
Unit 8: Advanced Production Techniques

In  this  unit  we  will  describe  two  additional  mechanisms  which  can  be  used  in  the 
procedural system of ACT-R. They are called procedural partial matching and dynamic 
pattern matching.  These capabilities allow for a lot more flexibility in the procedural 
system, and they can make it easier to create models which are able to work in situations 
where all of the details of the task are not know in advance and thus cannot be explicitly 
encoded within the model.  

8.1 Procedural partial matching

Procedural partial matching is very similar to the partial matching of declarative memory 
as was described in unit 5 of the tutorial.  When procedural partial matching is enabled by 
setting the :ppm parameter to a number, a production may be selected to fire even when 
its conditions do not perfectly match the current buffer contents.  This mechanism applies 
to all productions being tested and it modifies the conflict resolution process used when 
multiple  productions  match  under  the looser  definition  of  matching.   Other  than that 
however it does not change any of the other operations of the procedural system and all 
other procedural functionality is as described in the previous units.

8.1.1 Condition testing with procedural partial matching

When procedural partial matching is enabled the slot tests for the buffer chunk’s values 
are slightly relaxed, but most of the conditions in a production are still tested explicitly. 
These conditions must still be true for the production to match: if the production tests a 
buffer then that buffer must contain a chunk and the chunk must be of the appropriate 
type, all queries must be true as specified, all inequality tests on slots (negations, less-
than,  and greater-than comparisons)  must  be true,  and all  special  conditions specified 
with eval or bind operators must be true.  The only tests which do not have to be true are 
equality tests on the buffer slot contents i.e. tests that specify a specific value for a slot or 
tests with variables which are comparing two or more slots.  If all of the equality tests are 
true, then the production matches just as it would without procedural partial matching 
enabled.  If some of them are not true the production may still be considered a match 
under procedural partial matching.

If a value specified for a buffer’s slot in the production does not match the buffer’s slot’s 
current  value,  then  in  order  for  it  to  be considered  a  match  under  procedural  partial 
matching the mismatching values must be similar.  Similarity is defined in the same way 
that it is for declarative memory.  Thus they must be chunks for which a similarity value 
has been specified either through the set-similarities command or a modeler  provided 
similarity  hook function  which provides  a similarity  between the items.  [Note,  if  the 
items are not both chunks then they could still  be similar if there is a similarity hook 
function set as was done for numbers in the 1-hit blackjack model.]  The only difference 
between  the  procedural  partial  matching  and  declarative  partial  matching  is  that  for 
procedural  partial  matching  items  are  only  considered  to  be  similar  if  they  have  a 



similarity value which is greater than the current minimum similarity (as set with the :md 
parameter).  That additional constraint on the similarities is done for practical reasons 
because by default,  all  chunks have a similarity of the :md value to all other chunks. 
Without that constraint, any chunk could potentially be a partial match to any other in the 
production matching, and that would lead to a lot of difficulty in specifying the control 
flow through the model’s productions since explicit state markers could not be used to 
guarantee ordering.  By disallowing procedural partial matching from using the default 
minimum similarity value it allows the modeler to control which items are allowed to be 
partial matched in productions.

8.1.2 Conflict resolution with procedural partial matching

If only one production matches then it is selected and fired.  When there is more than one 
production which matches (including partially matched productions) the production with 
the highest utility is the one selected and fired.  The only difference when procedural 
partial matching is enabled is that productions which are not a perfect match receive a 
reduction to their utility.  The equation for the utility of production  i when procedural 
partial matching is enabled is:
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Ui(t): Production i’s current true utility value.

ε: The noise which may be added to the utility.

j: The set of slots for which production i had a partially matched value.

ppm: The value of the :ppm parameter.

dj : The desired value for slot j in production i.

vj:  The actual value in slot j of the chunk in the buffer.

Thus, the production’s utility is decreased by the similarity of each mismatched value 
multiplied by the :ppm setting.  

That adjusted utility value is only used for the purposes of conflict resolution.  It does not 
affect the Ui(t) value used in the utility learning equation or the utility values used during 
production compilation learning.

8.1.3 Simple procedural partial matching model

The simple-ppm-test model included with the tutorial unit shows a very simple example 
of procedural partial matching.  If you open that model you will see that it has only three 



productions and there is no Lisp code for an experiment.  Everything there except the 
:ppm and :cst parameters has been described in previous units, so it should be easy to 
understand.  The goal buffer starts with a chunk which looks like this:

TEST0-0
  ISA TEST
   VALUE  SMALL

and there are three productions which simply test the value slot of the goal chunk and 
then output the value from that slot:

(p small  (p medium (p large
   =goal>    =goal>    =goal>
     isa test      isa test      isa test
     value small      value medium      value large
     value =val      value =val      value =val
   ==>    ==>    ==>
    !output! =val    !output! =val    !output! =val
    -goal>)    -goal>)    -goal>)

If you load the model and run it as it is, with procedural partial matching disabled, you 
will see a trace like this:

> (run 1.0)
     0.000   PROCEDURAL             CONFLICT-RESOLUTION 
(P SMALL
   =GOAL>
       ISA TEST
       VALUE SMALL
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production SMALL:
 :UTILITY  0.000
 :U  0.000
     0.000   PROCEDURAL             PRODUCTION-SELECTED SMALL 
     0.000   PROCEDURAL             BUFFER-READ-ACTION GOAL 
     0.050   PROCEDURAL             PRODUCTION-FIRED SMALL 
SMALL
     0.050   PROCEDURAL             CLEAR-BUFFER GOAL 
     0.050   PROCEDURAL             CONFLICT-RESOLUTION 
     0.050   ------                 Stopped because no events left to process 

As expected the production small is selected and fired.  Before describing the results with 
procedural partial matching enabled the additional output in the trace will be described.



8.1.3.1 The conflict set trace parameter

The :cst parameter which is set to t in the model is the conflict set trace parameter.  It is a 
model debugging aid similar to the activation trace parameter used with the declarative 
memory module.  If it is set to t then during every conflict resolution occurrence it will 
display the instantiation of each production which matches along with its current utility 
parameters.  That set of matching productions is referred to as the conflict set.  In this  
case that is only the production small, and because there is no utility learning on or any 
noise in the system that production has a utility and U(t) of 0:

(P SMALL
   =GOAL>
       ISA TEST
       VALUE SMALL
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production SMALL:
 :UTILITY  0.000
 :U  0.000

8.1.3.2 Turning on ppm

If  you  change  the  model  to  enable  procedural  partial  matching  by  setting  the  :ppm 
parameter to 1, save and reload it, then run it you will see a trace like this:

> (run 1.0)
     0.000   PROCEDURAL             CONFLICT-RESOLUTION 
(P SMALL
   =GOAL>
       ISA TEST
       VALUE SMALL
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production SMALL:
 :UTILITY  0.000
 :U  0.000
(P MEDIUM
   =GOAL>
       ISA TEST
       VALUE [MEDIUM, SMALL, -0.5]
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production MEDIUM:
 :UTILITY -0.500
 :U  0.000
     0.000   PROCEDURAL             PRODUCTION-SELECTED SMALL 
     0.000   PROCEDURAL             BUFFER-READ-ACTION GOAL 



     0.050   PROCEDURAL             PRODUCTION-FIRED SMALL 
SMALL
     0.050   PROCEDURAL             CLEAR-BUFFER GOAL 
     0.050   PROCEDURAL             CONFLICT-RESOLUTION 
     0.050   ------                 Stopped because no events left to process

Again we see the production small  being selected and fired, but now we see that the 
production  medium was  also a  member  of  the  conflict  set.   For  a  partially  matched 
production the instantiation of the production will show additional information about the 
partial match.  Here is the instantiation for the production medium from the trace:

(P MEDIUM
   =GOAL>
       ISA TEST
       VALUE [MEDIUM, SMALL, -0.5]
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)

In the comparison for the value slot, instead of just seeing medium as was specified in the 
production, we see a set of items in brackets (the red text above).  That indicates that the 
test was not a perfect one.  The first item in the brackets was the value specified in the 
production.  The second item is the buffer chunk’s value for that slot, and the third item is 
the similarity between those items.  

