
ACT-R Tutorial 22-Dec-14 Unit Seven

Unit 7: Production Rule Learning

In this unit we will discuss how new production rules are learned. As we will see, a
model can acquire new production rules by collapsing two production rules that apply in
succession into a single rule. Through this process the model will transform knowledge
that is stored declaratively into a procedural form. We call this process of forming new
production rules production compilation.

7.1 The Basic Idea

A good pair of productions for illustrating production compilation is the two that fire in
succession to retrieve a paired associate in the paired model from Unit 4:

(p read-probe
 =goal>
 isa goal
 state attending-probe
 =visual>
 isa text
 value =val
==>
 +imaginal>
 isa pair
 probe =val
 +retrieval>
 isa pair
 probe =val
 =goal>
 state testing
)

(p recall
 =goal>
 isa goal
 state testing
 =retrieval>
 isa pair
 answer =ans
 ?manual>
 state free
==>
 +manual>
 isa press-key
 key =ans
 =goal>
 state read-study-item
 +visual>
 isa clear
)

If these two productions fired and retrieved the chunk for the pair of zinc & 9, production
compilation would combine these two rules into the following single production:

(P PRODUCTION0
 "READ-PROBE & RECALL - PAIR0-0"
 =GOAL>
 ISA GOAL
 STATE ATTENDING-PROBE
 =VISUAL>
 ISA TEXT
 VALUE "zinc"
 ?MANUAL>
 STATE FREE
 ==>
 =GOAL>
 STATE READ-STUDY-ITEM
 +VISUAL>
 ISA CLEAR

1

ACT-R Tutorial 22-Dec-14 Unit Seven

 +MANUAL>
 ISA PRESS-KEY
 KEY "9"
 +IMAGINAL>
 ISA PAIR
 PROBE "zinc"
)

Essentially, this production combines the work of the two and has built into it the paired
associate. In the next two subsections we will describe the general principles used for
combining two production rules together and the factors that control how these
productions compete in the conflict resolution process.

7.2 Forming a New Production

The basic idea behind forming a new production is to combine the tests in the two
conditions into a single set of tests that will recognize when the pair of productions will
apply and combine the two sets of actions into a single set of actions that has the same
overall effect. Since the conditions consist of a set of buffer tests and the actions consist
of a set of buffer transformations (either direct changes or new requests) this can be done
largely on a buffer-by-buffer basis. The complications occur when there is a buffer
transformation in the action of the first production and either a test of that buffer in the
condition of the second production or another transformation of the same buffer in the
action of the second production. The productions above illustrate both complications
with respect to the goal buffer. Because the change to the state slot of the goal buffer
chunk in the first production is tested as a condition in the second production that test can
be omitted from the tests of the compiled production. Then, because that state slot is
changed again by the second production, and the compiled production only needs to
reproduce the final state of the original two productions, that first goal change can also be
omitted from the actions of the compiled production. The result of the overlap in the goal
buffer is just a simplification of the production rule but in other cases other responses are
necessary.

Because different modules use their buffers in different ways the production compilation
process needs to be sensitive to those differences. For instance, in the above production
we see that the retrieval buffer request was omitted from the newly formed production,
but the imaginal buffer request was not. Thus the production compilation mechanism is
built around a set of buffer styles and each buffer is classified as one of the styles. For
each style there is a set of rules that specify when two productions that use such a buffer
can be combined through compilation, and for each style there is a set of rules for how to
combine the uses of a buffer. By default there are five styles to which the default buffers
of ACT-R are assigned and we will describe those mechanisms in the following sections.
One thing to note is that it is possible to add new styles and to adjust the assignment of
buffers to styles, but that is beyond the scope of the tutorial.

2

ACT-R Tutorial 22-Dec-14 Unit Seven

7.2.1 Motor Style Buffers

Let us first consider the compilation policy for the motor style buffers. The built in
buffers that fit this style are the manual and vocal buffers. The main distinction of these
buffers is that they never hold a chunk. They are used solely for generating actions and
they are only tested through queries. If the first production makes a request of one of
these buffers on the right hand side then it is not possible to compose it with a second
production if that production also makes a request of that buffer or queries it for anything
other than state busy. If both productions make a request, then there is a danger of
jamming, and any queries that are not checking to see if the module is busy in the second
production are probably there to prevent jamming in the future, so also block the
compilation.

