
ACT-R Tutorial 22-Dec-14 Unit Four

Unit 4: Activation of Chunks and Base-Level Learning

There are two goals of this unit. The first is to introduce the subsymbolic quantity of
activation associated with chunks. The other is to show how those activation values are
learned through the history of usage of the chunks.

4.1 Introduction

We have seen retrieval requests in productions like this:

(P example-counting
 =goal>
 isa count
 state counting
 number =num1
 =retrieval>
 isa count-order
 first =num1
 second =num2
==>
 =goal>
 number =num2
 +retrieval>
 isa count-order
 first =num2
)

In this case an attempt is being made to retrieve a count-order chunk with a particular
number (bound to =num2) in its first slot. Up to now we have been working with the
system at the symbolic level. If there was a chunk that matched that retrieval request it
would be placed into the retrieval buffer, and if not then the retrieval request would fail
and the state of the declarative memory module would indicate an error. The system was
deterministic and we did not consider any timing cost associated with that retrieval or the
possibility a chunk in declarative memory might fail to be retrieved. For the simple tasks
we have looked at so far that was sufficient.

Most psychological tasks however are not that simple and issues such as accuracy and
latency over time or across different conditions are measured. For modeling these more
involved tasks one will typically need to use the subsymbolic components of ACT-R to
accurately model and predict human performance. For the remainder of the tutorial, we
will be looking at the subsymbolic components that control the performance of the
system. To use the subsymbolic components we need to turn them on by setting the :esc
parameter (enable subsymbolic computations) to t:

(sgp :esc t)

That setting will be necessary for the rest of the models in the tutorial.

1

ACT-R Tutorial 22-Dec-14 Unit Four

4.2 Activation

Every chunk in ACT-R’s declarative memory has associated with it a numerical value
called its activation. The activation reflects the degree to which past experiences and
current context indicate that chunk will be useful at any particular moment. When a
retrieval request is made the chunk with the greatest activation among those that match
the specification of the request will be the one placed into the retrieval buffer. There is
one constraint on that however. There is a parameter called the retrieval threshold which
sets the minimum activation a chunk can have and still be retrieved. It is set with the :rt
parameter:

(sgp :rt -0.5)

If the chunk with the highest activation among those that match the request has an
activation which is less than the retrieval threshold, then no chunk will be placed into the
retrieval buffer and an error state will indicate the failure.

The activation Ai of a chunk i is computed from three components – the base-level, a
context component and a noise component. We will discuss the context component in
the next unit. So, for now the activation equation is:

ε+= ii BA

B
i
: The base-level activation. This reflects the recency and frequency of practice of the

chunk i.

ε : The noise value. The noise is composed of two components: a permanent noise
associated with each chunk and an instantaneous noise computed at the time of a retrieval
request.

We will discuss these components in detail below.

4.3 Base-level Learning

The equation describing learning of base-level activation for a chunk i is:

)ln(
1

∑
=

−=
n

j

d
ji tB

n: The number of presentations for chunk i.
tj: The time since the jth presentation.
d: The decay parameter which is set using the :bll (base-level learning) parameter. This
parameter is almost always set to 0.5.

2

ACT-R Tutorial 22-Dec-14 Unit Four

This equation describes a process in which each time an item is presented there is an
increase in its base-level activation, which decays away as a power function of the time
since that presentation. These decay effects are summed and then passed through a
logarithmic transformation.

There are two types of events that are considered as presentations of a chunk. The first is
its initial entry into declarative memory. The other is any merging of that chunk with a
chunk that is already in declarative memory. The next two subsections describe those
events in more detail.

4.3.1 Chunks Entering Declarative Memory

When a chunk is initially entered into declarative memory is counted as its first
presentation. There are two ways for a chunk to be entered into declarative memory,
both of which have been discussed in the previous units. They are:

- Explicitly by the modeler using the add-dm command. These chunks are
entered at the time the call is executed, which is time 0 for a call in the body
of the model definition.

- When the chunk is cleared from a buffer. We have seen this happen in many
of the previous models as visual locations, visual objects, and goal chunks are
cleared from their buffers they can then be found among the chunks in
declarative memory.