Another  important  thing  to  notice  is  that  the  binding  for  the  variable  =val  in  that 
production is small (the blue text above).  That is because that is the actual content of that 
slot in the chunk in the buffer -- the variable bindings come from the slots of the buffer’s 
chunk and not values specified in the production. 

After the instantiation of medium we see its current utility values:

Parameters for production MEDIUM:
 :UTILITY -0.500
 :U  0.000

The U(t) value for medium is 0 just as it is for small.  The utility used for deciding which 
production to fire however is not 0 because it was not a perfect match.  The similarity 
between small and medium is set to -0.5 in the model and the :ppm value was set to 1.  
So, the utility of medium is: 0 + 1 * (-0.5) = -0.5.

8.1.3.3 The large production

Why isn’t the production large also considered in the conflict set as a partial match?  The 
reason is because there is no similarity set between the chunks small and large in the 
model.  Thus, those chunks have the minimum similarity value and a test for the chunk 
large will not be considered a partial match to the chunk small in a production.



8.1.3.4 Adding noise

If  the  :egs  parameter  is  set  to  a  value  greater  than  0  then  occasionally  the  medium 
production will be selected over the small production because of the noise added to the 
utilities.  Here is a run where :egs was set to 1 showing medium being selected:

> (run 1.0)
     0.000   PROCEDURAL             CONFLICT-RESOLUTION 
(P SMALL
   =GOAL>
       ISA TEST
       VALUE SMALL
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production SMALL:
 :UTILITY -0.713
 :U  0.000
(P MEDIUM
   =GOAL>
       ISA TEST
       VALUE [MEDIUM, SMALL, -0.5]
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production MEDIUM:
 :UTILITY  0.453
 :U  0.000
     0.000   PROCEDURAL             PRODUCTION-SELECTED MEDIUM 
     0.000   PROCEDURAL             BUFFER-READ-ACTION GOAL 
     0.050   PROCEDURAL             PRODUCTION-FIRED MEDIUM 
SMALL
     0.050   PROCEDURAL             CLEAR-BUFFER GOAL 
     0.050   PROCEDURAL             CONFLICT-RESOLUTION 
     0.050   ------                 Stopped because no events left to process 

8.1.4 Building Sticks Task alternate model

To see procedural partial matching used in an actual task this unit contains a different 
model of the learning version of the Building Sticks Task from unit 6 of the tutorial.  The 
main difference between this model and the one presented in unit 6 is that instead of 
having separate productions to force and decide for the over and under strategies this 
model only has a decide production for each strategy.  

There  are  several  minor  differences  between  this  models  and the  previous  one  with 
respect to how the encoding is performed to enable the simpler test, but we will only be 
looking in detail at the two major differences between them.  Those differences are in 
how the strategy is initially chosen and how the model computes the difference between 
the current stick’s length and the goal stick’s length.



8.1.4.1 Strategy choice

In  this  model  these  are  the  productions  which  decide  between  the  overshoot  and 
undershoot strategies:

(p decide-over
    =goal>
      isa      try-strategy
      state    choose-strategy
    - strategy over
    =imaginal>
      isa encoding
      goal-length =d
      b-len =d

==>
    =imaginal>
    =goal>
      state    prepare-mouse
      strategy over
    +visual-location>
      isa      visual-location
      kind     oval
      screen-y 60)

(p decide-under
    =goal>
      isa      try-strategy
      state    choose-strategy
    - strategy under
    =imaginal>
      isa encoding
      goal-length =d
      c-len =d

==>
    =imaginal>
    =goal>
      state    prepare-mouse
      strategy under
    +visual-location>
      isa      visual-location
      kind     oval
      screen-y 85)

They are essentially a combination of the force and decide productions from the previous 
model for each strategy.  Because they test the current strategy value they still operate as 
a forcing production when the model fails and has to choose the other strategy, but when 
there is no current strategy either  one can be potentially chosen and the utilities  will 
determine which one is chosen.

Procedural partial matching is enabled for this task and a similarity between numbers is 
set up for this model with these parameter settings in the model:

  (sgp :ppm 40 :sim-hook number-sims)



The :ppm value of 40 was estimated to produce a good fit to the data.

The  similarities  between  numbers  (the  line  lengths  in  pixels)  are  computed  by  the 
number-sims function specified and are set using a simple linear function to scale the 
possible differences into the default similarity range of 0 to -1:

300

)(
),(

baabs
baSimilarity

−−=

Unlike the previous model of this task, this one does not need to compute the difference 
between the goal stick’s length and the b and c sticks’ lengths explicitly to determine 
whether overshoot or undershoot should be used.  Now that happens as a result of the 
partial  matching in the  imaginal buffer test of those productions.  Whichever stick is 
closer to the goal stick’s length will bias the utility toward that choice.

The initial utilities of the decide-over and decide-under productions are set at 10 in the 
model.  Given that, we can look at how utility is determined when those productions are 
competing on the first problem which has stick lengths of a=15, b=250, c=55, and a goal 
of 125.  The chunk in the imaginal buffer at that time will look like this:

ENCODING0-0
  ISA ENCODING
   A-LOC  VISUAL-LOCATION8-0-0
   B-LOC  VISUAL-LOCATION9-0-0
   C-LOC  VISUAL-LOCATION10-0-0
   GOAL-LOC  VISUAL-LOCATION11-0-0
   LENGTH  NIL
   GOAL-LENGTH  125
   B-LEN  250
   C-LEN  55
   DIFFERENCE  NIL

The length of the goal, b, and c sticks are the important tests for the decide productions in 
the imaginal buffer tests:

(p decide-over
...
    =imaginal>
      isa encoding
      goal-length =d
      b-len =d
==> ...)

(p decide-under
...
    =imaginal>
      isa encoding
      goal-length =d
      c-len =d
==> ...)

