is set to t in the model is the conflict set trace parameter. It is a
model debugging aid similar to the activation trace parameter used with the declarative
memory module. If it is set to t then during every conflict resolution occurrence it will
display the instantiation of each production which matches along with its current utility
parameters. That set of matching productions is referred to as the conflict set. In this
case that is only the production small, and because there is no utility learning on or any
noise in the system that production has a utility and U(t) of 0:

(P SMALL
 =GOAL>
 ISA TEST
 VALUE SMALL
 VALUE SMALL
 ==>
 !OUTPUT! SMALL
 -GOAL>
)
Parameters for production SMALL:
 :UTILITY 0.000
 :U 0.000

8.1.3.2 Turning on ppm

If you change the model to enable procedural partial matching by setting the :ppm
parameter to 1, save and reload it, then run it you will see a trace like this:

> (run 1.0)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
(P SMALL
 =GOAL>
 ISA TEST
 VALUE SMALL
 VALUE SMALL
 ==>
 !OUTPUT! SMALL
 -GOAL>
)
Parameters for production SMALL:
 :UTILITY 0.000
 :U 0.000
(P MEDIUM
 =GOAL>
 ISA TEST
 VALUE [MEDIUM, SMALL, -0.5]
 VALUE SMALL
 ==>
 !OUTPUT! SMALL
 -GOAL>
)
Parameters for production MEDIUM:
 :UTILITY -0.500
 :U 0.000
 0.000 PROCEDURAL PRODUCTION-SELECTED SMALL
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL

 0.050 PROCEDURAL PRODUCTION-FIRED SMALL
SMALL
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.050 ------ Stopped because no events left to process

Again we see the production small being selected and fired, but now we see that the
production medium was also a member of the conflict set. For a partially matched
production the instantiation of the production will show additional information about the
partial match. Here is the instantiation for the production medium from the trace:

(P MEDIUM
 =GOAL>
 ISA TEST
 VALUE [MEDIUM, SMALL, -0.5]
 VALUE SMALL
 ==>
 !OUTPUT! SMALL
 -GOAL>
)

In the comparison for the value slot, instead of just seeing medium as was specified in the
production, we see a set of items in brackets (the red text above). That indicates that the
test was not a perfect one. The first item in the brackets was the value specified in the
production. The second item is the buffer chunk’s value for that slot, and the third item is
the similarity between those items.

Another important thing to notice is that the binding for the variable =val in that
production is small (the blue text above). That is because that is the actual content of that
slot in the chunk in the buffer -- the variable bindings come from the slots of the buffer’s
chunk and not values specified in the production.

After the instantiation of medium we see its current utility values:

Parameters for production MEDIUM:
 :UTILITY -0.500
 :U 0.000

The U(t) value for medium is 0 just as it is for small. The utility used for deciding which
production to fire however is not 0 because it was not a perfect match. The similarity
between small and medium is set to -0.5 in the model and the :ppm value was set to 1.
So, the utility of medium is: 0 + 1 * (-0.5) = -0.5.

8.1.3.3 The large production

Why isn’t the production large also considered in the conflict set as a partial match? The
reason is because there is no similarity set between the chunks small and large in the
model. Thus, those chunks have the minimum similarity value and a test for the chunk
large will not be considered a partial match to the chunk small in a production.

8.1.3.4 Adding noise

If the :egs parameter is set to a value greater than 0 then occasionally the medium
production will be selected over the small production because of the noise added to the
utilities. Here is a run where :egs was set to 1 showing medium being selected:

> (run 1.0)
 0.000 PROCEDURAL CONFLICT-RESOLUTION
(P SMALL
 =GOAL>
 ISA TEST
 VALUE SMALL
 VALUE SMALL
 ==>
 !OUTPUT! SMALL
 -GOAL>
)
Parameters for production SMALL:
 :UTILITY -0.713
 :U 0.000
(P MEDIUM
 =GOAL>
 ISA TEST
 VALUE [MEDIUM, SMALL, -0.5]
 VALUE SMALL
 ==>
 !OUTPUT! SMALL
 -GOAL>
)
Parameters for production MEDIUM:
 :UTILITY 0.453
 :U 0.000
 0.000 PROCEDURAL PRODUCTION-SELECTED MEDIUM
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED MEDIUM
SMALL
 0.050 PROCEDURAL CLEAR-BUFFER GOAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.050 ------ Stopped because no events left to process

8.1.4 Building Sticks Task alternate model

To see procedural partial matching used in an actual task this unit contains a different
model of the learning version of the Building Sticks Task from unit 6 of the tutorial. The
main difference between this model and the one presented in unit 6 is that instead of
having separate productions to force and decide for the over and under strategies this
model only has a decide production for each strategy.

There are several minor differences between this models and the previous one with
respect to how the encoding is performed to enable the simpler test, but we will only be
looking in detail at the two major differences between them. Those differences are in
how the strategy is initially chosen and how the model computes the difference between
the current stick’s length and the goal stick’s length.

8.1.4.1 Strategy choice

In this model these are the productions which decide between the overshoot and
undershoot strategies:

(p decide-over
 =goal>
 isa try-strategy
 state choose-strategy
 - strategy over
 =imaginal>
 isa encoding
 goal-length =d
 b-len =d

==>
 =imaginal>
 =goal>
 state prepare-mouse
 strategy over
 +visual-location>
 isa visual-location
 kind oval
 screen-y 60)

(p decide-under
 =goal>
 isa try-strategy
 state choose-strategy
 - strategy under
 =imaginal>
 isa encoding
 goal-length =d
 c-len =d

==>
 =imaginal>
 =goal>
 state prepare-mouse
 strategy under
 +visual-location>
 isa visual-location
 kind oval
 screen-y 85)

They are essentially a combination of the force and decide productions from the previous
model for each strategy. Because they test the current strategy value they still operate as
a forcing production when the model fails and has to choose the other strategy, but when
there is no current strategy either one can be potentially chosen and the utilities will
determine which one is chosen.

Procedural partial matching is enabled for this task and a similarity between numbers is
set up for this model with these parameter settings in the model:

 (sgp :ppm 40 :sim-hook number-sims)

The :ppm value of 40 was estimated to produce a good fit to the data.