4.3.2 Chunk Merging

Something we have not seen previously is what happens when the chunk cleared from a
buffer is an identical match to a chunk which is already in declarative memory. If a
chunk has the same chunk-type and all of its slot values are an exact match with one of
the existing chunks in declarative memory then instead of being added to declarative
memory it goes through a process we refer to as merging with that existing chunk.
Instead of adding the new chunk to declarative memory the preexisting chunk in
declarative memory is credited with a presentation. Then the name of the new chunk (the
one which is being merged into declarative memory) is changed to now reference the
chunk that was already in declarative memory i.e. there is one chunk which now has two
(or possibly more) names. This mechanism results in repeated completions of the same
operations (the clearing of a duplicate chunk) reinforcing the chunk that represents that
situation instead of creating lots of identical chunks each with only one presentation. So,
for example, repeatedly attending the same visual stimuli would result in strengthening a
single chunk that represents that object.

3

ACT-R Tutorial 22-Dec-14 Unit Four

4.4 Optimized Learning

Because of the need to separately calculate the effect of each presentation, the learning
rule is computationally expensive and for some models the real time cost of computation
is too great to be able to actually run the model in a reasonable amount time. To reduce
the computational cost there is an approximation that one can use when the presentations
are approximately uniformly distributed over the time since the item was created. This
approximation can be enabled by turning on the optimized learning parameter - :ol. In
fact, its default setting is on (the value t). When optimized learning is enabled, the
following equation applies:

)ln(*))1/(ln(LddnBi −−=

n: The number of presentations of chunk i.
L: The lifetime of chunk i (the time since its creation).
d: The decay parameter.

4.5 Noise

The noise component of the activation equation contains two sources of noise. There is a
permanent noise which can be associated with a chunk and an instantaneous noise value
which will be recomputed at each retrieval attempt. Both noise values are generated
according to a logistic distribution characterized by a parameter s. The mean of the
logistic distribution is 0 and the variance, σ2, is related to the s value by this equation:

σ 2 =
π 2

3
s2

The permanent noise s value is set with the :pas parameter and the instantaneous noise s
value is set with the :ans parameter. Typically, we are only concerned with the
instantaneous noise (the variance from trial to trial) and leave the permanent noise turned
off (a value of nil).

4.6 Probability of Recall

If we make a retrieval request and there is a matching chunk, that chunk will only be
retrieved if it exceeds the retrieval activation threshold, τ. The probability of this
happening depends on the expected activation, Ai, and the amount of noise in the system
which is controlled by the parameter s:

4

ACT-R Tutorial 22-Dec-14 Unit Four

Inspection of that formula shows that, as Ai tends higher, the probability of recall
approaches 1, whereas, as τ tends higher, the probability decreases. In fact, when τ = Ai,
the probability of recall is .5. The s parameter controls the sensitivity of recall to changes
in activation. If s is close to 0, the transition from near 0% recall to near 100% will be
abrupt, whereas when s is larger, the transition will be a slow sigmoidal curve.

4.7 Retrieval Latency

The activation of a chunk also determines how quickly it can be retrieved. When a
retrieval request is made, the time it takes until the chunk that is retrieved is available in
the retrieval buffer is given by this equation:

AFeTime −=

A: The activation of the chunk which is retrieved.

F: The latency factor parameter. This parameter is set using the :lf parameter.

If no chunk matches the retrieval request, or no chunk has an activation which is greater

than the retrieval threshold then a retrieval failure will occur. The time it takes for the

failure to be signaled is:

τ−= FeTime

τ: The retrieval threshold.
F: The latency factor.

4.8 The Paired-Associate Example

Now that we have described how activation works, we will look at an example model
which shows the effect of base-level learning. Anderson (1981) reported an experiment
in which subjects studied and recalled a list of 20 paired associates for 8 trials. The
paired associates consisted of 20 nouns like “house” associated with the digits 0 - 9.
Each digit was used as a response twice. Below is the mean percent correct and mean
latency to type the digit for each of the trials. Note subjects got 0% correct on the first
trial because they were just studying them for the first time and the mean latency is 0
only because there were no correct responses.