Each production is checking to see if the desired stick and the goal stick are the same 
length, and the procedural partial matching will adjust the utilities of those productions 



based on the similarity between the compared sticks.  Here are the instantiations of those 
productions showing the similarities as computed from the number-sims function:

 (P DECIDE-OVER
   =GOAL>
       ISA TRY-STRATEGY
       STATE CHOOSE-STRATEGY
    -  STRATEGY OVER
   =IMAGINAL>
       ISA ENCODING
       GOAL-LENGTH [250, 125, -0.41666666]
       B-LEN 250
 ==>
   =IMAGINAL>
   =GOAL>
       STATE PREPARE-MOUSE
       STRATEGY OVER
   +VISUAL-LOCATION>
       ISA VISUAL-LOCATION
       KIND OVAL
       SCREEN-Y 60
)

(P DECIDE-UNDER
   =GOAL>
       ISA TRY-STRATEGY
       STATE CHOOSE-STRATEGY
    -  STRATEGY UNDER
   =IMAGINAL>
       ISA ENCODING
       GOAL-LENGTH [55, 125, -0.23333333]
       C-LEN 55
 ==>
   =IMAGINAL>
   =GOAL>
       STATE PREPARE-MOUSE
       STRATEGY UNDER
   +VISUAL-LOCATION>
       ISA VISUAL-LOCATION
       KIND OVAL
       SCREEN-Y 85
)

The  effective  utility  of  decide-over  is  -6.666666  (10  +  40  *  -0.41666666)  and  the 
effective utility of decide-under is 0.666667 (10 + 40 * -0.23333333).  Knowing that the 
noise for utilities is set at 3 in the model we can compute the probabilities of choosing 
over vs under on the initial trial using the equation presented in unit 6:
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Thus, the model will pick undershoot about 85% of the time for the first problem.

As in the unit  6 model  of  the task,   this  model   is  also learning utilities  based on the 
rewards   it   gets.     So,   the  base  utility   values  of   the   strategies  will   be   adjusted   as   it  
progresses.   Here are the results from running the unit 6 model of the task showing the 
average learned utility values for the four productions it needs to make the decision:

> (bst-experiment 100)
CORRELATION:  0.803
MEAN DEVIATION: 17.129

Trial 1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
     23.0 60.0 59.0 70.0 91.0 42.0 80.0 86.0 59.0 34.0 33.0 22.0 54.0 72.0 56.0

DECIDE-OVER : 13.1506
DECIDE-UNDER: 11.1510
FORCE-OVER  : 12.1525
FORCE-UNDER : 6.5943

Here are the results of running this new model of the task:

> (bst-experiment 100)
CORRELATION:  0.873
MEAN DEVIATION: 13.943

Trial 1    2    3    4    5    6    7    8    9    10   11   12   13   14   15 
     12.0 58.0 45.0 63.0 93.0 31.0 70.0 90.0 59.0 31.0 32.0 24.0 59.0 61.0 42.0

DECIDE-OVER : 11.9724
DECIDE-UNDER: 7.0609

We see a similar shift in the utilities with over gaining utility and under losing utility and 
overall this model produces a slightly better fit to the data.

8.1.4.2 Attributing actions to the imaginal module

Before  moving  on  to  the  other  new  procedural  mechanism  there  is  one  other  new 
capability to look at in the new Building Sticks model.  In the previous model of the task 
the productions computed the difference between the current stick length and the goal 
stick length to decide whether to select stick a or stick c for each of the actions after the 
strategy choice had been made using a !bind! action in the production to do the math and 
then place that value into a slot of the imaginal buffer:

(p calculate-difference
    =goal>
      isa      try-strategy
      state    calculate-difference
    =imaginal>



      isa encoding
      length   =current-len
    =visual>
      isa      line
      width    =goal-len
==>
    !bind! =val (abs (- =current-len =goal-len))
   
    =imaginal>
      length =val
   
   =goal>
      state    consider-next)

In many models abstractions like that are easy to justify and do not cause any issues for 
data comparison.  However, if one is interested in more low-level details, often when 
comparing  model  data  to  human  data  collected  from  fMRI  or  EEG  studies,  then 
accounting for the timing of such actions and attributing them to an appropriate module 
are important.  In the case of the imaginal module, there is a built in mechanism that 
allows the modeler to assign user defined functionality to the imaginal module and this 
version of the Building Sticks task does so instead of using a !bind! action for computing 
the difference.  The details of how that is done are in the additional text for this unit if 
you are interested in how to do that.

8.2 Dynamic Pattern Matching

Dynamic pattern matching is a powerful mechanism which allows the model to test and 
extend its representations based on the current context without that specific information 
having to be explicitly encoded into the model.   It is particularly important  for tasks 
where instruction or example  following are involved,  but can also be useful in other 
situations where flexibility or context dependence is necessary.

8.2.1 Basic Operation

The distinguishing feature between dynamic pattern matching and the standard pattern 
matching which has been used so far in the tutorial is that with dynamic pattern matching 
one can use variables to specify the slots in the conditions and actions of the productions. 
Other  than  that,  a  dynamically  matched  production  operates  just  like  the  standard 
productions  that  have  been  used  throughout  the  tutorial.   Thus,  whether  standard  or 
dynamic the following things still apply: only one production can be selected and fired at 
a time, the production which is selected will be the one that has the highest utility among 
those that match the current state, it takes 50ms to fire the production, utility learning 
applies  to  all  productions  which  have  fired  when  a  new  reward  is  received,  and  if 
production compilation is enabled every pair of successive productions which fire may be 
combined into a single new production. 



Because  there  is  a  different  syntax  for  dynamically  matched  productions  a  separate 
command must be used when one is defining a dynamically matched production (this is 
done primarily as a safety measure to prevent unintended modeling errors).  Instead of 
using  the  p  command,  one  uses  the  p*  command  to  create  a  dynamically  matched 
production.  The syntax for creating a production with p* is a superset of the standard 
production syntax – every production which can be defined with p could also be defined 
using p*.

There are three things which dynamic pattern matching allows that cannot be done with 
standard pattern matching and they will be described in the following sections.  For those 
descriptions we will be using a very simple model found in the simple-dynamic-model 
file.   It  has  three  productions  which  demonstrate  those  capabilities,  and it  is  a  very 
simplified version of something that is often done in a model that is following a set of 
declarative instructions.  All the model does is update the chunk in the imaginal buffer 
based on information it retrieves from declarative memory.  Because all the components 
of this model are known in advance it is not actually necessary to use dynamic pattern 
matching, but that should make it easier to understand since it can be compared to the 
static productions which would perform the same operations in this case.

8.2.2 Arbitrary slots in conditions

The first thing that dynamic pattern matching allows is the ability to test arbitrary slots in 
the conditions of a production.  The conditions of the productions start and retrieve-first-
step from the example model show this:

 (p* start
      =goal>
        isa fact
        context =context
        =context =x
      ?imaginal>
        state free
        buffer empty
      ==>
      ... )

  (p* retrieve-first-step
      =goal>
        isa fact
        context =slot
        data =x
      =imaginal>
        isa result
        data1 =x
      =retrieval>
        isa step
        =slot =target
        step first
      ==>
      ...) 



The  slot  tests  in  red  above are  instances  of  dynamic  pattern  matching.   By using  a 
variable to name a slot in a condition that test now depends on the contents of a buffer at 
the time of the test instead of specifying the slot name in advance.  That means that the 
same production could test different slots based on the current context.

First we will look at the production start.  

  (p* start
      =goal>
        isa fact
        context =context
        =context =x
      ?imaginal>
        state free
        buffer empty
    ==>
      =goal>
        context destination
      +imaginal>
        isa result
        data1 =x
      +retrieval>
        isa step
        step first 
    )

The only things different in that production, relative to those seen previously, are that it is 
defined using p* instead of p and this test in the goal buffer’s condition:

    =context =x

That means that the slot being tested will be the one which corresponds to the binding of 
the  variable  =context.  The variable  =x will  be  bound to the  value of  that  slot.   The 
=context variable is bound to the value of the context slot of the chunk in the goal buffer 
just as it is done for static productions.  