The similarities between numbers (the line lengths in pixels) are computed by the
number-sims function specified and are set using a simple linear function to scale the
possible differences into the default similarity range of 0 to -1:

300

)(
),(

baabs
baSimilarity

−−=

Unlike the previous model of this task, this one does not need to compute the difference
between the goal stick’s length and the b and c sticks’ lengths explicitly to determine
whether overshoot or undershoot should be used. Now that happens as a result of the
partial matching in the imaginal buffer test of those productions. Whichever stick is
closer to the goal stick’s length will bias the utility toward that choice.

The initial utilities of the decide-over and decide-under productions are set at 10 in the
model. Given that, we can look at how utility is determined when those productions are
competing on the first problem which has stick lengths of a=15, b=250, c=55, and a goal
of 125. The chunk in the imaginal buffer at that time will look like this:

ENCODING0-0
 ISA ENCODING
 A-LOC VISUAL-LOCATION8-0-0
 B-LOC VISUAL-LOCATION9-0-0
 C-LOC VISUAL-LOCATION10-0-0
 GOAL-LOC VISUAL-LOCATION11-0-0
 LENGTH NIL
 GOAL-LENGTH 125
 B-LEN 250
 C-LEN 55
 DIFFERENCE NIL

The length of the goal, b, and c sticks are the important tests for the decide productions in
the imaginal buffer tests:

(p decide-over
...
 =imaginal>
 isa encoding
 goal-length =d
 b-len =d
==> ...)

(p decide-under
...
 =imaginal>
 isa encoding
 goal-length =d
 c-len =d
==> ...)

Each production is checking to see if the desired stick and the goal stick are the same
length, and the procedural partial matching will adjust the utilities of those productions

based on the similarity between the compared sticks. Here are the instantiations of those
productions showing the similarities as computed from the number-sims function:

 (P DECIDE-OVER
 =GOAL>
 ISA TRY-STRATEGY
 STATE CHOOSE-STRATEGY
 - STRATEGY OVER
 =IMAGINAL>
 ISA ENCODING
 GOAL-LENGTH [250, 125, -0.41666666]
 B-LEN 250
 ==>
 =IMAGINAL>
 =GOAL>
 STATE PREPARE-MOUSE
 STRATEGY OVER
 +VISUAL-LOCATION>
 ISA VISUAL-LOCATION
 KIND OVAL
 SCREEN-Y 60
)

(P DECIDE-UNDER
 =GOAL>
 ISA TRY-STRATEGY
 STATE CHOOSE-STRATEGY
 - STRATEGY UNDER
 =IMAGINAL>
 ISA ENCODING
 GOAL-LENGTH [55, 125, -0.23333333]
 C-LEN 55
 ==>
 =IMAGINAL>
 =GOAL>
 STATE PREPARE-MOUSE
 STRATEGY UNDER
 +VISUAL-LOCATION>
 ISA VISUAL-LOCATION
 KIND OVAL
 SCREEN-Y 85
)

The effective utility of decide-over is -6.666666 (10 + 40 * -0.41666666) and the
effective utility of decide-under is 0.666667 (10 + 40 * -0.23333333). Knowing that the
noise for utilities is set at 3 in the model we can compute the probabilities of choosing
over vs under on the initial trial using the equation presented in unit 6:

∑
=

j

sU

sU

j

i

e

e
iobability

2/

2/

)(Pr

15.

)(Pr 24.4/666.24.4/666.6

24.4/666.6

≈
+

= −

−

ee

e
overobability

85.

)(Pr 24.4/666.24.4/666.6

24.4/666.0

≈
+

= − ee

e
underobability

Thus, the model will pick undershoot about 85% of the time for the first problem.

As in the unit 6 model of the task, this model is also learning utilities based on the
rewards it gets. So, the base utility values of the strategies will be adjusted as it
progresses. Here are the results from running the unit 6 model of the task showing the
average learned utility values for the four productions it needs to make the decision:

> (bst-experiment 100)
CORRELATION: 0.803
MEAN DEVIATION: 17.129

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 23.0 60.0 59.0 70.0 91.0 42.0 80.0 86.0 59.0 34.0 33.0 22.0 54.0 72.0 56.0

DECIDE-OVER : 13.1506
DECIDE-UNDER: 11.1510
FORCE-OVER : 12.1525
FORCE-UNDER : 6.5943

Here are the results of running this new model of the task:

> (bst-experiment 100)
CORRELATION: 0.873
MEAN DEVIATION: 13.943

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 12.0 58.0 45.0 63.0 93.0 31.0 70.0 90.0 59.0 31.0 32.0 24.0 59.0 61.0 42.0

DECIDE-OVER : 11.9724
DECIDE-UNDER: 7.0609

We see a similar shift in the utilities with over gaining utility and under losing utility and
overall this model produces a slightly better fit to the data.

8.1.4.2 Attributing actions to the imaginal module

Before moving on to the other new procedural mechanism there is one other new
capability to look at in the new Building Sticks model. In the previous model of the task
the productions computed the difference between the current stick length and the goal
stick length to decide whether to select stick a or stick c for each of the actions after the
strategy choice had been made using a !bind! action in the production to do the math and
then place that value into a slot of the imaginal buffer:

(p calculate-difference
 =goal>
 isa try-strategy
 state calculate-difference
 =imaginal>

 isa encoding
 length =current-len
 =visual>
 isa line
 width =goal-len
==>
 !bind! =val (abs (- =current-len =goal-len))

 =imaginal>
 length =val

 =goal>
 state consider-next)

In many models abstractions like that are easy to justify and do not cause any issues for
data comparison. However, if one is interested in more low-level details, often when
comparing model data to human data collected from fMRI or EEG studies, then
accounting for the timing of such actions and attributing them to an appropriate module
are important. In the case of the imaginal module, there is a built in mechanism that
allows the modeler to assign user defined functionality to the imaginal module and this
version of the Building Sticks task does so instead of using a !bind! action for computing
the difference. The details of how that is done are in the additional text for this unit if
you are interested in how to do that.

8.2 Dynamic Pattern Matching

Dynamic pattern matching is a powerful mechanism which allows the model to test and
extend its representations based on the current context without that specific information
having to be explicitly encoded into the model. It is particularly important for tasks
where instruction or example following are involved, but can also be useful in other
situations where flexibility or context dependence is necessary.