7.2.2 Perceptual Style Buffers

Now let us consider the compilation policy for the perceptual buffers. Of the included
buffers, these are the ones considered perceptual: visual-location, visual, aural-location,
and aural. These buffers will hold chunks generated by their modules. The important
characteristic about them is that those chunks are based on information in the external
world, and thus are not guaranteed to result in the same request generating the same result
at another time. First, like the motor style buffers, it is not possible to compile two
productions which both make requests of the same perceptual style buffer or if the first
production makes a request and the second production makes a query for other than state
busy of that buffer because of the possibility of jamming. In addition, if the first
production makes a request of one of these buffers then it is not possible to compose it
with the second production if that production tests the contents of the buffer. This is
because of the unpredictable nature of such requests – one does not want to create
productions that encapsulate information that is based on external information which may
not be valid ever again (at least not for most modeling purposes). The idea is that we only
want to create new productions that are “safe”, and by safe we mean that the new
production can only match if the productions that it was generated from would match and
that its actions are the same as those of its parent productions. Basically, for the default
mechanism, we do not want compiled productions to be generated that introduce new
errors into the model.

Thus, points where a request is made of a perceptual or motor style buffer are points
where there are natural breaks in the compilation process. The standard production
compilation mechanisms will not compose a production that makes such a request with a
following production that operates on the same buffer.

7.2.3 Retrieval Style Buffer

Next let us consider the compilation policy for the retrieval buffer (the only buffer of the
retrieval style by default). Because it is an internal buffer (i.e., not subject to the whims
of the outside world) it is more predictable and thus offers an opportunity for economy.
The interesting opportunity for economy occurs when the first production requests a

3

ACT-R Tutorial 22-Dec-14 Unit Seven

retrieval and the second tests for the successful outcome of that retrieval. In this case,
one can delete the request and test and instead specialize the two productions -- by
replacing throughout the production any variables in the retrieval request with the
constants they are bound to based on the chunk that is retrieved. This was what happened
in the example production above where the retrieved paired-associate for zinc & 9 was
built into the new production0. There is one case, however, where it is not possible to
drop out the retrieval request. That is when the first production requests a retrieval and
the second does a query for a retrieval error. This cannot be composed because
declarative memory grows monotonically and it is not safe to predict that in the future
there will be a retrieval error. This suggests that it is preferable, if possible, to write
production rules that do not depend on retrieval failures.

7.2.4 Goal and Imaginal Style Buffers

The goal and imaginal buffers are also internal buffers allowing economies to be
achieved. The mechanisms used for these two buffers are very similar, and thus will be
described together. The difference between them arises from the fact that the imaginal
buffer requests take time to complete, and that difference will be described below. First,
we will analyze the process for which they are the same and that is broken down into
cases based on whether the first production involves a request to the buffer or not.

7.2.4.a First production does not make a request

Let C1 and C2 be the conditions for the buffer in the first and second production and A1
and A2 be the corresponding productions’ buffer modification actions for that buffer.
Then, the buffer test for the combined production is essentially C1+(C2-A1) where C2-
A1 specifies those things tested in C2 that were not created in A1. The modification for
the combined production is A2+(A1~A2) where (A1~A2) indicates those things that were
in A1 that are not undone by A2. If the second production makes a request, then that can
just be kept.

7.2.4.b First production makes a request

This case breaks down into two subcases depending on whether the second production
also makes a request.

The second production does not also make a request. In this case the second
production’s buffer test can be deleted since its satisfaction is guaranteed by the first
production. Let C1 be the buffer condition of the first production, A1 be the buffer
modification action of the first production, N1 be the new request in the first production,
C2 be the buffer condition in the second production and A2 be the buffer modification of
the second production. Then the buffer test of the composed production is just C1, the
goal modification is just A1, and the new goal request is A2+(N1~A2).

The second production also makes a request. In this case the two productions cannot
be compiled because this would require either skipping over the intermediate request,

4

ACT-R Tutorial 22-Dec-14 Unit Seven

which would result in a chunk not being created in the new production which was
generated by the initial two productions, or making two requests to the buffer in one
production which could lead to jamming the module.