Before running the model we will look at the contents of the goal buffer and see how this 
will  apply  for  pattern  matching.   [If  you  want,  you  could  run  the  model  using  the 
environment’s  stepper  in  tutor  mode as was used in  unit  1 and try to  instantiate  the 
production yourself before continuing.]

Here is the initial chunk placed in the goal buffer in the model:

FACT0-0
  ISA FACT
   CONTEXT  DATA
   DATA  10

and here is the goal buffer test from the start production:

   =goal>
     isa fact
     context =context



     =context =x

The chunk-type matches the isa specification. The =context variable is bound to the value 
in the context slot,  which is data.  Then the slot which corresponds to the binding of 
=context, which is data, is used to bind the variable =x.  Thus, =x gets bound to 10.  If the 
binding of =context  did not correspond to a  slot  of the chunk in the buffer  then the 
production would not match.  The rest of the start production operates just like all the 
other productions that have been seen previously in the tutorial and thus should not need 
further explanation.

When we run the model with the :cst parameter on to show the instantiation of matching 
productions this is what the start production looks like:

(P* START
   =GOAL>
       ISA FACT
       CONTEXT DATA
       DATA 10
   ?IMAGINAL>
       STATE FREE
       BUFFER EMPTY
 ==>
   =GOAL>
       CONTEXT DESTINATION
   +IMAGINAL>
       ISA RESULT
       DATA1 10
   +RETRIEVAL>
       ISA STEP
       STEP FIRST
)

That  instantiation  looks  just  like  one  from  a  statically  matched  production,  but  the 
important thing to remember is that the instantiation of a dynamic production may have 
instantiated variables in both the slot value and slot name positions.

The retrieve-first-step production also has a dynamic test in its conditions:

  (p* retrieve-first-step
      =goal>
        isa fact
        context =slot
        data =x
      =imaginal>
        isa result
        data1 =x
      =retrieval>
        isa step
        =slot =target
        step first
     ==> 
      ...)

In this case, that test involves multiple buffers.  The value for the =slot variable is bound 
from one buffer and used to test a slot in a different buffer.  Again, you may want to step 



through that in tutor mode with the environment and instantiate it yourself to get a better 
feel for how this works before looking at the instantiation below.

After the start production fires, the goal buffer’s chunk looks like this:

FACT0-0
  ISA FACT
   CONTEXT  DESTINATION
   DATA  10

Thus, in the goal buffer condition of retrieve-first-step the =slot variable will be bound to 
destination and the =x variable will be bound to 10.

The chunk created by the start production in the imaginal buffer looks like this:

RESULT0-0
  ISA RESULT
   DATA1  10
   DATA2  NIL

That matches the specification for the imaginal buffer since =x is bound to 10.

The chunk which is in the retrieval buffer looks like this:

A-0
  ISA STEP
   STEP  FIRST
   DESTINATION  DATA2

and this is the condition for that buffer from the retrieve-first-step production:

   =retrieval>
     isa step
     =slot =target
     step first

The isa test and the step slot both match the chunk in the buffer.  The =slot variable is 
bound to destination from the goal buffer, and thus the variable =target will be bound to 
the value of the destination slot from the chunk in the retrieval buffer, which is data2.  If 
there was not a slot  named destination  in the chunk in the  retrieval buffer  then this 
condition would not have matched and the production would not be selected.

Here is the instantiation of that production from the trace:

(P* RETRIEVE-FIRST-STEP
   =GOAL>
       ISA FACT
       CONTEXT DESTINATION
       DATA 10
   =IMAGINAL>



       ISA RESULT
       DATA1 10
   =RETRIEVAL>
       ISA STEP
       DESTINATION DATA2
       STEP FIRST
 ==>
   =GOAL>
       DATA 11
   =IMAGINAL>
       DATA2 10
   +RETRIEVAL>
       ISA STEP
       STEP SECOND
)

Though not shown in these examples, the dynamic conditions may also be used with any 
of the modifiers for a slot test as well as multiple times within or across buffer conditions. 
Thus,  this  set  of  conditions  would  be  valid  in  a  dynamically  specified  production 
(assuming appropriate chunk-type definitions):

=goal>
  isa state
  context =context
=imaginal>
  isa representation
  > =min-s 0
  =min-s =min
  > =max-s =min
  =context current
=retrieval>
  isa fact
  - =context complete
  max-slot =max-s
  min-slot =min-s

However, there are some constraints imposed on the use of dynamic conditions and those 
will be described in a later section.

8.2.3 Arbitrary slots in actions

The actions of the retrieve-first-step production show how dynamic pattern matching can 
be used to specify an action based on the current context.  In the modification of the 
imaginal buffer we see this action:

      =imaginal>
        =target =x

As with the conditions, that means that the slot of the chunk in the imaginal buffer that 
will be modified will be the one bound to the variable =target.  From the previous section 
we saw that that was the value data2, and that the =x variable was bound to 10.  Thus this 
action will modify the chunk in the imaginal buffer so that its data2 slot has the value 10.



Here is the chunk in the imaginal buffer after retrieve-first-step fires.

RESULT0-0
  ISA RESULT
   DATA1  10
   DATA2  10

A variable may be used to specify a slot in any buffer modification or buffer request 
action of a dynamically matching production.  However, because such values are only 
determined when the production actually matches, it is possible that the production may 
attempt to make a modification or request with a slot that is not valid for the chunk-type 
that  corresponds to the action.   In the event of buffer modification actions there is a 
special  mechanism which  handles  that,  as  described  in  the  next  section.   For  buffer 
requests, if an invalid slot is specified that will usually lead to a warning and the failure to 
execute the request, but could also result in errors occurring during the run.  Thus, if slots 
of requests  are specified dynamically,  care should be taken to ensure the productions 
perform other tests, either in that production, or elsewhere in the sequence of productions, 
to protect against invalid requests.

8.2.4 Extending chunks with new slots

The  final  production  in  the  test  model,  retrieve-second-step,  shows  the  final  new 
capability which dynamic pattern matching allows.  Here is the production:

(p* retrieve-second-step
      =goal>
        isa fact
        context =slot
        data =x
      =imaginal>
        isa result
      =retrieval>
        isa step
        =slot =target
        step second
      ==>
      =imaginal>
        =target =x)

Other than specifying that the step slot of the retrieved chunk is the value second the 
conditions of this production are exactly the same as they are for the retrieve-first-step 
production,  and  the  action  of  this  production  is  a  modification  to  the  chunk  in  the 
imaginal buffer  which  looks exactly  the same as  the  one  from the retrieve-first-step 
production.