8.2.1 Basic Operation

The distinguishing feature between dynamic pattern matching and the standard pattern
matching which has been used so far in the tutorial is that with dynamic pattern matching
one can use variables to specify the slots in the conditions and actions of the productions.
Other than that, a dynamically matched production operates just like the standard
productions that have been used throughout the tutorial. Thus, whether standard or
dynamic the following things still apply: only one production can be selected and fired at
a time, the production which is selected will be the one that has the highest utility among
those that match the current state, it takes 50ms to fire the production, utility learning
applies to all productions which have fired when a new reward is received, and if
production compilation is enabled every pair of successive productions which fire may be
combined into a single new production.

Because there is a different syntax for dynamically matched productions a separate
command must be used when one is defining a dynamically matched production (this is
done primarily as a safety measure to prevent unintended modeling errors). Instead of
using the p command, one uses the p* command to create a dynamically matched
production. The syntax for creating a production with p* is a superset of the standard
production syntax – every production which can be defined with p could also be defined
using p*.

There are three things which dynamic pattern matching allows that cannot be done with
standard pattern matching and they will be described in the following sections. For those
descriptions we will be using a very simple model found in the simple-dynamic-model
file. It has three productions which demonstrate those capabilities, and it is a very
simplified version of something that is often done in a model that is following a set of
declarative instructions. All the model does is update the chunk in the imaginal buffer
based on information it retrieves from declarative memory. Because all the components
of this model are known in advance it is not actually necessary to use dynamic pattern
matching, but that should make it easier to understand since it can be compared to the
static productions which would perform the same operations in this case.

8.2.2 Arbitrary slots in conditions

The first thing that dynamic pattern matching allows is the ability to test arbitrary slots in
the conditions of a production. The conditions of the productions start and retrieve-first-
step from the example model show this:

 (p* start
 =goal>
 isa fact
 context =context
 =context =x
 ?imaginal>
 state free
 buffer empty
 ==>
 ...)

 (p* retrieve-first-step
 =goal>
 isa fact
 context =slot
 data =x
 =imaginal>
 isa result
 data1 =x
 =retrieval>
 isa step
 =slot =target
 step first
 ==>
 ...)

The slot tests in red above are instances of dynamic pattern matching. By using a
variable to name a slot in a condition that test now depends on the contents of a buffer at
the time of the test instead of specifying the slot name in advance. That means that the
same production could test different slots based on the current context.

First we will look at the production start.

 (p* start
 =goal>
 isa fact
 context =context
 =context =x
 ?imaginal>
 state free
 buffer empty
 ==>
 =goal>
 context destination
 +imaginal>
 isa result
 data1 =x
 +retrieval>
 isa step
 step first
)

The only things different in that production, relative to those seen previously, are that it is
defined using p* instead of p and this test in the goal buffer’s condition:

 =context =x

That means that the slot being tested will be the one which corresponds to the binding of
the variable =context. The variable =x will be bound to the value of that slot. The
=context variable is bound to the value of the context slot of the chunk in the goal buffer
just as it is done for static productions.

Before running the model we will look at the contents of the goal buffer and see how this
will apply for pattern matching. [If you want, you could run the model using the
environment’s stepper in tutor mode as was used in unit 1 and try to instantiate the
production yourself before continuing.]

Here is the initial chunk placed in the goal buffer in the model:

FACT0-0
 ISA FACT
 CONTEXT DATA
 DATA 10

and here is the goal buffer test from the start production:

 =goal>
 isa fact
 context =context

 =context =x

The chunk-type matches the isa specification. The =context variable is bound to the value
in the context slot, which is data. Then the slot which corresponds to the binding of
=context, which is data, is used to bind the variable =x. Thus, =x gets bound to 10. If the
binding of =context did not correspond to a slot of the chunk in the buffer then the
production would not match. The rest of the start production operates just like all the
other productions that have been seen previously in the tutorial and thus should not need
further explanation.

When we run the model with the :cst parameter on to show the instantiation of matching
productions this is what the start production looks like:

(P* START
 =GOAL>
 ISA FACT
 CONTEXT DATA
 DATA 10
 ?IMAGINAL>
 STATE FREE
 BUFFER EMPTY
 ==>
 =GOAL>
 CONTEXT DESTINATION
 +IMAGINAL>
 ISA RESULT
 DATA1 10
 +RETRIEVAL>
 ISA STEP
 STEP FIRST
)

That instantiation looks just like one from a statically matched production, but the
important thing to remember is that the instantiation of a dynamic production may have
instantiated variables in both the slot value and slot name positions.

The retrieve-first-step production also has a dynamic test in its conditions:

 (p* retrieve-first-step
 =goal>
 isa fact
 context =slot
 data =x
 =imaginal>
 isa result
 data1 =x
 =retrieval>
 isa step
 =slot =target
 step first
 ==>
 ...)

In this case, that test involves multiple buffers. The value for the =slot variable is bound
from one buffer and used to test a slot in a different buffer. Again, you may want to step

through that in tutor mode with the environment and instantiate it yourself to get a better
feel for how this works before looking at the instantiation below.

After the start production fires, the goal buffer’s chunk looks like this:

FACT0-0
 ISA FACT
 CONTEXT DESTINATION
 DATA 10

Thus, in the goal buffer condition of retrieve-first-step the =slot variable will be bound to
destination and the =x variable will be bound to 10.

The chunk created by the start production in the imaginal buffer looks like this:

RESULT0-0
 ISA RESULT
 DATA1 10
 DATA2 NIL

That matches the specification for the imaginal buffer since =x is bound to 10.

The chunk which is in the retrieval buffer looks like this:

A-0
 ISA STEP
 STEP FIRST
 DESTINATION DATA2

and this is the condition for that buffer from the retrieve-first-step production:

 =retrieval>
 isa step
 =slot =target
 step first

The isa test and the step slot both match the chunk in the buffer. The =slot variable is
bound to destination from the goal buffer, and thus the variable =target will be bound to
the value of the destination slot from the chunk in the retrieval buffer, which is data2. If
there was not a slot named destination in the chunk in the retrieval buffer then this
condition would not have matched and the production would not be selected.