5

ACT-R Tutorial 22-Dec-14 Unit Four

Trial Accuracy Latency
1 .000 0.000
2 .526 2.156
3 .667 1.967
4 .798 1.762
5 .887 1.680
6 .924 1.552
7 .958 1.467
8 .954 1.402

The Unit 4 folder contains the paired model for this experiment. The experiment code is

written to allow one to run a general form of the experiment. Both the number of pairs to

present and the number of trials to run can be specified. You can run the model through

n trials of m paired associates (m no greater than 20) by calling paired-task with those

parameters:

(paired-task m n)

If you would like to do the task as a person, include the symbol human as the third
parameter to paired-task:

(paired-task m n 'human)

For each of the m words you will see the stimulus for 5 seconds during which you have
the opportunity to make your response. Then you will see the associated number for 5
seconds. The simplest form of the experiment is one in which a single pair is presented
twice. Here is the trace of the model doing such a task. The first time the model has an
opportunity to learn the pair and the second time it has a chance to recall that learned
pair:

> (paired-task 1 2)
 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED ATTEND-PROBE
 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.050 PROCEDURAL CLEAR-BUFFER VISUAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL
 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0
 0.135 PROCEDURAL CONFLICT-RESOLUTION
 0.185 PROCEDURAL PRODUCTION-FIRED READ-PROBE
 0.185 PROCEDURAL CLEAR-BUFFER VISUAL
 0.185 PROCEDURAL CLEAR-BUFFER IMAGINAL
 0.185 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.185 DECLARATIVE START-RETRIEVAL
 0.185 PROCEDURAL CONFLICT-RESOLUTION

6

ACT-R Tutorial 22-Dec-14 Unit Four

 0.385 IMAGINAL SET-BUFFER-CHUNK IMAGINAL PAIR0
 0.385 PROCEDURAL CONFLICT-RESOLUTION
 3.141 DECLARATIVE RETRIEVAL-FAILURE
 3.141 PROCEDURAL CONFLICT-RESOLUTION
 3.191 PROCEDURAL PRODUCTION-FIRED CANNOT-RECALL
 3.191 PROCEDURAL CLEAR-BUFFER VISUAL
 3.191 VISION CLEAR
 3.191 PROCEDURAL CONFLICT-RESOLUTION
 3.241 PROCEDURAL CONFLICT-RESOLUTION
 5.000 ------ Stopped because time limit reached
 5.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0 REQUESTED NIL
 5.000 PROCEDURAL CONFLICT-RESOLUTION
 5.050 PROCEDURAL PRODUCTION-FIRED DETECT-STUDY-ITEM
 5.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 5.050 PROCEDURAL CLEAR-BUFFER VISUAL
 5.050 PROCEDURAL CONFLICT-RESOLUTION
 5.135 VISION Encoding-complete VISUAL-LOCATION1-0-0 NIL
 5.135 VISION SET-BUFFER-CHUNK VISUAL TEXT1
 5.135 PROCEDURAL CONFLICT-RESOLUTION
 5.185 PROCEDURAL PRODUCTION-FIRED ASSOCIATE
 5.185 PROCEDURAL CLEAR-BUFFER IMAGINAL
 5.185 PROCEDURAL CLEAR-BUFFER VISUAL
 5.185 VISION CLEAR
 5.185 PROCEDURAL CONFLICT-RESOLUTION
 5.235 PROCEDURAL CONFLICT-RESOLUTION
10.000 ------ Stopped because time limit reached
10.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL
10.000 PROCEDURAL CONFLICT-RESOLUTION
10.050 PROCEDURAL PRODUCTION-FIRED ATTEND-PROBE
10.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
10.050 PROCEDURAL CLEAR-BUFFER VISUAL
10.050 PROCEDURAL CONFLICT-RESOLUTION
10.135 VISION Encoding-complete VISUAL-LOCATION2-0-0 NIL
10.135 VISION SET-BUFFER-CHUNK VISUAL TEXT2
10.135 PROCEDURAL CONFLICT-RESOLUTION
10.185 PROCEDURAL PRODUCTION-FIRED READ-PROBE
10.185 PROCEDURAL CLEAR-BUFFER VISUAL
10.185 PROCEDURAL CLEAR-BUFFER IMAGINAL
10.185 PROCEDURAL CLEAR-BUFFER RETRIEVAL
10.185 DECLARATIVE START-RETRIEVAL
10.185 PROCEDURAL CONFLICT-RESOLUTION
10.385 IMAGINAL SET-BUFFER-CHUNK IMAGINAL PAIR1
10.385 PROCEDURAL CONFLICT-RESOLUTION
11.145 DECLARATIVE RETRIEVED-CHUNK PAIR0-0
11.145 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL PAIR0-0
11.145 PROCEDURAL CONFLICT-RESOLUTION
11.195 PROCEDURAL PRODUCTION-FIRED RECALL
11.195 PROCEDURAL CLEAR-BUFFER RETRIEVAL
11.195 PROCEDURAL CLEAR-BUFFER MANUAL
11.195 PROCEDURAL CLEAR-BUFFER VISUAL
11.195 MOTOR PRESS-KEY 9
11.195 VISION CLEAR
11.195 PROCEDURAL CONFLICT-RESOLUTION
11.245 PROCEDURAL CONFLICT-RESOLUTION
11.445 PROCEDURAL CONFLICT-RESOLUTION
11.495 PROCEDURAL CONFLICT-RESOLUTION
11.595 MOTOR OUTPUT-KEY #(9 2)
11.595 PROCEDURAL CONFLICT-RESOLUTION
11.745 PROCEDURAL CONFLICT-RESOLUTION
15.000 ------ Stopped because time limit reached
15.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION3-0 REQUESTED NIL
15.000 PROCEDURAL CONFLICT-RESOLUTION
15.050 PROCEDURAL PRODUCTION-FIRED DETECT-STUDY-ITEM