The significant difference between retrieve-first-step and retrieve-second-step is not in 
the  specifications  of  the  productions,  but  the  contents  of  the  buffers  when  they  are 



selected.   Retrieve-first-step was described in the previous section, and essentially the 
same matching process holds true for retrieve-second-step.  However, the bindings for the 
variables are now different.  Here are the chunks from the goal and retrieval buffers after 
retrieve-first-step fires which match the retrieve-second-step production:

GOAL: FACT0-0 
FACT0-0
  ISA FACT
   CONTEXT  DESTINATION
   DATA  11

RETRIEVAL: B-0 [B]
B-0
  ISA STEP
   STEP  SECOND
   DESTINATION  DATA3

The  variable  bindings  from the  conditions  of  the  production  are:  =slot  is  bound  to 
destination, =x is bound to 11, and =target is bound to data3.  Given those bindings, the 
instantiation of the action of this production will look like this:

   =imaginal>
      data3 11

Here is the chunk which is in the imaginal buffer at that time:

RESULT0-0
  ISA RESULT
   DATA1  10
   DATA2  10

and here is the specification of the corresponding chunk-type:

(chunk-type result data1 data2)

The important thing to notice is that the chunk does not have a slot named data3, but that 
is what the modification action specifies to change.  When a dynamically determined 
modification action specifies a slot which does not exist in the chunk being modified it 
will extend that chunk’s type to add the specified slot.  Looking at the trace resulting 
from this production firing we see an event which indicates that the result chunk-type is 
being extended:

0.350   PROCEDURAL        PRODUCTION-FIRED RETRIEVE-SECOND-STEP 
0.350   PROCEDURAL        EXTENDING-CHUNK-TYPE RESULT 
0.350   PROCEDURAL        MOD-BUFFER-CHUNK IMAGINAL

Here is the result for the chunk in the imaginal buffer after that occurs:

IMAGINAL: RESULT0-0 



RESULT0-0
  ISA RESULT
   DATA1  10
   DATA2  10
   DATA3  11

This  mechanism allows  the  model  to  build  its  chunk-type  representations  as  needed 
instead of requiring all possible slots be specified up front.  

8.2.5 Constraints on dynamic pattern matching

Dynamic pattern matching adds a lot of flexibility to the specification of productions, and 
this flexibility allows for a lot more powerful productions to be created.  However, since 
ACT-R is intended to be a model of human cognition, there are two constraints imposed 
upon how dynamic pattern matching works to maintain the plausibility of the system.

8.2.5.1 No Search

 
The first constraint on dynamic pattern matching is that it does not require searching to 
find a match.  All productions which use dynamic pattern matching must be specified so 
that  all  variables  are  bound directly  based  on the  contents  of  slots.   The  procedural 
module will not allow the specification of a condition like this: 

=goal>
  isa example
  =some-slot desired-value

which requires  finding a  slot  which  has  a  particular  value.   If  search  like  that  were 
allowed then the matching of a production could become an NP complete task.

8.2.5.2 One level of indirection

The other  constraint  on dynamic  pattern matching is  that  it  only allows one level  of 
indirection.  All of the variables which are used as slot indicators must be bound to slots 
which are specified as constants.  Thus, one cannot use a dynamically matched slot’s 
value as a slot indicator like this:

=goal>
  isa example
  first-slot =s1
  =s1        =next-slot
  =next-slot value

Allowing an unbounded level of indirection is not plausible, thus some constraint needed 
to be determined for the indirection.  A single level was chosen as the constraint because 
that was all that was necessary to provide the abstractions needed and such a mechanism 
appears to be realizable within the human brain. 

8.2.6 New paired-learning model



In unit 7 the paired-learning model performed the paired associate task based on a set of 
declarative  instructions  and  a  set  of  somewhat  general  productions  for  interpreting 
instructions.  By using dynamically matched productions, a new model of the task can be 
written using a more general declarative representation and with productions which are 
able to handle more situations than those of the previous model.  The basic operation of 
the  model  is  the  same,  and  it  uses  the  same  set  of  instructions  but  with  a  different 
declarative representation.  Thus, this unit will not describe the new model in detail and 
will only note the significant differences from the previous model.

8.2.6.1 Chunk-type hierarchy

Before looking at the productions of the new model, there is one other feature used which 
has not been presented previously in the tutorial.  That feature is the ability to create a 
hierarchy  of  chunk-types  for  a  model.   When  creating  a  new  chunk-type  one  can 
optionally specify an existing chunk-type to be the parent type of that new type.  The 
newly created type will have all the slots of the parent type by default, and it may add 
additional slots of its own.  This is a modeling feature which can help when writing a  
model to make the productions easier to write and understand. 

When looking at descriptions of a chunk-type, for instance by calling chunk-type without 
any parameters,  if  a chunk-type  has a  parent  type  that  will  be shown with an arrow 
pointing to the chunk-type name followed by the parent type.  For example, all of the 
chunk-types for the visual objects which the model attends, like text and lines, are sub-
types  of  the  chunk-type  visual-object  as  shown  in  the  output  from  the  chunk-type 
command here:

VISUAL-OBJECT
   SCREEN-POS
   VALUE
   STATUS
   COLOR
   HEIGHT
   WIDTH

TEXT <- VISUAL-OBJECT
   SCREEN-POS
   VALUE
   STATUS
   COLOR
   HEIGHT
   WIDTH
   TEXT (T)

LINE <- VISUAL-OBJECT
   SCREEN-POS
   VALUE
   STATUS
   COLOR
   HEIGHT
   WIDTH
   END1-X



   END1-Y
   END2-X
   END2-Y

When testing the conditions for a chunk in a buffer the isa test will match to the specific  
type named as well as any type which has that type as a parent.  Thus, this condition in a 
production: 

=visual>
   isa visual-object
   value =val

would not discriminate based on the type of object being attended and could match to a 
line, text, or any other chunk-type which has visual-object as a parent.  Whereas these 
conditions:

=visual>
  isa text
  value =val

=visual>
  isa line
  value =val

will only match if the item is of the specific chunk-type listed (or a type which has that  
type as a parent).

To create a chunk-type as a sub-type of another type one needs to specify that using an 
:include  in  the chunk-type  definition  like this  as used in  the paired-learning-dynamic 
model:

(chunk-type operator pre)
(chunk-type (action (:include operator)) action post)
(chunk-type (detailed-action (:include action)) required label)
(chunk-type (test (:include operator)) slot success failure)

It creates a chunk-type called operator with one slot named pre, and then it defines three 
other chunk-types called action, detailed-action, and test which are all created as a sub-
type of another chunk-type.  The action and test types are both directly sub-types of the 
operator chunk-type. Therefore each of those sub-types will have a slot called pre along 
with their own set of slots as specified above.  The detailed-action type is specified as a 
sub-type of the action chunk-type.  That means it will have all of the slots which the 
action chunk-type has as well as the slots it specifies.  Since the action chunk-type is a 
sub-type of the operator chunk-type the detailed-action chunk-type will also be a sub-type 
of the operator chunk-type.  Here is how they are shown in the list of chunk-types:

OPERATOR
   PRE

ACTION <- OPERATOR
   PRE



   ACTION
   POST

DETAILED-ACTION <- ACTION
   PRE
   ACTION
   POST
   REQUIRED
   LABEL

TEST <- OPERATOR
   PRE
   SLOT
   SUCCESS
   FAILURE

In this  model,  using a chunk-type  hierarchy allows the use of a single production to 
retrieve the next operator like this:

(p retrieve-operator
    =goal>           
      isa     task
      state   =state
      step    ready
  ==>
    +retrieval>
      isa     operator
      pre     =state
    =goal>
      step    retrieving-operator
      context nil)

Then (as will be seen in the next section) it has productions which are specific to the type  
of operator which is retrieved to perform the tasks needed.  Thus, with the chunk-type 
hierarchy the productions should be easier to understand because different operators are 
indicated appropriately in the isa tests of the productions and have slots with names that 
are meaningful to the task being performed.  Of course it would also be possible to write  
the model using a single chunk-type which either had all of the slots needed or which 
reused slots for different purposes based on the action, as the arg1 and arg2 slots were in 
the previous paired-learning model, and it would still perform the given tasks the same 
way.  Based on that, it would appear that the chunk-type hierarchy is just a modeling 
convenience in ACT-R.  However, although the models for those tasks would perform 
the same, they might differ in the chunks that the models learn and store in declarative 
memory.  In tasks which are dependent on that learned information, how the knowledge 
is organized can be important,  particularly when partial  matching is used because the 
chunk-type of the request is not subject to errors in partial  matching.  Thus there are 
models  where the organization of the learned information  into a  hierarchy can be an 
important component of the model and not just a convenience for the modeler.