Here is the instantiation of that production from the trace:

(P* RETRIEVE-FIRST-STEP
 =GOAL>
 ISA FACT
 CONTEXT DESTINATION
 DATA 10
 =IMAGINAL>

 ISA RESULT
 DATA1 10
 =RETRIEVAL>
 ISA STEP
 DESTINATION DATA2
 STEP FIRST
 ==>
 =GOAL>
 DATA 11
 =IMAGINAL>
 DATA2 10
 +RETRIEVAL>
 ISA STEP
 STEP SECOND
)

Though not shown in these examples, the dynamic conditions may also be used with any
of the modifiers for a slot test as well as multiple times within or across buffer conditions.
Thus, this set of conditions would be valid in a dynamically specified production
(assuming appropriate chunk-type definitions):

=goal>
 isa state
 context =context
=imaginal>
 isa representation
 > =min-s 0
 =min-s =min
 > =max-s =min
 =context current
=retrieval>
 isa fact
 - =context complete
 max-slot =max-s
 min-slot =min-s

However, there are some constraints imposed on the use of dynamic conditions and those
will be described in a later section.

8.2.3 Arbitrary slots in actions

The actions of the retrieve-first-step production show how dynamic pattern matching can
be used to specify an action based on the current context. In the modification of the
imaginal buffer we see this action:

 =imaginal>
 =target =x

As with the conditions, that means that the slot of the chunk in the imaginal buffer that
will be modified will be the one bound to the variable =target. From the previous section
we saw that that was the value data2, and that the =x variable was bound to 10. Thus this
action will modify the chunk in the imaginal buffer so that its data2 slot has the value 10.

Here is the chunk in the imaginal buffer after retrieve-first-step fires.

RESULT0-0
 ISA RESULT
 DATA1 10
 DATA2 10

A variable may be used to specify a slot in any buffer modification or buffer request
action of a dynamically matching production. However, because such values are only
determined when the production actually matches, it is possible that the production may
attempt to make a modification or request with a slot that is not valid for the chunk-type
that corresponds to the action. In the event of buffer modification actions there is a
special mechanism which handles that, as described in the next section. For buffer
requests, if an invalid slot is specified that will usually lead to a warning and the failure to
execute the request, but could also result in errors occurring during the run. Thus, if slots
of requests are specified dynamically, care should be taken to ensure the productions
perform other tests, either in that production, or elsewhere in the sequence of productions,
to protect against invalid requests.

8.2.4 Extending chunks with new slots

The final production in the test model, retrieve-second-step, shows the final new
capability which dynamic pattern matching allows. Here is the production:

(p* retrieve-second-step
 =goal>
 isa fact
 context =slot
 data =x
 =imaginal>
 isa result
 =retrieval>
 isa step
 =slot =target
 step second
 ==>
 =imaginal>
 =target =x)

Other than specifying that the step slot of the retrieved chunk is the value second the
conditions of this production are exactly the same as they are for the retrieve-first-step
production, and the action of this production is a modification to the chunk in the
imaginal buffer which looks exactly the same as the one from the retrieve-first-step
production.

The significant difference between retrieve-first-step and retrieve-second-step is not in
the specifications of the productions, but the contents of the buffers when they are

selected. Retrieve-first-step was described in the previous section, and essentially the
same matching process holds true for retrieve-second-step. However, the bindings for the
variables are now different. Here are the chunks from the goal and retrieval buffers after
retrieve-first-step fires which match the retrieve-second-step production:

GOAL: FACT0-0
FACT0-0
 ISA FACT
 CONTEXT DESTINATION
 DATA 11

RETRIEVAL: B-0 [B]
B-0
 ISA STEP
 STEP SECOND
 DESTINATION DATA3

The variable bindings from the conditions of the production are: =slot is bound to
destination, =x is bound to 11, and =target is bound to data3. Given those bindings, the
instantiation of the action of this production will look like this:

 =imaginal>
 data3 11

Here is the chunk which is in the imaginal buffer at that time:

RESULT0-0
 ISA RESULT
 DATA1 10
 DATA2 10

and here is the specification of the corresponding chunk-type:

(chunk-type result data1 data2)

The important thing to notice is that the chunk does not have a slot named data3, but that
is what the modification action specifies to change. When a dynamically determined
modification action specifies a slot which does not exist in the chunk being modified it
will extend that chunk’s type to add the specified slot. Looking at the trace resulting
from this production firing we see an event which indicates that the result chunk-type is
being extended:

0.350 PROCEDURAL PRODUCTION-FIRED RETRIEVE-SECOND-STEP
0.350 PROCEDURAL EXTENDING-CHUNK-TYPE RESULT
0.350 PROCEDURAL MOD-BUFFER-CHUNK IMAGINAL

Here is the result for the chunk in the imaginal buffer after that occurs:

IMAGINAL: RESULT0-0

RESULT0-0
 ISA RESULT
 DATA1 10
 DATA2 10
 DATA3 11

This mechanism allows the model to build its chunk-type representations as needed
instead of requiring all possible slots be specified up front.

8.2.5 Constraints on dynamic pattern matching

Dynamic pattern matching adds a lot of flexibility to the specification of productions, and
this flexibility allows for a lot more powerful productions to be created. However, since
ACT-R is intended to be a model of human cognition, there are two constraints imposed
upon how dynamic pattern matching works to maintain the plausibility of the system.

8.2.5.1 No Search

The first constraint on dynamic pattern matching is that it does not require searching to
find a match. All productions which use dynamic pattern matching must be specified so
that all variables are bound directly based on the contents of slots. The procedural
module will not allow the specification of a condition like this:

=goal>
 isa example
 =some-slot desired-value

which requires finding a slot which has a particular value. If search like that were
allowed then the matching of a production could become an NP complete task.

8.2.5.2 One level of indirection

The other constraint on dynamic pattern matching is that it only allows one level of
indirection. All of the variables which are used as slot indicators must be bound to slots
which are specified as constants. Thus, one cannot use a dynamically matched slot’s
value as a slot indicator like this:

=goal>
 isa example
 first-slot =s1
 =s1 =next-slot
 =next-slot value

Allowing an unbounded level of indirection is not plausible, thus some constraint needed
to be determined for the indirection. A single level was chosen as the constraint because
that was all that was necessary to provide the abstractions needed and such a mechanism
appears to be realizable within the human brain.

8.2.6 New paired-learning model

In unit 7 the paired-learning model performed the paired associate task based on a set of
declarative instructions and a set of somewhat general productions for interpreting
instructions. By using dynamically matched productions, a new model of the task can be
written using a more general declarative representation and with productions which are
able to handle more situations than those of the previous model. The basic operation of
the model is the same, and it uses the same set of instructions but with a different
declarative representation. Thus, this unit will not describe the new model in detail and
will only note the significant differences from the previous model.