7

ACT-R Tutorial 22-Dec-14 Unit Four

15.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
15.050 PROCEDURAL CLEAR-BUFFER VISUAL
15.050 PROCEDURAL CONFLICT-RESOLUTION
15.135 VISION Encoding-complete VISUAL-LOCATION3-0-0 NIL
15.135 VISION SET-BUFFER-CHUNK VISUAL TEXT3
15.135 PROCEDURAL CONFLICT-RESOLUTION
15.185 PROCEDURAL PRODUCTION-FIRED ASSOCIATE
15.185 PROCEDURAL CLEAR-BUFFER IMAGINAL
15.185 PROCEDURAL CLEAR-BUFFER VISUAL
15.185 VISION CLEAR
15.185 PROCEDURAL CONFLICT-RESOLUTION
15.235 PROCEDURAL CONFLICT-RESOLUTION
20.000 ------ Stopped because time limit reached

The basic structure of the screen processing productions should be familiar by now. The
one thing to note is that because this model must wait for stimuli to appear on screen it
takes advantage of the buffer stuffing mechanism so that it can wait for the change
instead of continuously checking. The way it does so is that the first production that will
fire, for either the probe or the associated number, has a visual-location buffer test on its
LHS which will only match once buffer stuffing places a chunk into the buffer. Here are
the attend-probe and detect-study-item productions for reference:

(p attend-probe
 =goal>
 isa goal
 state start
 =visual-location>
 isa visual-location
 ?visual>
 state free
 ==>
 +visual>
 isa move-attention
 screen-pos =visual-location
 =goal>
 state attending-probe
)

(p detect-study-item
 =goal>
 isa goal
 state read-study-item
 =visual-location>
 isa visual-location
 ?visual>
 state free
==>
 +visual>
 isa move-attention
 screen-pos =visual-location

8

ACT-R Tutorial 22-Dec-14 Unit Four

 =goal>
 state attending-target
)

Because the buffer is cleared automatically by strict harvesting and no later productions
issue a request for a visual-location these productions must wait for buffer stuffing to put
a chunk into the visual-location buffer before they can match. Since none of the other
productions match in the mean time the model will essentially just wait for the screen to
change before doing anything else.

Now we will focus on the productions which are responsible for forming the association
and retrieving the chunk. When the model attends to the probe with the read-probe
production two actions are taken (in addition to the updating of the goal state):

(p read-probe
 =goal>
 isa goal
 state attending-probe
 =visual>
 isa text
 value =val
 ?imaginal>
 state free
 ==>
 +imaginal>
 isa pair
 probe =val
 +retrieval>
 isa pair
 probe =val
 =goal>
 state testing
)

It makes a request to the imaginal buffer to create a chunk of type pair which will hold
the value read from the screen in the probe slot. It also makes a request through the
retrieval buffer to retrieve a pair chunk from declarative memory which has that same
probe value.