8.2.6.2 Generality from the instructions

One  difference  between  this  model  and  the  previous  one  is  that  the  instructions 
themselves specify the contents of the items to be learned.  In the previous model the 



chunk-type for holding the pairs that were learned was prespecified to have two slots, 
arg1 and arg2:

(chunk-type args arg1 arg2)

In this model however the chunk-type used by the model is specified like this:

(chunk-type result)

It does not have any slots initially, but when the model does the task it will create a chunk 
like this for a pair of items: 

RESULT10-0
  ISA RESULT
   WORD  "zinc"
   NUMBER  "9"

That happens during the interpretation of an instruction which has the action to read an 
item like these:

(op1 isa detailed-action pre start action read  label word  post stimulus-read)
(op5 isa detailed-action pre wait  action read  label number  post new-trial)

The label slot of the action specifies the name of the slot into which the item should be 
stored in the imaginal buffer and is handled by these two productions:

(p read
    =goal>
      isa       task
      step      retrieving-operator
    =retrieval>
      isa       action
      action    read
      label     =destination
      post      =state
    =visual-location>
      isa       visual-location
    ?visual>
      state     free
    ?imaginal>
      buffer    full
  ==>
    +visual>
      isa       move-attention
      screen-pos =visual-location
    =goal>
      context    =destination
      step       process
      state      =state)

(p* encode
    =goal>
      isa         task
      step        process
      context     =which-slot
    =visual>
      isa         text



      value       =val
    =imaginal>
      isa         result
  ==>
    =imaginal>
      =which-slot =val
    =goal>
      step        ready)

The read production saves the value of the label slot in the goal buffer’s context slot and 
requests a shift of visual attention to the item.  When the item is attended the encode 
production can fire and place the value of the text which was read into that slot of the 
chunk in the imaginal buffer.  If the chunk in the buffer does not have a slot by that name 
then that modification in the dynamic production will extend the chunk to have such a 
slot.  

That  makes  this  set  of instruction following productions much more general  than the 
previous ones seen because the representation does not have to be encoded in the model’s 
chunk-types  and  could  have  any number  of  slots  in  the  representation  based  on the 
instructions.  The model also does not need to have a separate production to set each 
possible  slot  that  is  used in  the representation.   Of course,  since the instructions  are 
specifically encoded in this particular model’s definition that generality is not necessary 
since the representation is known in advance.  However, these same productions could be 
used for other tasks without changing them, or they could be used with an even more 
general version of the model which had other productions for reading the instructions 
themselves.

Similarly, we see that by using dynamically matched productions this new version of the 
model can also perform the retrieval based on a slot specified in the instructions:

(p* retireve-associate
    =goal>
      isa      task
      step     retrieving-operator
        
    =imaginal>
      isa      result
      =target  =stimulus
    =retrieval>
      isa      action
      action   retrieve
      required =target
      label    =other
      post     =state
  ==>
    =imaginal>
    +retrieval>
      isa      result
      =target  =stimulus
    =goal>
      step     retrieving-result
      context  =other
      state    =state)



and also respond using an arbitrary slot specified in the instructions:

(p* type
    =goal>
      isa      task
      step     retrieving-operator
    =imaginal>
      isa      result
      =slot    =val
    =retrieval>
      isa      action
      action   type
      required =slot
      post     =state
    ?manual>
       state   free
  ==>
    =imaginal>
    +manual>
      isa      press-key
      key      =val
    =goal>
      state    =state
      step     ready)

8.2.6.3 Dynamic matching and production compilation

As in the previous version of this task, this model uses production compilation to learn 
specific  productions  for  doing  the  task  as  it  is  repeatedly  following  the  instructions. 
There  is  no  difference  in  how  the  production  compilation  mechanism  works  with 
dynamically matched productions.  It still  combines successive productions which are 
fired into a single production when possible using the rules described in unit 7.  However, 
it is worth looking at a couple of examples to see how that applies when dynamically 
matched productions are involved.  When one or both of the productions being composed 
together contain dynamically matched components, the resulting production may retain 
some of those dynamic components or they could be replaced with statically matched 
values.  They will be replaced by static values in the same way that other variables are 
replaced – when a retrieval request and harvesting are removed between the productions. 

We can see examples of this very early in the model’s trace with the :pct parameter set to 
t.  When the encode and retrieve-operator productions are combined the result still has 
the dynamically specified components from the encode production:
 
(P* PRODUCTION1
  "ENCODE & RETRIEVE-OPERATOR"
   =GOAL>
       ISA TASK
       CONTEXT =WHICH-SLOT
       STEP PROCESS
       STATE =STATE
   =IMAGINAL>
       ISA RESULT
   =VISUAL>
       ISA TEXT
       VALUE =VAL



 ==>
   =IMAGINAL>
       =WHICH-SLOT =VAL
   =GOAL>
       STEP RETRIEVING-OPERATOR
   +RETRIEVAL>
       ISA OPERATOR
       PRE =STATE)

However, when the retrieve-operator and retrieve-associate productions are combined the 
instantiation of the variables used from the retrieved chunk results in a statically matched 
production:

(P PRODUCTION2
  "RETRIEVE-OPERATOR & RETIREVE-ASSOCIATE - OP2"
   =GOAL>
       ISA TASK
       STATE STIMULUS-READ
       STEP READY
   =IMAGINAL>
       ISA RESULT
       WORD =STIMULUS
 ==>
   =IMAGINAL>
   =GOAL>
       CONTEXT NUMBER
       STATE RECALLED
       STEP RETRIEVING-RESULT
   +RETRIEVAL>
       ISA RESULT
       WORD =STIMULUS)

8.2.6.4 Data fit

Despite the model being more general,  it  still  performs the task the same way as the 
previous version of the model does, and with production compilation enabled provides 
the same fit to the data.  

Here are the results from the unit 7 model:

> (paired-experiment 10)

Latency:
CORRELATION:  0.997
MEAN DEVIATION:  0.143
Trial    1       2       3       4       5       6       7       8
        0.000   2.339   2.118   1.967   1.739   1.718   1.509   1.582

Accuracy:
CORRELATION:  0.996
MEAN DEVIATION:  0.045
Trial    1       2       3       4       5       6       7       8
        0.000   0.445   0.660   0.755   0.835   0.895   0.895   0.955

and here are the results from the model from this unit:



> (paired-experiment 10)

Latency:
CORRELATION:  0.998
MEAN DEVIATION:  0.110
Trial    1       2       3       4       5       6       7       8
        0.000   2.328   2.109   1.883   1.746   1.600   1.503   1.558

Accuracy:
CORRELATION:  0.996
MEAN DEVIATION:  0.043
Trial    1       2       3       4       5       6       7       8
        0.000   0.430   0.620   0.770   0.875   0.910   0.915   0.935

8.3 Assignment

The  assignment  for  this  unit  will  be  to  use  both  of  the  new  production  techniques 
described above to create a model which can perform a simple categorization task.  The 
experiment this model will be performing is a simplification of an experiment which was 
performed by Robert M. Nosofsky (which was based on an experiment performed by 
Stephen K. Reed) that required participants to classify schematic face drawings into one 
of two learned categories.  