8.2.6.1 Chunk-type hierarchy

Before looking at the productions of the new model, there is one other feature used which
has not been presented previously in the tutorial. That feature is the ability to create a
hierarchy of chunk-types for a model. When creating a new chunk-type one can
optionally specify an existing chunk-type to be the parent type of that new type. The
newly created type will have all the slots of the parent type by default, and it may add
additional slots of its own. This is a modeling feature which can help when writing a
model to make the productions easier to write and understand.

When looking at descriptions of a chunk-type, for instance by calling chunk-type without
any parameters, if a chunk-type has a parent type that will be shown with an arrow
pointing to the chunk-type name followed by the parent type. For example, all of the
chunk-types for the visual objects which the model attends, like text and lines, are sub-
types of the chunk-type visual-object as shown in the output from the chunk-type
command here:

VISUAL-OBJECT
 SCREEN-POS
 VALUE
 STATUS
 COLOR
 HEIGHT
 WIDTH

TEXT <- VISUAL-OBJECT
 SCREEN-POS
 VALUE
 STATUS
 COLOR
 HEIGHT
 WIDTH
 TEXT (T)

LINE <- VISUAL-OBJECT
 SCREEN-POS
 VALUE
 STATUS
 COLOR
 HEIGHT
 WIDTH
 END1-X

 END1-Y
 END2-X
 END2-Y

When testing the conditions for a chunk in a buffer the isa test will match to the specific
type named as well as any type which has that type as a parent. Thus, this condition in a
production:

=visual>
 isa visual-object
 value =val

would not discriminate based on the type of object being attended and could match to a
line, text, or any other chunk-type which has visual-object as a parent. Whereas these
conditions:

=visual>
 isa text
 value =val

=visual>
 isa line
 value =val

will only match if the item is of the specific chunk-type listed (or a type which has that
type as a parent).

To create a chunk-type as a sub-type of another type one needs to specify that using an
:include in the chunk-type definition like this as used in the paired-learning-dynamic
model:

(chunk-type operator pre)
(chunk-type (action (:include operator)) action post)
(chunk-type (detailed-action (:include action)) required label)
(chunk-type (test (:include operator)) slot success failure)

It creates a chunk-type called operator with one slot named pre, and then it defines three
other chunk-types called action, detailed-action, and test which are all created as a sub-
type of another chunk-type. The action and test types are both directly sub-types of the
operator chunk-type. Therefore each of those sub-types will have a slot called pre along
with their own set of slots as specified above. The detailed-action type is specified as a
sub-type of the action chunk-type. That means it will have all of the slots which the
action chunk-type has as well as the slots it specifies. Since the action chunk-type is a
sub-type of the operator chunk-type the detailed-action chunk-type will also be a sub-type
of the operator chunk-type. Here is how they are shown in the list of chunk-types:

OPERATOR
 PRE

ACTION <- OPERATOR
 PRE

 ACTION
 POST

DETAILED-ACTION <- ACTION
 PRE
 ACTION
 POST
 REQUIRED
 LABEL

TEST <- OPERATOR
 PRE
 SLOT
 SUCCESS
 FAILURE

In this model, using a chunk-type hierarchy allows the use of a single production to
retrieve the next operator like this:

(p retrieve-operator
 =goal>
 isa task
 state =state
 step ready
 ==>
 +retrieval>
 isa operator
 pre =state
 =goal>
 step retrieving-operator
 context nil)

Then (as will be seen in the next section) it has productions which are specific to the type
of operator which is retrieved to perform the tasks needed. Thus, with the chunk-type
hierarchy the productions should be easier to understand because different operators are
indicated appropriately in the isa tests of the productions and have slots with names that
are meaningful to the task being performed. Of course it would also be possible to write
the model using a single chunk-type which either had all of the slots needed or which
reused slots for different purposes based on the action, as the arg1 and arg2 slots were in
the previous paired-learning model, and it would still perform the given tasks the same
way. Based on that, it would appear that the chunk-type hierarchy is just a modeling
convenience in ACT-R. However, although the models for those tasks would perform
the same, they might differ in the chunks that the models learn and store in declarative
memory. In tasks which are dependent on that learned information, how the knowledge
is organized can be important, particularly when partial matching is used because the
chunk-type of the request is not subject to errors in partial matching. Thus there are
models where the organization of the learned information into a hierarchy can be an
important component of the model and not just a convenience for the modeler.

8.2.6.2 Generality from the instructions

One difference between this model and the previous one is that the instructions
themselves specify the contents of the items to be learned. In the previous model the

chunk-type for holding the pairs that were learned was prespecified to have two slots,
arg1 and arg2:

(chunk-type args arg1 arg2)

In this model however the chunk-type used by the model is specified like this:

(chunk-type result)

It does not have any slots initially, but when the model does the task it will create a chunk
like this for a pair of items:

RESULT10-0
 ISA RESULT
 WORD "zinc"
 NUMBER "9"

That happens during the interpretation of an instruction which has the action to read an
item like these:

(op1 isa detailed-action pre start action read label word post stimulus-read)
(op5 isa detailed-action pre wait action read label number post new-trial)

The label slot of the action specifies the name of the slot into which the item should be
stored in the imaginal buffer and is handled by these two productions:

(p read
 =goal>
 isa task
 step retrieving-operator
 =retrieval>
 isa action
 action read
 label =destination
 post =state
 =visual-location>
 isa visual-location
 ?visual>
 state free
 ?imaginal>
 buffer full
 ==>
 +visual>
 isa move-attention
 screen-pos =visual-location
 =goal>
 context =destination
 step process
 state =state)

(p* encode
 =goal>
 isa task
 step process
 context =which-slot
 =visual>
 isa text

 value =val
 =imaginal>
 isa result
 ==>
 =imaginal>
 =which-slot =val
 =goal>
 step ready)

The read production saves the value of the label slot in the goal buffer’s context slot and
requests a shift of visual attention to the item. When the item is attended the encode
production can fire and place the value of the text which was read into that slot of the
chunk in the imaginal buffer. If the chunk in the buffer does not have a slot by that name
then that modification in the dynamic production will extend the chunk to have such a
slot.

That makes this set of instruction following productions much more general than the
previous ones seen because the representation does not have to be encoded in the model’s
chunk-types and could have any number of slots in the representation based on the
instructions. The model also does not need to have a separate production to set each
possible slot that is used in the representation. Of course, since the instructions are
specifically encoded in this particular model’s definition that generality is not necessary
since the representation is known in advance. However, these same productions could be
used for other tasks without changing them, or they could be used with an even more
general version of the model which had other productions for reading the instructions
themselves.