7.2.4.c Difference between goal and imaginal

The difference between the two comes down to the use of queries. Because the imaginal
module’s requests take time one typically needs to make queries to test whether it is free
or busy whereas the goal module’s requests complete immediately and thus the state is
never busy. So, for goal style buffers production compilation is blocked by any queries
in either production because that represents an unusual situation and is thus deemed
unsafe. For imaginal style buffers however queries are allowed under the same
restrictions as for motor style buffers – if the first production makes a request and the
second has a query of that buffer they can only be combined if the query is for state busy.

7.3 Utility of newly created productions

So far we have discussed how production rules are created but not how they are selected.
When a new production, which we will call New, is composed from old productions,
which we will call Old1 and Old2 and which fired in that order, it is the case that
whenever New could apply Old1 could also apply (Note because New might be
specialized it does not follow that whenever Old1 could apply New could also apply.)
The choice between New, Old1, and whatever other productions might apply will be
determined by their utilities as was discussed in the previous unit. These utilities were
either set in the model with the spp command, or were learned on the basis of rewards.

A newly learned production New will initially receive a utility of zero by default (that
can be changed with the :nu parameter). Assuming Old1 has a positive value, this means
that New will almost always lose in conflict resolution with Old1. However, each time
New is recreated from Old1 and Old2, its utility is updated with a reward equal to the
current utility of Old1, using the same learning equation as discussed in the previous
unit:

() () () ()[]11 −−+−= nUnRnUnU iiii α Difference Learning Equation

As a consequence, even though New may not fire initially, its utility will gradually
approach the utility of Old1. Once the utility of New and Old1 are close enough, New
will occasionally be selected because of noise. Once New is selected itself it will receive
a reward like any other production which fires, and its utility can surpass Old1’s utility if
it is better (it is usually a little better because it typically leads to rewards faster since it
saves a rule firing and often a retrieval request).

5

ACT-R Tutorial 22-Dec-14 Unit Seven

7.4 Learning from Instruction

Generally, production compilation allows a problem to be solved with fewer productions
over time and therefore performed faster. In addition to this speed-up, production
compilation results in the drop-out of declarative retrieval as part of the task performance.
As we saw in the example in the first section, production rules are produced that just "do
it" and do not bother retrieving the intervening information. The classic case of where
this applies in experimental psychology is in the learning of experimental instructions.
These instructions are told to the participant and initially the participant needs to interpret
these declarative instructions. However, with practice the participant will come to embed
these instructions into productions that directly perform the task. These productions will
be like the productions we normally write to model participant performance in the task.
Essentially these are productions that participants learn in the warm-up phase of the
experiment. The paired-learning model for this assignment contains an example of a
system that interprets instructions about how to perform a paired associate task and learns
productions that do the task directly.

In the model we use the following chunks to represent the understanding of the
instructions for the paired associate task (in some of our work we have built productions
that read the instructions from the screen and build these chunks but we are skipping that
step here to focus on the mechanisms of this unit):

1. (op1 isa operator pre start action read arg1 create post stimulus-read)
2. (op2 isa operator pre stimulus-read action associate arg1 filled arg2 fill post recalled)
3. (op3 isa operator pre recalled action test-arg2 arg1 respond arg2 wait)
4. (op4 isa operator pre respond action type arg2 response post wait)
5. (op5 isa operator pre wait action read arg2 fill post new-trial)
6. (op6 isa operator pre new-trial action complete-task post start)

These are represented as operators that indicate what to do in various states during the
course of a paired-associate trial. They consist of a statement of what that state is in the
pre slot and what state will occur after the action in the post slot. In addition, there is an
action slot to specify the action to perform and two slots, arg1 and arg2, for holding
possible arguments needed during the task execution. So to loosely translate the six
operators above:

1. Read the word and create an encoding of it as the stimulus
2. Try to retrieve an associate to the stimulus
3. Test whether an item has been recalled and if it has not then just wait
4. If an item has been recalled type it and then wait
5. Store the response you read with the stimulus
6. This trial is complete so start the next one

The model uses a chunk of type task in the goal buffer to maintain a current state and sub
step within that state and a chunk of type args in the imaginal buffer to hold the items

6

ACT-R Tutorial 22-Dec-14 Unit Seven

relevant to the current state. For this task, the arguments are the stimulus and probe for a
trial.