We will come back to the retrieval request shortly. For now we will focus on the creation
of the pair chunk. This request will cause the imaginal module to create a new chunk
which it will place into the imaginal buffer. This chunk will encode the association
between the probe and the answer which is presented later. The associate production
fires after the model reads the number which is associated with the probe:

9

ACT-R Tutorial 22-Dec-14 Unit Four

(p associate
 =goal>
 isa goal
 state attending-target
 =visual>
 isa text
 value =val
 =imaginal>
 isa pair
 ?visual>
 state free
 ==>
 =imaginal>
 answer =val
 -imaginal>
 =goal>
 state start
 +visual>
 isa clear
)

This production sets the answer slot of the pair chunk which is in the imaginal buffer to
the answer which was read from the screen. It also then clears that chunk from the buffer
so that it is entered into declarative memory. That will result in a chunk like this being
added to the model’s declarative memory:

PAIR0-0
 ISA PAIR
 PROBE "zinc"
 ANSWER "9"

This chunk serves as the memory of this trial. An important thing to note is that the
chunk in the buffer is not added to the model’s declarative memory until that buffer is
cleared. Often that happens when the model later harvests that chunk from the buffer, but
in this case the model does not harvest the chunk later so it is explicitly cleared at that
point. One could imagine adding additional productions which would rehearse that
chunk, but for the demonstration model that is not done.

This production also makes a clear request to the visual buffer to stop attending to the
item. That is done so that the model does not perform the automatic re-encoding when
the screen is updated.

Now, consider the retrieval request in the read-probe production again:

 +retrieval>
 isa pair
 probe =val

10

ACT-R Tutorial 22-Dec-14 Unit Four

The declarative memory module will attempt to retrieve a pair chunk with the requested
probe. Depending on whether a chunk can be retrieved, one of two production rules may
apply corresponding the either the successful retrieval of such a chunk or the failure to
retrieve a matching chunk:

(p recall
 =goal>
 isa goal
 state testing
 =retrieval>
 isa pair
 answer =ans
 ?manual>
 state free
 ?visual>
 state free
 ==>
 +manual>
 isa press-key
 key =ans
 =goal>
 state read-study-item
 +visual>
 isa clear
)

(p cannot-recall
 =goal>
 isa goal
 state testing
 ?retrieval>
 state error
 ?visual>
 state free
 ==>
 =goal>
 state read-study-item
 +visual>
 isa clear

)

The probability of the recall production firing and the mean latency for the recall will be
determined by the activation of the chunk that is retrieved and will increase with repeated
presentations and harvested retrievals.

11

ACT-R Tutorial 22-Dec-14 Unit Four

The model gives a pretty good fit to the data as illustrated below in a run of 100
simulated subjects (because of stochasticity results are more reliable if there are more
runs and to generate that many runs in a reasonable amount of time one must turn off the
trace and remove the seed parameter to allow for differences from run to run):

> (paired-experiment 100)

Latency:
CORRELATION: 0.998
MEAN DEVIATION: 0.097
Trial 1 2 3 4 5 6 7 8
 0.000 2.139 1.834 1.665 1.546 1.440 1.377 1.306

Accuracy:
CORRELATION: 0.994
MEAN DEVIATION: 0.043
Trial 1 2 3 4 5 6 7 8
 0.000 0.554 0.769 0.855 0.904 0.932 0.955 0.960

4.9 Parameter estimation

To get the model to fit the data requires not only writing a plausible set of productions
which can accomplish the task, but also setting the ACT-R parameters that control the
behavior as described in the equations governing the operation of declarative memory.
Running the model with the default values for the parameters produces the following
results:

> (paired-experiment 5)

Latency:
CORRELATION: 0.000
MEAN DEVIATION: 1.619
Trial 1 2 3 4 5 6 7 8
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Accuracy:
CORRELATION: 0.000
MEAN DEVIATION: 0.777
Trial 1 2 3 4 5 6 7 8
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

which shows a complete failure to retrieve any of the facts. Just lowering the retrieval
threshold so that they can be retrieved results in something like this:

> (paired-experiment 5)

Latency:
CORRELATION: 0.972
MEAN DEVIATION: 1.187
Trial 1 2 3 4 5 6 7 8
 0.000 3.512 3.871 3.359 2.793 2.473 2.265 2.136

12

ACT-R Tutorial 22-Dec-14 Unit Four

Accuracy:
CORRELATION: 0.914
MEAN DEVIATION: 0.176
Trial 1 2 3 4 5 6 7 8
 0.000 0.100 0.600 1.000 1.000 1.000 1.000 1.000

It shows some of the general trends, but does not fit the data well. The behavior of this
model and the one that you have to write really depends on the settings of four
parameters. Here are those parameters and their settings in this model. The retrieval
threshold is set at -2. This determines how active a chunk has to be to be retrieved 50%
of the time. The instantaneous activation noise is set at 0.5. This determines how quickly
probability of retrieval changes as we move past the threshold. The latency factor is set
at 0.4. This determines the magnitude of the activation effects on latency. Finally, the
decay rate for base-level learning is set to the value 0.5 which is where we recommend it
be set for most tasks that involve the base-level learning mechanism.