Similarly, we see that by using dynamically matched productions this new version of the
model can also perform the retrieval based on a slot specified in the instructions:

(p* retireve-associate
 =goal>
 isa task
 step retrieving-operator

 =imaginal>
 isa result
 =target =stimulus
 =retrieval>
 isa action
 action retrieve
 required =target
 label =other
 post =state
 ==>
 =imaginal>
 +retrieval>
 isa result
 =target =stimulus
 =goal>
 step retrieving-result
 context =other
 state =state)

and also respond using an arbitrary slot specified in the instructions:

(p* type
 =goal>
 isa task
 step retrieving-operator
 =imaginal>
 isa result
 =slot =val
 =retrieval>
 isa action
 action type
 required =slot
 post =state
 ?manual>
 state free
 ==>
 =imaginal>
 +manual>
 isa press-key
 key =val
 =goal>
 state =state
 step ready)

8.2.6.3 Dynamic matching and production compilation

As in the previous version of this task, this model uses production compilation to learn
specific productions for doing the task as it is repeatedly following the instructions.
There is no difference in how the production compilation mechanism works with
dynamically matched productions. It still combines successive productions which are
fired into a single production when possible using the rules described in unit 7. However,
it is worth looking at a couple of examples to see how that applies when dynamically
matched productions are involved. When one or both of the productions being composed
together contain dynamically matched components, the resulting production may retain
some of those dynamic components or they could be replaced with statically matched
values. They will be replaced by static values in the same way that other variables are
replaced – when a retrieval request and harvesting are removed between the productions.

We can see examples of this very early in the model’s trace with the :pct parameter set to
t. When the encode and retrieve-operator productions are combined the result still has
the dynamically specified components from the encode production:

(P* PRODUCTION1
 "ENCODE & RETRIEVE-OPERATOR"
 =GOAL>
 ISA TASK
 CONTEXT =WHICH-SLOT
 STEP PROCESS
 STATE =STATE
 =IMAGINAL>
 ISA RESULT
 =VISUAL>
 ISA TEXT
 VALUE =VAL

 ==>
 =IMAGINAL>
 =WHICH-SLOT =VAL
 =GOAL>
 STEP RETRIEVING-OPERATOR
 +RETRIEVAL>
 ISA OPERATOR
 PRE =STATE)

However, when the retrieve-operator and retrieve-associate productions are combined the
instantiation of the variables used from the retrieved chunk results in a statically matched
production:

(P PRODUCTION2
 "RETRIEVE-OPERATOR & RETIREVE-ASSOCIATE - OP2"
 =GOAL>
 ISA TASK
 STATE STIMULUS-READ
 STEP READY
 =IMAGINAL>
 ISA RESULT
 WORD =STIMULUS
 ==>
 =IMAGINAL>
 =GOAL>
 CONTEXT NUMBER
 STATE RECALLED
 STEP RETRIEVING-RESULT
 +RETRIEVAL>
 ISA RESULT
 WORD =STIMULUS)

8.2.6.4 Data fit

Despite the model being more general, it still performs the task the same way as the
previous version of the model does, and with production compilation enabled provides
the same fit to the data.

Here are the results from the unit 7 model:

> (paired-experiment 10)

Latency:
CORRELATION: 0.997
MEAN DEVIATION: 0.143
Trial 1 2 3 4 5 6 7 8
 0.000 2.339 2.118 1.967 1.739 1.718 1.509 1.582

Accuracy:
CORRELATION: 0.996
MEAN DEVIATION: 0.045
Trial 1 2 3 4 5 6 7 8
 0.000 0.445 0.660 0.755 0.835 0.895 0.895 0.955

and here are the results from the model from this unit:

> (paired-experiment 10)

Latency:
CORRELATION: 0.998
MEAN DEVIATION: 0.110
Trial 1 2 3 4 5 6 7 8
 0.000 2.328 2.109 1.883 1.746 1.600 1.503 1.558

Accuracy:
CORRELATION: 0.996
MEAN DEVIATION: 0.043
Trial 1 2 3 4 5 6 7 8
 0.000 0.430 0.620 0.770 0.875 0.910 0.915 0.935

8.3 Assignment

The assignment for this unit will be to use both of the new production techniques
described above to create a model which can perform a simple categorization task. The
experiment this model will be performing is a simplification of an experiment which was
performed by Robert M. Nosofsky (which was based on an experiment performed by
Stephen K. Reed) that required participants to classify schematic face drawings into one
of two learned categories.

In the experiment the participants first trained on learning 10 faces each of which
belonged to one of two categories. The faces themselves were varied along four features:
eye height, eye separation, nose length, and mouth height. Then there was a testing phase
in which they were presented with both old and new faces and asked to specify to which
category the face belonged. The data collected was the probability of classifying the face
as a member of each category in the testing phase. For this assignment we will not be
modeling the whole task, nor will we be trying to fit all of the data from the experiment
because a thorough model of this task would require a lot more work than is reasonable
for an assignment.

Here is the general description of the task which the model for this assignment will have
to perform. It will be presented with the attributes of a stimulus one at a time, indicating
the name of a feature and its value (it will not be visually interpreting a face image). It
must collect those attributes into a single chunk which represents the current stimulus.
Using that chunk, it can then retrieve a best matching example from declarative memory.
Based on that retrieved chunk, it will make a category choice for the current stimulus.
The model will not be required to perform the initial training phase, thus it will not
require using any of the ACT-R learning mechanisms. Each trial will be completed
separately with the model being reset before each one. This is similar to how the fan
experiment model from unit 5 worked, with the training information pre-encoded in
declarative memory and the model only needing to perform one trial of the task. The
details of how those steps are to be performed are described below.

The important part of the exercise is the first step – creating the stimulus representation
from the individual attributes. The focus of the assignment will be on how to perform

this task in a general way because that sort of encoding is something which can be
applicable to many different tasks.