The model can retrieve operators and apply them to the current state. In more
complicated models we have to deal with things like operator failure but in this simple
model we really just need one production rule which is:

(p retrieve-operator
 =goal>
 isa task
 state =state
 step ready
==>
 +retrieval>
 isa operator
 pre =state
 =goal>
 step retrieving-operator)

This production requests the retrieval of an operator relevant to the current state (=state).

The actions (read, associate, test-arg2, type, test-screen-change, complete-task) are all
general actions not specific to a paired associate task. We assume that the participant
knows how to do these things going into the experiment. This amounts to assuming that
there are productions for processing these actions. For instance, the following two
productions are responsible for reading an item and creating a chunk in the imaginal
buffer which encodes the item into the arg1 slot of that chunk:

(p read-arg1
 =goal>
 isa task
 step retrieving-operator
 =retrieval>
 isa operator
 action read
 arg1 create
 post =state
 =visual-location>
 isa visual-location
 ?visual>
 state free
==>
 +imaginal>
 isa args
 arg1 fill

7

ACT-R Tutorial 22-Dec-14 Unit Seven

 +visual>
 isa move-attention
 screen-pos =visual-location
 =goal>
 step attending
 state =state)

(p encode-arg1
 =goal>
 isa task
 step attending
 =visual>
 isa text
 value =val
 =imaginal>
 isa args
 arg1 fill
 ==>
 =imaginal>
 arg1 =val
 =goal>
 step ready)

The first production responds to the retrieval of the operator and requests an encoding of
the item. It also changes the state in the goal to the operator’s post state. The second
production encodes the word and sets the goal to be ready to retrieve the operator
relevant to the next state.

The paired-learning model responds to the same task as the paired model you had for
Unit 4. However, rather than having specific productions for doing the task it interprets
these operators that represent the instructions for doing this task. For reference, here is
the data that is being modeled again:

Trial Accuracy Latency
1 .000 0.000
2 .526 2.156
3 .667 1.967
4 .798 1.762
5 .887 1.680
6 .924 1.552
7 .958 1.467
8 .954 1.402

The model can be run either with production compilation on or off. To run it with
production compilation off, set the :epl parameter to nil. The following is a run without
production compilation:

8

ACT-R Tutorial 22-Dec-14 Unit Seven

? (paired-experiment 10)

Latency:
CORRELATION: 0.989
MEAN DEVIATION: 0.293
Trial 1 2 3 4 5 6 7 8
 0.000 2.354 2.216 2.024 1.938 1.944 1.866 1.771

Accuracy:
CORRELATION: 0.996
MEAN DEVIATION: 0.047
Trial 1 2 3 4 5 6 7 8
 0.000 0.435 0.645 0.780 0.850 0.855 0.945 0.910

When it is run with :epl t, the following is the result:

? (paired-experiment 10)

Latency:
CORRELATION: 0.997
MEAN DEVIATION: 0.143
Trial 1 2 3 4 5 6 7 8
 0.000 2.339 2.118 1.967 1.739 1.718 1.509 1.582

Accuracy:
CORRELATION: 0.996
MEAN DEVIATION: 0.045
Trial 1 2 3 4 5 6 7 8
 0.000 0.445 0.660 0.755 0.835 0.895 0.895 0.955

As can be seen, whether production compilation is off or on has relatively little effect on
the accuracy of recall but turning it on greatly increases the speed-up over trials in recall
time. This is because we are cutting out productions and retrievals.

If you set the :pct (production compilation trace) parameter to t (and you will also need
to set :v to t) you will see the system print out the new productions as they are compiled
or the reason why two productions could not be compiled. For instance, the following is
a fragment of the trace when we executed the command (paired-task 1 1) to study one
paired-associate for 1 trial with production compilation turned on.