In  the  experiment  the  participants  first  trained  on  learning  10  faces  each  of  which 
belonged to one of two categories.  The faces themselves were varied along four features: 
eye height, eye separation, nose length, and mouth height.  Then there was a testing phase 
in which they were presented with both old and new faces and asked to specify to which 
category the face belonged.  The data collected was the probability of classifying the face 
as a member of each category in the testing phase.  For this assignment we will not be 
modeling the whole task, nor will we be trying to fit all of the data from the experiment 
because a thorough model of this task would require a lot more work than is reasonable 
for an assignment.  

Here is the general description of the task which the model for this assignment will have 
to perform.  It will be presented with the attributes of a stimulus one at a time, indicating 
the name of a feature and its value (it will not be visually interpreting a face image).  It  
must collect those attributes into a single chunk which represents the current stimulus. 
Using that chunk, it can then retrieve a best matching example from declarative memory. 
Based on that retrieved chunk, it will make a category choice for the current stimulus. 
The model  will  not be required to perform the initial  training  phase,  thus it  will  not 
require  using any of  the ACT-R learning mechanisms.   Each trial  will  be completed 
separately with the model being reset before each one.  This is similar to how the fan 
experiment  model  from unit  5  worked,  with  the  training  information  pre-encoded  in 
declarative memory and the model only needing to perform one trial of the task.  The 
details of how those steps are to be performed are described below.

The important part of the exercise is the first step – creating the stimulus representation 
from the individual attributes.  The focus of the assignment will be on how to perform 



this  task in  a  general  way because  that  sort  of  encoding is  something  which  can  be 
applicable to many different tasks.

8.3.1 The Stimulus Attributes 

The attributes of the stimulus to categorize will be presented to the model one at a time 
through the goal buffer.  The experiment code will set the goal buffer to a chunk of type 
attribute, and the attribute chunk-type is defined like this:

(chunk-type attribute name value)

The name slot of the chunk will contain a symbol specifying the name of the attribute 
being presented.  The value slot will hold a value for that attribute in the current stimulus 
and that will be a number.  Thus, a goal chunk at the start of a trial may look like this:

ATTRIBUTE0
  ISA ATTRIBUTE
   NAME  MH
   VALUE  0.178

The first thing the model should do is convert that value into a discrete description. The 
reason for doing so is because instead of storing the raw values for the learned examples 
the model will have example chunks like this stored in declarative memory which it has 
to be able to retrieve:

EXAMPLE1
  ISA EXAMPLE
   CATEGORY  1
   EH  SMALL
   ES  LARGE
   NL  MEDIUM
   MH  SMALL

Those  chunks  provide  a  more  general  representation  of  the  stimuli  instead  of  just 
recording explicit measurements or distance values.  By converting the attributes as they 
are encoded the model will be able to create a similarly structured chunk in the imaginal 
buffer.  In a more complete model of the task a similar process would take place during 
the training phase of the experiment to strengthen and learn the examples.

For this task all of the attributes can be classified as either small, medium, or large, and to 
make things easier, the numeric values of the attributes used have all been scaled to the 
same range based on data  also collected by Nosofsky for this task.   To perform that 
conversion from numeric value to descriptive name, procedural partial matching should 
be used by the model.  The starting model has a similarity function provided that assigns 
a similarity score between the attribute values and the labels small, medium, and large. 



Thus, one can have competing productions which test the value for each of those labels 
and the production which specifies the most similar label will be the one selected.  

The specific range of values used should not be explicitly encoded into the model, and in 
fact this unit will not describe how the similarity values are computed between the labels 
and the numbers.  Thus,  your  model  should not  explicitly  test  the  values  against  any 
particular  numbers,  but  should  be able  to  work with  any value  given relying  on the 
similarity  function  to  provide  the  comparison  to  the  appropriate  labels.   Thus,  a 
production like this is not a good thing to use in this model:

(p bad-way-to-test-medium
   =goal>
     isa attribute
    > value -.5
    < value .5
  ...
)

 
After determining what the appropriate label for the attribute is, the model must record 
that value in the chunk in the imaginal buffer.  When the first attribute is presented, the 
imaginal buffer will be set to a chunk of type example, where the example chunk-type is 
defined like this:

(chunk-type example category)

The category slot of that initial imaginal chunk will be the value unknown, and thus the 
initial imaginal buffer chunk will look like this:

EXAMPLE1
  ISA EXAMPLE
   CATEGORY  UNKNOWN

Note that it does not have any slots for holding the specific attributes of the task.  This is  
where dynamic pattern matching will need to be used.  The model will need to add a slot 
to the chunk based on the name of the attribute provided.  Thus, the complete encoding of 
the attribute shown above should result in the  imaginal buffer looking like this when 
done:

EXAMPLE1
  ISA EXAMPLE
   CATEGORY  UNKNOWN
   MH MEDIUM
 

Again, it is important that the model be general in how it performs that modification to 
the  imaginal buffer’s chunk.  The model should be able to encode any attribute name 
which is provided, and should not have any specific attribute names mentioned in the 
productions.  Thus this action in a production is not the way that it should be handled:

(p bad-imaginal-action



…
==>
  =imaginal>
     mh  =value
…)

As with the values, the unit will not be specifying the names that the attributes will have.  
The  experiment  code  will  guarantee  that  the  example  chunks  created  in  declarative 
memory have the same attributes as those that are presented to the model, and the model 
should be able to work with any attribute names it is given.

After updating the imaginal buffer, the model should stop and wait for the next attribute 
to be provided.  An easy way to do that would be to make sure that all of the productions 
which are processing the attribute test the goal buffer chunk in their conditions (which is 
likely to occur since it contains the information needed) and then clear the chunk from 
the goal buffer after the attribute has been processed.  Thus, the model should be able to 
process  any number  of  attributes  for  a  stimulus.   The  result  will  be  a  chunk in  the 
imaginal buffer which has a slot for each of the attributes that was provided and the 
value in each of those slots is a label (small, medium, or large) as determined through 
procedural partial matching based on the numeric value from the attribute.

8.3.2 Model Response

After all of the attributes have been provided to the model a different goal chunk will be 
set to indicate that it is time for the model to retrieve an example and classify the stimulus 
that is currently encoded in the  imaginal buffer.  The new goal is of the chunk-type 
categorize which is defined like this:

(chunk-type categorize state)

The state slot of the goal chunk will be nil,  and that slot may be used as needed for 
coordinating the model’s actions during the response task.