How to determine those values can be a tricky process because the equations are all
related and thus they cannot be independently manipulated for a best fit. Typically some
sort of searching is required, and there are many ways to accomplish that. For the tutorial
models there will typically be only one or two parameters that you will need to adjust and
we recommend that you work through the process “by hand” adjusting the parameters
individually to see the effect that they have on the model. There are other ways of
determining parameters that can be used, but we will not be covering any in the tutorial.

4.10 The Activation trace

The parameter :act is also set in the sgp call of the paired model. This is the activation
trace parameter. If it is turned on, it causes the declarative memory system to print the
details of the activation computations that occur during a retrieval request in the trace. If
you set it to t and reload the model and run for two trials of one pair (like the trace above)
you will find these additional details where the retrievals occur:

 0.185 DECLARATIVE START-RETRIEVAL
No matching chunk found retrieval failure
 0.185 PROCEDURAL CONFLICT-RESOLUTION
 ...
 3.141 DECLARATIVE RETRIEVAL-FAILURE
 ...
 10.185 DECLARATIVE START-RETRIEVAL
Chunk PAIR0-0 matches
Computing activation for chunk PAIR0-0
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (5.185)
 creation time: 5.185 decay: 0.5 Optimized-learning: T
base-level value: -0.111571856
Total base-level: -0.111571856
Adding transient noise -0.7636829
Adding permanent noise 0.0
Chunk PAIR0-0 has an activation of: -0.87525475

13

ACT-R Tutorial 22-Dec-14 Unit Four

Chunk PAIR0-0 has the current best activation -0.87525475
Chunk PAIR0-0 with activation -0.87525475 is the best
 ...
 11.145 DECLARATIVE RETRIEVED-CHUNK PAIR0-0

You may find this detailed accounting of the activation computation useful in debugging
your models or just in understanding how the system computes activation values.

4.11 The :ncnar Parameter

There is one final parameter being set in the model which you have not seen before -
:ncnar (normalize chunk names after run). This parameter toggles whether or not the
system cleans up the references to merged chunk names after running a model or
potentially during the model running as described in the next unit. If the parameter is set
to t, which is the default, then the system will ensure that all of the slots of all the chunks
in the model which contain a chunk reference the “true name” of the chunk in the slot i.e.
the name of the original chunk in DM with which the copies have been merged. That
operation can make debugging easier for the modeler because all the slot values will be
consistent with the chunks shown to be in DM. However, if a model generates a lot of
chunks it can take a significant amount of time to maintain that consistency. Thus it can
be beneficial to turn this parameter off by setting it to nil when model debugging is
complete and one just wants to run for data generation or when the time to run a model
really matters. For most of the models in the tutorial, leaving it enabled will not result in
a significant run time increase, and it can be ignored. However, for this model the time to
run it can be significantly longer if it is left enabled. Thus it is set to nil in the starting
model code.

4.12 Unit Exercise: Alpha-Arithmetic

The following data were obtained by N. J. Zbrodoff on judging alphabetic arithmetic
problems. Participants were presented with an equation like A + 2 = C and had to
respond yes or no whether the equation was correct based on counting in the alphabet –
the preceding equation is correct, but B + 3 = F is not.

She manipulated whether the addend was 2, 3, or 4 and whether the problem was true or
false. She had 2 versions of each of the 6 kinds of problems (3 addends x 2 responses)
each with a different letter (a through f). She then manipulated the frequency with which
problems were studied in sets of 24 trials:

- In the Control condition, each of the 2, 3 and 4 addend problems occurred twice.
- In the Standard condition, the 2 addend problems occurred three times, the 3 addend

problems twice, and the 4 addend problems once.
- In the Reverse condition, the 2 addend problems occurred once, the 3 addend

problems twice, and the 4 addend problems three times.