 0.400 PROCEDURAL PRODUCTION-FIRED RETRIEVE-OPERATOR
Production Compilation process started for RETRIEVE-OPERATOR
 Production ENCODE-ARG1 and RETRIEVE-OPERATOR are being composed.
 New production:

(P PRODUCTION1
 "ENCODE-ARG1 & RETRIEVE-OPERATOR"
 =GOAL>
 ISA TASK
 STEP ATTENDING
 STATE =STATE
 =IMAGINAL>
 ISA ARGS
 ARG1 FILL

9

ACT-R Tutorial 22-Dec-14 Unit Seven

 =VISUAL>
 ISA TEXT
 VALUE =VAL
 ==>
 =IMAGINAL>
 ARG1 =VAL
 =GOAL>
 STEP RETRIEVING-OPERATOR
 +RETRIEVAL>
 ISA OPERATOR
 PRE =STATE
)
Parameters for production PRODUCTION1:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL

The production that was learned, Production1, is a compilation of two of the original
productions:

(p encode-arg1
 =goal>
 isa task
 step attending
 =visual>
 isa text
 value =val
 =imaginal>
 isa args
 arg1 fill
 ==>
 =imaginal>
 arg1 =val
 =goal>
 step ready
)

(p retrieve-operator
 =goal>
 isa task
 state =state
 step ready
==>
 +retrieval>
 isa operator
 pre =state
 =goal>
 step retrieving-operator
)

10

ACT-R Tutorial 22-Dec-14 Unit Seven

The first production, Encode-arg1, encodes the stimulus, and sets the goal to retrieve the
next operator. This is followed by Retrieve-operator, which makes the retrieval request.
The compiled production is particularly straight forward. Its condition is just the
condition of the first production plus the check for the state slot in the goal of the second
production, and its action combines the actions of the two.

It is worth understanding how the parameters of this new production are calculated. The
value of α is 0.2 (the default). When the production is first created, its utility is set to
zero (the default). The utilities of the initial rules in the system are all set to 10 (using
the :iu parameter which sets the starting utility for all of the initial productions), so a
value of zero means that it will almost certainly lose the competition with the parent rule
the next time it might be applicable. However, each time it is recreated, it receives a
reward which is the same as the utility of the first parent rule. Suppose that when the
parent fires the next time, and the new rule is recreated, the first parent rule has a utility
of 15. The utility of the new rule is then updated:

() () () ()[]

3
)015(2.0

11

=
−+=

−−+−= nUnRnUnU iiii α

A utility of 3 is still not sufficient to be selected in competition with a production of
utility 15. Thus it will need to be recreated a number of times before it will become
possible to be chosen in conflict resolution. The speed of this learning is determined by
the setting of α. If it is set to 1, productions will typically get very good values
immediately and be tried on the first opportunity. If you do that and run (do-experiment
1 10) you will discover in just 3 trials it is selecting and firing newly learned productions
which are then also going through production compilation:

 20.437 PROCEDURAL PRODUCTION-FIRED RETIREVE-ASSOCIATE
Production Compilation process started for RETIREVE-ASSOCIATE
 Production PRODUCTION1 and RETIREVE-ASSOCIATE are being composed.
 New production:

(P PRODUCTION20
 "PRODUCTION1 & RETIREVE-ASSOCIATE - OP2"
 =GOAL>
 ISA TASK
 STATE STIMULUS-READ
 STEP ATTENDING
 =IMAGINAL>
 ISA ARGS
 ARG1 FILL
 =VISUAL>
 ISA TEXT
 VALUE =VAL
 ==>
 =IMAGINAL>
 ARG1 =VAL
 ARG2 FILL
 =GOAL>

11

ACT-R Tutorial 22-Dec-14 Unit Seven

 STATE RECALLED
 STEP RETRIEVING-RESPONSE
 +RETRIEVAL>
 ISA ARGS
 ARG1 =VAL
)
Parameters for production PRODUCTION20:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL

After just a couple more trials we will start to find productions that are the composition of
multiple previously composed productions and it will very rapidly end up with a
production like this:

 70.955 PROCEDURAL PRODUCTION-FIRED PRODUCTION37
Production Compilation process started for PRODUCTION37
 Production PRODUCTION2 and PRODUCTION37 are being composed.
 New production:

(P PRODUCTION54
 "PRODUCTION2 & PRODUCTION37 - ARGS0-0"
 =GOAL>
 ISA TASK
 STATE STIMULUS-READ
 STEP READY
 =IMAGINAL>
 ISA ARGS
 ARG1 "zinc"
 ==>
 =IMAGINAL>
 ARG2 "9"
 =GOAL>
 STATE RESPOND
 STEP READY
)

This production basically types 9 in response to the stimulus zinc. However, with normal
settings of α, there are not near enough trials to get to this level of automaticity.