8.3.1 The Stimulus Attributes

The attributes of the stimulus to categorize will be presented to the model one at a time
through the goal buffer. The experiment code will set the goal buffer to a chunk of type
attribute, and the attribute chunk-type is defined like this:

(chunk-type attribute name value)

The name slot of the chunk will contain a symbol specifying the name of the attribute
being presented. The value slot will hold a value for that attribute in the current stimulus
and that will be a number. Thus, a goal chunk at the start of a trial may look like this:

ATTRIBUTE0
 ISA ATTRIBUTE
 NAME MH
 VALUE 0.178

The first thing the model should do is convert that value into a discrete description. The
reason for doing so is because instead of storing the raw values for the learned examples
the model will have example chunks like this stored in declarative memory which it has
to be able to retrieve:

EXAMPLE1
 ISA EXAMPLE
 CATEGORY 1
 EH SMALL
 ES LARGE
 NL MEDIUM
 MH SMALL

Those chunks provide a more general representation of the stimuli instead of just
recording explicit measurements or distance values. By converting the attributes as they
are encoded the model will be able to create a similarly structured chunk in the imaginal
buffer. In a more complete model of the task a similar process would take place during
the training phase of the experiment to strengthen and learn the examples.

For this task all of the attributes can be classified as either small, medium, or large, and to
make things easier, the numeric values of the attributes used have all been scaled to the
same range based on data also collected by Nosofsky for this task. To perform that
conversion from numeric value to descriptive name, procedural partial matching should
be used by the model. The starting model has a similarity function provided that assigns
a similarity score between the attribute values and the labels small, medium, and large.

Thus, one can have competing productions which test the value for each of those labels
and the production which specifies the most similar label will be the one selected.

The specific range of values used should not be explicitly encoded into the model, and in
fact this unit will not describe how the similarity values are computed between the labels
and the numbers. Thus, your model should not explicitly test the values against any
particular numbers, but should be able to work with any value given relying on the
similarity function to provide the comparison to the appropriate labels. Thus, a
production like this is not a good thing to use in this model:

(p bad-way-to-test-medium
 =goal>
 isa attribute
 > value -.5
 < value .5
 ...
)

After determining what the appropriate label for the attribute is, the model must record
that value in the chunk in the imaginal buffer. When the first attribute is presented, the
imaginal buffer will be set to a chunk of type example, where the example chunk-type is
defined like this:

(chunk-type example category)

The category slot of that initial imaginal chunk will be the value unknown, and thus the
initial imaginal buffer chunk will look like this:

EXAMPLE1
 ISA EXAMPLE
 CATEGORY UNKNOWN

Note that it does not have any slots for holding the specific attributes of the task. This is
where dynamic pattern matching will need to be used. The model will need to add a slot
to the chunk based on the name of the attribute provided. Thus, the complete encoding of
the attribute shown above should result in the imaginal buffer looking like this when
done:

EXAMPLE1
 ISA EXAMPLE
 CATEGORY UNKNOWN
 MH MEDIUM

Again, it is important that the model be general in how it performs that modification to
the imaginal buffer’s chunk. The model should be able to encode any attribute name
which is provided, and should not have any specific attribute names mentioned in the
productions. Thus this action in a production is not the way that it should be handled:

(p bad-imaginal-action

…
==>
 =imaginal>
 mh =value
…)

As with the values, the unit will not be specifying the names that the attributes will have.
The experiment code will guarantee that the example chunks created in declarative
memory have the same attributes as those that are presented to the model, and the model
should be able to work with any attribute names it is given.

After updating the imaginal buffer, the model should stop and wait for the next attribute
to be provided. An easy way to do that would be to make sure that all of the productions
which are processing the attribute test the goal buffer chunk in their conditions (which is
likely to occur since it contains the information needed) and then clear the chunk from
the goal buffer after the attribute has been processed. Thus, the model should be able to
process any number of attributes for a stimulus. The result will be a chunk in the
imaginal buffer which has a slot for each of the attributes that was provided and the
value in each of those slots is a label (small, medium, or large) as determined through
procedural partial matching based on the numeric value from the attribute.

8.3.2 Model Response

After all of the attributes have been provided to the model a different goal chunk will be
set to indicate that it is time for the model to retrieve an example and classify the stimulus
that is currently encoded in the imaginal buffer. The new goal is of the chunk-type
categorize which is defined like this:

(chunk-type categorize state)

The state slot of the goal chunk will be nil, and that slot may be used as needed for
coordinating the model’s actions during the response task.

To make a response, the model needs to do two things. First, it must retrieve a chunk
from declarative memory which is similar to the chunk in the imaginal buffer. The
model will have 10 examples already encoded in declarative memory which have their
features set based on the examples from the original experiment. Half of the examples
are in category 1 and the other half are in category 2, and here are two examples:

EXAMPLE4
 ISA EXAMPLE
 CATEGORY 1
 EH SMALL
 ES MEDIUM
 NL LARGE
 MH LARGE

EXAMPLE5
 ISA EXAMPLE

 CATEGORY 2
 EH LARGE
 ES SMALL
 NL SMALL
 MH SMALL

Because the names of the slots to specify in the retrieval request are not known in
advance the easiest way to perform the retrieval request is using a direct request, as was
shown in the siegler model from unit 5 of the tutorial. That will look like this as an
action in the production:

(p
 …
==>
+retrieval> =imaginal
…)

and is equivalent to specifying all of the slots and values from the chunk that is in the
imaginal buffer explicitly in the request.

Declarative partial matching is also enabled for this model, and that will allow for the
retrieval of a chunk which has values close to the requested values in the event that there
is not a perfectly matching example. The other declarative parameters for the model are
set such that if the chunk in the imaginal buffer is created correctly there should always
be a chunk retrieved in a reasonable amount of time.

After the model retrieves a chunk, the final step it needs to do is to set the category slot of
the chunk in the imaginal buffer to be the same as the category value of the chunk that
was retrieved. That can be done with a production that looks more or less like this, but
you may also need goal buffer tests and/or actions depending on how you are maintaining
the task state in other productions:

(p respond
 =retrieval>
 isa example
 category =value
 =imaginal>
 isa example
 category unknown
 ==>
 =imaginal>
 category =value)

After that happens the model should again stop because it is then done with the trial.

8.3.3 Running the experiment

There are three commands provided for running the task. The first is present-one-
attribute which takes two parameters, an attribute name and an attribute value. It can be
used to test the model’s encoding ability. The attribute name can be any symbol and the
value should be a number between -1 and 1. It will generate an attribute goal chunk for
the model with the name and value slots set using the values provided and run the model
to perform the encoding. Thus, it could be called like this:

(present-one-attribute size -1)

Which would create this chunk in the goal buffer:

ATTRIBUTE0-0
 ISA ATTRIBUTE
 NAME SIZE
 VALUE -1

 and should result in the model having a chunk like this in the imaginal buffer when it is
done:

EXAMPLE10-0
 ISA EXAMPLE
 CATEGORY UNKNOWN
 SIZE SMALL

because a value of -1 is most similar to the small label (though sometimes noise in the
utility calculations could cause one of the other labels to also be applied). You should
work with this command only until your model is able to do that part of the task reliably.