Each participant saw problems based on one of the three conditions. There were 8

14

ACT-R Tutorial 22-Dec-14 Unit Four

repetitions of a set of 24 problems in a block (192 problems), and there were 3 blocks for
576 problems in all. The data presented below are in seconds to judge the problems true
or false based on the block and the addend. They are aggregated over both true and false
responses:

Control Group (all problems equally frequently)
 Two Three Four
Block 1 1.840 2.460 2.820
Block 2 1.210 1.450 1.420
Block 3 1.140 1.210 1.170

Standard Group (smaller problems more frequent)
 Two Three Four
Block 1 1.840 2.650 3.550
Block 2 1.060 1.450 1.920
Block 3 0.910 1.080 1.480

Reverse Group (larger problems more frequent)
 Two Three Four
Block 1 2.250 2.530 2.440
Block 2 1.470 1.460 1.100
Block 3 1.240 1.120 0.870

The interesting phenomenon concerns the interaction between the effect of the addend
and amount of practice. Presumably, the addend effect originally occurs because subjects
have to engage in counting, but latter they come to rely mostly on retrieval of answers
they have stored from previous computations.

The task for this unit is to develop a model of the control group data. Functions to run the
experiment and most of a model that can perform the task are provided in the model
called zbrodoff. The model as given does the task by counting through the alphabet and
numbers “in its head” (using the subvocalize action of the speech module to produce
reasonable timing data) to arrive at an answer which it compares to the initial equation to
determine how to respond. Here is the performance of this model on the task:

> (zbrodoff 1)
CORRELATION: 0.289
MEAN DEVIATION: 1.309

 2 (64) 3 (64) 4 (64)
Block 1 2.301 (64) 2.806 (64) 3.287 (64)
Block 2 2.290 (64) 2.804 (64) 3.301 (64)
Block 3 2.286 (64) 2.797 (64) 3.290 (64)

It is always correct (64 out of 64 for each cell) but does not get any faster from block to
block because it always uses the counting strategy. Your first task is to extend the model
so that it attempts to remember previous instances of the trials. If it can remember the
answer it does not have to resort to the counting strategy and can respond much faster.

The model encodes each trail in a chunk of type problem which has the results of its
counting for the trial. A completed problem for a trial where the stimulus was “A+2 = C”
would look like this:

15

ACT-R Tutorial 22-Dec-14 Unit Four

PROBLEM0-0
 ISA PROBLEM
 ARG1 "a"
 ARG2 "2"
 RESULT "c"

The result slot contains the result of counting 2 letters from A. An important thing to
note is that the actual target letter for the trial is stored in the goal buffer for comparison
after the model has finished counting to a result. The model only encodes the result of
the counting in the problem chunks. Thus the same problem chunk will result from a trial
where the stimulus presented is “A+2 = D”. The assumption is that the person is actually
learning the letter counting facts and not just memorizing the stimulus-response pairings
for the task. There will be one of those problem chunks for each of the additions which is
encountered, which will be a total of six after it completes the first set of trials.

After your model is able to utilize a retrieval strategy along with the counting strategy
given, your next step is to adjust the parameters so that the model’s performance better
fits the experimental data. The results should look something like this after you have the
retrieval strategy working:

CORRELATION: 0.929
MEAN DEVIATION: 0.656

 2 (64) 3 (64) 4 (64)
Block 1 1.265 (64) 1.444 (64) 1.338 (64)
Block 2 1.094 (64) 1.077 (64) 1.093 (64)
Block 3 1.043 (64) 1.047 (64) 1.039 (64)

The model is still always responding correctly on all trials, the correlation is good, but the
deviation is quite high because the model is too fast overall. The model’s performance
will depend on the same four parameters as the paired associate model: latency factor,
activation noise, base-level decay rate, and retrieval threshold. In the model you are
given, the first three are set to the same values as in the paired associate model and
represent reasonable values for this task. You should not have to adjust any of those.
However, the retrieval threshold (the :rt parameter) is set to its default value of 0. This is
the parameter you should manipulate to improve the fit to the data. Here is our fit to the
data adjusting only the retrieval threshold:

> (zbrodoff 20)
CORRELATION: 0.987
MEAN DEVIATION: 0.174

 2 (64) 3 (64) 4 (64)
Block 1 1.870 (64) 2.179 (64) 2.558 (64)
Block 2 1.376 (64) 1.520 (64) 1.632 (64)
Block 3 1.215 (64) 1.282 (64) 1.359 (64)

This experiment is more complicated than the ones that you have seen previously. It runs
continuously for many trials and the learning that occurs across trials is important. Thus
the model cannot treat each trial as an independent event and be reset before each one as

16

ACT-R Tutorial 22-Dec-14 Unit Four

has been done for the previous units. While writing your model and testing the fit to the
data you will probably want to test it on smaller runs than the whole task. There are four
functions you can use to test the experiment.