7.5 Assignment

Your assignment is to make a model that learns the past tense of verbs in English. The
learning process of the English past tense is characterized by the so-called U-shaped
learning in the learning of irregular verbs. That is, at a certain age children inflect
irregular verbs like “to break” correctly, so they say “broke” if they want to use the past
tense. But at a later age, they overgeneralize, and start saying “breaked”. At an even later
stage they again inflect irregular verbs correctly. Some people, such as Pinker and
Marcus, interpret this as evidence that a rule is learned to create regular past tense (add
“ed” to the stem). According to Pinker and Marcus, after this rule has been learned, it is
overgeneralized so that it will also produce regularized versions of irregular verbs.

12

ACT-R Tutorial 22-Dec-14 Unit Seven

Part of the model is already given in the file past-tense. The assignment is to make a
model that learns both the regular rule for the past tense, and particular rules for
particular irregular verbs. So eventually it should learn rules like:

IF the goal is to make the past tense of a verb
THEN copy that verb and add –ed

IF the goal is to make the past tense of the verb have
THEN the past tense is had

The code that is provided does two things. It adds correct past tenses to declarative
memory, reflecting the fact that a child hears and then encodes correct past tenses in the
environment. It also creates goals which indicate to the model that it should generate the
past tense of a verb found in the imaginal buffer and then runs the model to generate one.
The model will be given two correct past tenses for every one that it must generate.

Here are examples of correctly formed past tenses:

PAST-TENSE1
isa past-tense
verb have
stem had
suffix blank

is a correct encoding of the irregular verb have and:

PAST-TENSE234
isa past-tense
verb use
stem use
suffix ed

is a correct encoding of the regular verb use.

At the start of the model’s run it will have a chunk in the goal buffer which looks like
this:

GOAL332
isa goal
status start

and a chunk in the imaginal buffer which looks like this:

PAST-TENSE102
isa past-tense
verb some-verb

 stem nil
 suffix nil

13

ACT-R Tutorial 22-Dec-14 Unit Seven

where the verb slot holds the verb for which the model must produce a past tense. The
model has to fill in the stem and suffix slots of the chunk in the imaginal buffer to
indicate the past tense form of the verb and then set the state slot of the chunk in the goal
buffer to done. Once the state slot is set to done, one of the three production rules
provided with the model will fire to simulate the final encoding and “use” of the word,
each of which has a different reward. There are three possible cases:

- An irregular inflection, which corresponds to a suffix that is marked explicitly
as blank. This use has the highest reward, because irregular verbs tend to be
short.

- A regular inflection, in which the stem is the same as the verb and the suffix is
ed. This has a slightly lower reward.

- Non-inflected in which both the stem and suffix are still nil. The non-
inflection case applies when the model cannot come up with a past tense at all,
either because it has no example to retrieve or no rule or strategy to come up
with anything else. The non-inflection solution receives the lowest reward
because the past tense would have to be indicated by some other method, for
example by adding “yesterday” or some other explicit reference to time.

One important thing to notice is that all three solutions receive a reward. The model
receives no feedback as to whether the past tenses it produces are correct – any past tense
is considered a success and rewarded. The only feedback it receives is the correctly
constructed verbs that it hears from the environment.

You can run the model with the past-tense command. It takes as an argument the number
of words you want the model to generate:

(past-tense 5000)

As keyword parameters you can specify whether or not you want ACT-R to be verbose
(i.e. set the :v parameter to t) or whether ACT-R should continue with the run you started
in an earlier past-tense call. To make the model verbose you would add “:v t” to the call
to past-tense and to continue you would add “:cont t”. Thus, if you wanted the model to
continue running for 1000 more verbs you would call this:

(past-tense 1000 :cont t)

During the run, the simulation will display four numbers in a row, reflecting the results of
the last 100 verbs generated. The first number is the proportion correct of irregular verbs.
The second number is the proportion of irregular verbs that are inflected regularly. An
increase in this number indicates a regular rule is active i.e. irregular verbs are having
“ed” added to them. The third number is the proportion of irregular verbs that are not
inflected at all. The fourth number is the proportion of inflected irregular verbs that are
inflected correctly (the non-inflected verbs are not counted for this measure). It is in this
last column that you should see a U-shape.