Once the model is able to properly encode attributes you can test its ability to retrieve
examples based on a stimulus with multiple attributes using the present-one-stimulus
command. It requires four parameters which should each be a number in the range of -1
to 1. It will reset the model, generate an attribute goal for the model (using a default set
of names for the attributes) and run it with each of the values specified, and then generate
a categorize goal and run the model to make the response. The return value will be the
category which the model has set in the imaginal buffer’s chunk or nil if it does not
properly set a category. Here is an example of calling it and showing it responded with
category 1:

(present-one-stimulus -1 .5 -.2 0)
1

Once you have a model which can handle individual trials with present-one-stimulus you
should then test it on the experiment data using the categorize command. It requires one
parameter which is the number of times to repeat the experiment. It will run the model
over the 14 stimuli from the experiment which we are using for testing as many times as
specified and print out the proportion of times that each item was classified as category 1
along with the experimental data, number of responses the model made, and the model’s
fit to the experimental data:

CG-USER(306): (categorize 10)
MEAN DEVIATION: 0.173
CORRELATION: 0.924
P(C=1)
 (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10)
data 0.97 0.85 0.98 1.00 0.96 0.07 0.13 0.08 0.05 0.02 0.93 0.54 0.98 0.08
model 1.00 0.70 1.00 1.00 1.00 0.00 0.10 0.10 0.10 0.10 0.90 1.00 1.00 0.50

The numbers in parentheses should all be the same as the number of trials that were run
indicating that the model always responds. We will discuss the data fit and other running
options below.

8.3.4 Fitting the data

If your model works as described above, then it should produce a fit to the data similar to
this using the default parameters in the model:

> (categorize 100)
MEAN DEVIATION: 0.170
CORRELATION: 0.947
P(C=1)
 (100)(100)(100)(100)(100)(100)(100)(100)(100)(100)(100)(100)(100)(100)
data 0.97 0.85 0.98 1.00 0.96 0.07 0.13 0.08 0.05 0.02 0.93 0.54 0.98 0.08
model 0.90 0.64 0.92 0.95 0.82 0.16 0.23 0.37 0.17 0.14 0.92 0.71 0.88 0.49

If the correlation and deviation are significantly worse than that, then you will want to go
back and make sure your model is doing all of the steps described above correctly.

Because fitting the data is not the focus of this exercise it is not necessary to adjust the
parameters to improve that fit, but if you would like to explore the parameters for
improving the fit then the ones that are recommended to be changed would be these four
from the model:

(sgp :mp 1 :ppm 1 :egs .25 :ans .25)

Those are the partial matching scale parameters for declarative and procedural partial
matching and the noise values for those mechanisms. Through adjusting those
parameters the reference model was able to achieve this fit which improves the deviation:

> (categorize 500)
MEAN DEVIATION: 0.145
CORRELATION: 0.950

8.3.5 Generality

If your model fits the data adequately then the final thing to test is to make sure that it is
doing the task in a general way. The categorize command takes optional parameters
which can be used to modify the attribute names and the range of values it uses.
Providing a second number to categorize will shift the attribute values provide to the
model by that amount and also shift the similarities to the labels accordingly. Thus, the
model should be unaffected by that change and produce the same fit to the data regardless
of such a shift:

> (categorize 100 4.5)
MEAN DEVIATION: 0.161
CORRELATION: 0.968

In addition to that, one can also specify the four names to use for the attributes. Those
provided names will be used to generate the examples in declarative memory and to
provide the attributes to the model. The names can be any Lisp symbols other than
category, since the example chunks already have such a slot. To specify different names
they must be passed to categorize after the offset value. Here is an example with no
effective offset to the values (a shift of 0) and new names for the attributes:

> (categorize 100 0 slot-1 b other name)
MEAN DEVIATION: 0.161
CORRELATION: 0.975

Here is what an example from declarative memory looks like in that case:

EXAMPLE0
 ISA EXAMPLE
 CATEGORY 1
 SLOT-1 SMALL
 B LARGE
 OTHER MEDIUM
 NAME SMALL

and the chunk created in the imaginal buffer to encode a stimulus should look similar
(the values of the attribute slots will differ based on the stimulus presented and noise).

Again, this change should not affect the model’s ability to do the task if it has been
written to perform the task generally. The best test of the model is to provide both a non-
zero shift to the attribute values and new attribute names. A good model for the
assignment will still provide the same fit to the data under those circumstances:

> (categorize 100 -3 a b c d)
MEAN DEVIATION: 0.162
CORRELATION: 0.936

References

Nosofsky, R. M. (1991). Tests of an exemplar model for relating perceptual classification
and recognition memory. Journal of Experimental Psychology: Human Perception and
Performance. 17, 3-27.

Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology. 3, 382-
407.

	Unit 8: Advanced Production Techniques
	8.1 Procedural partial matching
	8.1.1 Condition testing with procedural partial matching
	8.1.2 Conflict resolution with procedural partial matching
	8.1.3 Simple procedural partial matching model
	8.1.3.1 The conflict set trace parameter
	8.1.3.2 Turning on ppm
	8.1.3.3 The large production
	8.1.3.4 Adding noise

	8.1.4 Building Sticks Task alternate model
	8.1.4.1 Strategy choice
	8.1.4.2 Attributing actions to the imaginal module

	8.2 Dynamic Pattern Matching
	8.2.1 Basic Operation
	8.2.2 Arbitrary slots in conditions
	8.2.3 Arbitrary slots in actions
	8.2.4 Extending chunks with new slots
	8.2.5 Constraints on dynamic pattern matching
	8.2.5.1 No Search
	8.2.5.2 One level of indirection

	8.2.6 New paired-learning model
	8.2.6.1 Chunk-type hierarchy
	8.2.6.2 Generality from the instructions
	8.2.6.3 Dynamic matching and production compilation
	8.2.6.4 Data fit

	8.3 Assignment
	8.3.1 The Stimulus Attributes
	8.3.2 Model Response
	8.3.3 Running the experiment
	8.3.4 Fitting the data
	8.3.5 Generality
	References