The first function to run the task is zbrodoff which takes one parameter indicating the
number of times to run the full experiment. That function will average the results of
running the full experiment multiple times and report the correlation and deviation to the
experimental data. It may take a long time to run, especially if you request a lot of runs
for comparing to the data (to speed up the runs once you are sure the model is doing the
right thing you should definitely turn off the trace with the :v parameter in the sgp
command).

You can use the zbrodoff-block function, which takes one optional parameter, to run 1
block of the experiment and display the results. The optional parameter controls whether
or not to show the window while the task is running. If you do not supply the parameter
a virtual window is used, and if you specify the parameter as t then a real window will be
shown. The zbrodoff-set function is similar to zbrodoff-block, except it only runs
through the set of 24 items once.

The zbrodoff-trial function can be used to run a single trial. It takes four parameters
which are all single character strings and an optional fifth parameter like zbrodoff-block
and zbrodoff-set to indicate whether or not to show the display. The first three are the
elements of the equation to present i.e. "a" "2" "c" to present a + 2 = c. The fourth is the
correct key which should be pressed for the trial, "K" for a true probe and "D" for a false
probe. One thing to note is that the only one of those functions which calls reset is
zbrodoff. So if you are using the other functions while testing the model keep in mind
that unless you call the reset function or press the “Reset” button on the Control Panel,
the model will remember everything it has done since the last time it was reset.

There is one additional command in the provided starting model that you have not seen
before:

 (set-all-base-levels 100000 -1000)

This sets the base-level activation of all the chunks in declarative memory that exist when
it is called (which are the sequence chunks provided) to very large values by setting the
parameters n and L of the optimized base-level equation for each one. The first
parameter, 100000, specifies n and the second parameter, -1000, specifies the creation
time of the chunk. This ensures that the initial chunks which encode the sequencing of
numbers and letters maintain a very high base-level activation and do not fall below the
retrieval threshold over the course of the task. The assumption is that counting and the
order of the alphabet are very well learned tasks for the model and the human participants
and the use of those skills does not lead to any significant learning for those things during
the course of the experiment.

Another thing to notice is that the :ncnar parameter is set to nil in the starting model.
Like the paired model, if that parameter is set to t then it will take significantly longer to

17

ACT-R Tutorial 22-Dec-14 Unit Four

run this model. You may want to set it to t to help with debugging your model as you
develop it, but you will probably want to set it back to nil once you start running the
model to compare its fit to the data.

Finally, because this model runs a lot of Lisp code to perform the experiment you will see
improved performance in the real time it takes to run the model if the Lisp code is
compiled. Some Lisp systems do this automatically (Macintosh Common Lisp for
example does) but most do not. Therefore, if you would like to improve the running time
of the model i.e. the real time it takes to run the model through the experiment not the
simulated time the model reports, then you should compile the file if your Lisp does not
do so automatically. Loading the model through the Environment will not compile the
file. If you have a Lisp with a GUI then one of the File menu options is likely “Compile
and Load”. Using that to load the model will result in the file being compiled and will
improve performance. One important thing to keep in mind is that if you change the
model file you will have to use the “Compile and Load” option again to load the file after
you save the changes. The “Reload” button on the Environment’s Control Panel and the
reload command in ACT-R will not automatically recompile the file if you change it.
They will continue to load the last compiled version, which will not reflect the changes
you have made. Compiling the model files is something that you will probably want to
do for the remainder of the models in the tutorial.

Anderson, J.R. (1981). Interference: The relationship between response latency and
response accuracy. Journal of Experimental Psychology: Human Learning and Memory,
7, 326-343.

Zbrodoff, N. J. (1995). Why is 9 + 7 harder than 2 + 3? Strength and interference as
explanations of the problem-size effect. Memory & Cognition, 23 (6), 689-700.

18

	Unit 4: Activation of Chunks and Base-Level Learning
	4.1 Introduction
	4.2 Activation
	4.3 Base-level Learning
	4.3.1 Chunks Entering Declarative Memory
	4.3.2 Chunk Merging

	4.4 Optimized Learning
	4.5 Noise
	4.6 Probability of Recall
	4.7 Retrieval Latency
	4.8 The Paired-Associate Example
	4.9 Parameter estimation
	4.10 The Activation trace
	4.11 The :ncnar Parameter
	4.12 Unit Exercise: Alpha-Arithmetic