14

ACT-R Tutorial 22-Dec-14 Unit Seven

It usually requires more than 5000 trials to see the effect (often 15000~20000 trials are
necessary). The :cont (continue) option in the past-tense function allows you to run
more trials without resetting the model. After the model is done, the report-irreg
function gives a report where results are summarized for 1000 trials at a time. The 100
trial summaries displayed during the past-tense function run are really only there to
make sure the model is still doing things, and in what direction the results are going. If
you have loaded the ACT-R environment then you can pass t as a parameter to the
report-irreg function to have it generate a graph of the data. What you are looking for
from the model is a graph that looks something like this:

It starts out with a high percentage correct, dips down, and then goes back up and stays
high from that point on. That is the U-shaped learning result.

This model differs from other models in the tutorial in that it does not model a particular
experiment, but rather some long term development. This has a couple of consequences
for the model. One of those is that using perceptual/motor modules does not contribute
much to the objective of the model. Thus things like the "hearing" of past tenses and the
eventual generation of the verb in speech are not modeled for the purpose of this exercise.
It could be modeled, but it is not what the model and exercise are about. Therefore
explicitly adding already processed perceived past tenses to declarative memory and just
adding differing rewards for generation of certain classes of verb tenses serves as a
reasonable compromise.

The other consequence is that runs of the model may differ considerably. On the one
hand this is not so bad, as children also differ with respect to U-shaped learning. One
reason for the relative unpredictability is the fact that this simulation runs with a very

15

ACT-R Tutorial 22-Dec-14 Unit Seven

limited vocabulary (extending the vocabulary results in a model that runs extremely
slowly which is not beneficial as an exercise), but the effect of the noise in the model also
has an impact that can create noticeable effects over the long term running of the model.
This also makes comparing this model to data difficult, and hard data on the phenomenon
are scarce, although the phenomenon of the U-shape is reported often. A few children
have been followed in a longitudinal study, and there is a spreadsheet included with the
unit materials (data.xls) that shows those results for comparison.

In terms of the assignment, the objective is to write a model that learns the appropriate
productions for producing past tenses. There is no parameter adjustment or data fitting
required. The key to a successful model is to implement both a retrieval strategy and a
simple analogy strategy. The model can either remember a correct past tense or the
model attempts to generate a past tense based on another retrieved verb. These should be
competing strategies, and only one applied on any given attempt. If the chosen strategy
fails to produce a result the model should “give up” and not inflect the verb. The reason
for doing that is that language generation is a rapid process and not something for which
a lot of time per word can be allocated.

The productions you write should make no explicit reference to either ed or blank
because that is what the model is to eventually learn, i.e., you do not write a production
that says add ed, but through the compilation mechanism such a production is created.
Although the experiment code is only outfitted with a limited set of words, the frequency
that the words are presented to the model is in accordance with the frequency they appear
in real life. If your model learns the proper productions it should generate the U-shaped
learning automatically, but not necessarily on every run. Unlike the other models in the
tutorial, there is a fairly small set of “good” solutions to this task which will result in the
generation of the U-shaped learning because your model’s starting productions will need
to result in the learning of specific productions over time to work correctly.

One important thing to note about your model is that it must set the state slot of the chunk
in the goal buffer to done each trial so that one of the provided productions will fire and
propagate a reward – whether it has generated a past-tense or not. If it does not do so,
then there will be no reward propagated to promote the production parameter learning for
that trial and the reward from a later trial will be propagated back to the productions on a
later trial. That later reward will be very negative because there are 200 seconds between
trials, and that will make it very difficult, if not impossible, to produce the U-shaped
learning. Essentially this represents the model saying something every time it tries to
produce a past-tense while speaking.

16

	Unit 7: Production Rule Learning
	7.1 The Basic Idea
	7.2 Forming a New Production
	7.2.1 Motor Style Buffers
	7.2.2 Perceptual Style Buffers
	7.2.3 Retrieval Style Buffer
	7.2.4 Goal and Imaginal Style Buffers
	7.2.4.a First production does not make a request
	7.2.4.b First production makes a request
	7.2.4.c Difference between goal and imaginal

	7.3 Utility of newly created productions
	7.4 Learning from Instruction
	7.5 Assignment