To make a response, the model needs to do two things.  First, it must retrieve a chunk 
from declarative memory which is  similar  to the chunk in the  imaginal buffer.   The 
model will have 10 examples already encoded in declarative memory which have their 
features set based on the examples from the original experiment.  Half of the examples 
are in category 1 and the other half are in category 2, and here are two examples:

EXAMPLE4
  ISA EXAMPLE
   CATEGORY  1
   EH  SMALL
   ES  MEDIUM
   NL  LARGE
   MH  LARGE

EXAMPLE5
  ISA EXAMPLE



   CATEGORY  2
   EH  LARGE
   ES  SMALL
   NL  SMALL
   MH  SMALL

Because  the  names  of  the  slots  to  specify  in  the  retrieval  request  are  not  known in 
advance the easiest way to perform the retrieval request is using a direct request, as was 
shown in the siegler model from unit 5 of the tutorial.   That will look like this as an 
action in the production:

(p
 …
==>
+retrieval> =imaginal
…)

and is equivalent to specifying all of the slots and values from the chunk that is in the 
imaginal buffer explicitly in the request.

Declarative partial matching is also enabled for this model, and that will allow for the 
retrieval of a chunk which has values close to the requested values in the event that there 
is not a perfectly matching example.  The other declarative parameters for the model are 
set such that if the chunk in the imaginal buffer is created correctly there should always 
be a chunk retrieved in a reasonable amount of time.

After the model retrieves a chunk, the final step it needs to do is to set the category slot of 
the chunk in the imaginal buffer to be the same as the category value of the chunk that 
was retrieved.  That can be done with a production that looks more or less like this, but 
you may also need goal buffer tests and/or actions depending on how you are maintaining 
the task state in other productions:

(p respond
     =retrieval>
       isa example
       category =value
     =imaginal>
       isa example
       category unknown
     ==>
     =imaginal>
       category =value)

After that happens the model should again stop because it is then done with the trial.

8.3.3 Running the experiment



There  are  three  commands  provided  for  running  the  task.   The  first  is  present-one-
attribute which takes two parameters, an attribute name and an attribute value.  It can be 
used to test the model’s encoding ability.  The attribute name can be any symbol and the 
value should be a number between -1 and 1.  It will generate an attribute goal chunk for 
the model with the name and value slots set using the values provided and run the model 
to perform the encoding.  Thus, it could be called like this:

(present-one-attribute size -1)

Which would create this chunk in the goal buffer:

ATTRIBUTE0-0
  ISA ATTRIBUTE
   NAME  SIZE
   VALUE  -1

 and should result in the model having a chunk like this in the imaginal buffer when it is 
done:

EXAMPLE10-0
  ISA EXAMPLE
   CATEGORY  UNKNOWN
   SIZE  SMALL

because a value of -1 is most similar to the small label (though sometimes noise in the 
utility calculations could cause one of the other labels to also be applied).  You should 
work with this command only until your model is able to do that part of the task reliably.

Once the model is able to properly encode attributes you can test its ability to retrieve 
examples  based  on a  stimulus  with  multiple  attributes  using the  present-one-stimulus 
command.  It requires four parameters which should each be a number in the range of -1 
to 1.  It will reset the model, generate an attribute goal for the model (using a default set 
of names for the attributes) and run it with each of the values specified, and then generate 
a categorize goal and run the model to make the response.  The return value will be the 
category which the model has set in the  imaginal buffer’s chunk or nil if it  does not 
properly set a category.  Here is an example of calling it and showing it responded with 
category 1:

(present-one-stimulus -1 .5 -.2 0)
1

Once you have a model which can handle individual trials with present-one-stimulus you 
should then test it on the experiment data using the categorize command.  It requires one 
parameter which is the number of times to repeat the experiment.  It will run the model 
over the 14 stimuli from the experiment which we are using for testing as many times as 
specified and print out the proportion of times that each item was classified as category 1 
along with the experimental data, number of responses the model made, and the model’s 
fit to the experimental data:



CG-USER(306): (categorize 10)
MEAN DEVIATION:  0.173
CORRELATION:  0.924
P(C=1)
      (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) 
data  0.97 0.85 0.98 1.00 0.96 0.07 0.13 0.08 0.05 0.02 0.93 0.54 0.98 0.08
model 1.00 0.70 1.00 1.00 1.00 0.00 0.10 0.10 0.10 0.10 0.90 1.00 1.00 0.50

The numbers in parentheses should all be the same as the number of trials that were run 
indicating that the model always responds.  We will discuss the data fit and other running 
options below.

8.3.4 Fitting the data

If your model works as described above, then it should produce a fit to the data similar to 
this using the default parameters in the model:

> (categorize 100)
MEAN DEVIATION:  0.170
CORRELATION:  0.947
P(C=1)
     (100)(100)(100)(100)(100)(100)(100)(100)(100)(100)(100)(100)(100)(100) 
data  0.97 0.85 0.98 1.00 0.96 0.07 0.13 0.08 0.05 0.02 0.93 0.54 0.98 0.08
model 0.90 0.64 0.92 0.95 0.82 0.16 0.23 0.37 0.17 0.14 0.92 0.71 0.88 0.49

If the correlation and deviation are significantly worse than that, then you will want to go 
back and make sure your model is doing all of the steps described above correctly.

Because fitting the data is not the focus of this exercise it is not necessary to adjust the 
parameters  to  improve  that  fit,  but  if  you  would  like  to  explore  the  parameters  for 
improving the fit then the ones that are recommended to be changed would be these four 
from the model:

(sgp :mp 1 :ppm 1 :egs .25 :ans .25)

Those are the partial  matching scale parameters for declarative and procedural partial 
matching  and  the  noise  values  for  those  mechanisms.   Through  adjusting  those 
parameters the reference model was able to achieve this fit which improves the deviation:

> (categorize 500)
MEAN DEVIATION:  0.145
CORRELATION:  0.950

8.3.5 Generality



If your model fits the data adequately then the final thing to test is to make sure that it is  
doing the task in a general way.   The categorize command takes optional parameters 
which  can  be  used  to  modify  the  attribute  names  and  the  range  of  values  it  uses. 
Providing a second number to categorize will shift the attribute values provide to the 
model by that amount and also shift the similarities to the labels accordingly.  Thus, the 
model should be unaffected by that change and produce the same fit to the data regardless 
of such a shift:

> (categorize 100 4.5)
MEAN DEVIATION:  0.161
CORRELATION:  0.968

In addition to that, one can also specify the four names to use for the attributes.  Those 
provided names will  be used to  generate  the examples  in declarative memory and to 
provide the attributes to the model.   The names can be any Lisp symbols  other than 
category, since the example chunks already have such a slot.  To specify different names 
they must be passed to categorize after the offset value.  Here is an example with no 
effective offset to the values (a shift of 0) and new names for the attributes:

> (categorize 100 0 slot-1 b other name)
MEAN DEVIATION:  0.161
CORRELATION:  0.975

Here is what an example from declarative memory looks like in that case:

EXAMPLE0
  ISA EXAMPLE
   CATEGORY  1
   SLOT-1  SMALL
   B  LARGE
   OTHER  MEDIUM
   NAME  SMALL

and the chunk created in the  imaginal buffer to encode a stimulus should look similar 
(the values of the attribute slots will differ based on the stimulus presented and noise).

Again,  this change should not affect  the model’s  ability to do the task if  it  has been 
written to perform the task generally.  The best test of the model is to provide both a non-
zero  shift  to  the  attribute  values  and  new  attribute  names.   A  good  model  for  the 
assignment will still provide the same fit to the data under those circumstances:

> (categorize 100 -3 a b c d)
MEAN DEVIATION:  0.162
CORRELATION:  0.936
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