
ACT-R Tutorial 22-Dec-14 Unit Two

Unit 2: Perception and Motor Actions in ACT-R

2.1 ACT-R Interacting with the World

This unit will introduce some of the mechanisms which allow ACT-R to interact with the world,
which for the purposes of the tutorial will be experiments presented via the computer. This is
made possible with the addition of perceptual and motor modules which were developed by Mike
Byrne, and which were previously referred to as ACT-R/PM but are now an integrated part of the
system. It is a set of modules for ACT-R which provides a model with visual, motor, auditory,
and vocal capabilities as well as the mechanisms for interfacing those modules to the world. The
default mechanisms which we will use allow the model to interact with the computer i.e. process
the visual items presented, press keys and move and click the mouse. Other more advanced
interfaces can be developed, but that is beyond the scope of the tutorial.

2.2 The First Experiment

The demo2 model contains Lisp code to present a very simple experiment and a model that can
perform the task. The experiment consists of a window in which a single letter is presented. The
participant’s task is to press that key. When a key is pressed, the display is cleared and the
experiment ends.

After you load the model you can perform the task yourself if you are running the ACT-R
Environment or you are using a Lisp with a GUI for which there is an existing ACT-R interface
(currently Clozure Common Lisp for Macs, Allegro Common Lisp for Windows, and
LispWorks). To run the experiment with a human participant instead of the ACT-R model you
need to call the do-demo2 function and pass it the symbol human. Thus you would enter this:

(do-demo2 'human)

at the Lisp prompt.

A window will appear with a letter (the window may be obscured by your editor or other
windows so you may have to arrange things to ensure you can see everything you want). When
you press a key (while the experiment window is the active window) the experiment window will
clear and that is the end of the experiment. The letter you typed will be returned by the do-
demo2 function.

If you call the do-demo2 function without including the symbol human then the ACT-R model
will be run through the experiment instead of waiting for a person to do the experiment. That will
produce the following trace:

 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0
REQUESTED NIL

1

ACT-R Tutorial 22-Dec-14 Unit Two

 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED FIND-UNATTENDED-LETTER
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED FIND-UNATTENDED-LETTER
 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.050 VISION Find-location
 0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-SELECTED ATTEND-LETTER
 0.050 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.050 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
 0.100 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.100 PROCEDURAL MODULE-REQUEST VISUAL
 0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.100 PROCEDURAL CLEAR-BUFFER VISUAL
 0.100 VISION Move-attention VISUAL-LOCATION0-0-1 NIL
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.185 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL
 0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0
 0.185 PROCEDURAL CONFLICT-RESOLUTION
 0.185 PROCEDURAL PRODUCTION-SELECTED ENCODE-LETTER
 0.185 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.185 PROCEDURAL BUFFER-READ-ACTION VISUAL
 0.185 PROCEDURAL QUERY-BUFFER-ACTION IMAGINAL
 0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
 0.235 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.235 PROCEDURAL MODULE-REQUEST IMAGINAL
 0.235 PROCEDURAL CLEAR-BUFFER VISUAL
 0.235 PROCEDURAL CLEAR-BUFFER IMAGINAL
 0.235 PROCEDURAL CONFLICT-RESOLUTION
 0.435 IMAGINAL CREATE-NEW-BUFFER-CHUNK IMAGINAL ISA ARRAY
 0.435 IMAGINAL SET-BUFFER-CHUNK IMAGINAL ARRAY0
 0.435 PROCEDURAL CONFLICT-RESOLUTION
 0.435 PROCEDURAL PRODUCTION-SELECTED RESPOND
 0.435 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.435 PROCEDURAL BUFFER-READ-ACTION IMAGINAL
 0.435 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
 0.485 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.485 PROCEDURAL MODULE-REQUEST MANUAL
 0.485 PROCEDURAL CLEAR-BUFFER IMAGINAL
 0.485 PROCEDURAL CLEAR-BUFFER MANUAL
 0.485 MOTOR PRESS-KEY v
 0.485 PROCEDURAL CONFLICT-RESOLUTION
 0.735 MOTOR PREPARATION-COMPLETE
 0.735 PROCEDURAL CONFLICT-RESOLUTION
 0.785 MOTOR INITIATION-COMPLETE
 0.785 PROCEDURAL CONFLICT-RESOLUTION
 0.885 MOTOR OUTPUT-KEY #(4 5)
 0.885 PROCEDURAL CONFLICT-RESOLUTION
 0.970 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL
 0.970 VISION No visual-object found
 0.970 PROCEDURAL CONFLICT-RESOLUTION
 1.035 MOTOR FINISH-MOVEMENT
 1.035 PROCEDURAL CONFLICT-RESOLUTION
 1.035 ------ Stopped because no events left to process

2

ACT-R Tutorial 22-Dec-14 Unit Two

Here we see production firing being intermixed with actions of the vision, imaginal, and motor
modules as the model encodes the stimulus and issues a response. If you watch the window while
the model is performing the task you will also see a red circle drawn. That is a debugging aid
which indicates the model’s current point of visual attention. It can be turned off if you do not
want to see it. How that is done will be discussed in the parameters section below. You may also
notice that the task always presents the letter “V”. That is also due to a parameter setting in the
model and is done so that it always generates the same trace. You can also change that if you
would like to see how the model performs the task for different letters, and that will also be
described below.

In the following sections we will look at how the model perceives the letter being presented, how
it issues a response, and briefly discuss some parameters in ACT-R.

One thing to note is that from this point on in the tutorial all of the models will be interacting with
an experiment of some form. Thus you will always have to call the appropriate function from the
Lisp prompt to run the experiment. That experiment function will run the model as needed. So,
from this point on in the tutorial you will typically not be using the run command directly to run
the models as was done in unit 1.

2.3 Control and Representation

Before looking at the details of the new buffers and modules, however, there is something
different about this model relative to the models that were used in unit 1 which needs to be
addressed. There are two chunk types created for this model:

(chunk-type read-letters state)
(chunk-type array letter)

The chunk type read-letters has one slot which is called state and will be used to track the current
task state for the model. The other chunk type, array, also has only one slot, which is called letter,
and will hold a representation of the letter which is seen by the model.

In unit 1, we saw that the chunk placed into the goal buffer had slots which held all of the
information relevant to the task – one buffer held all of the information. That represents how
things have typically been done with ACT-R models in the past, but with ACT-R 6.0, a more
distributed representation of the model’s “state” is the preferred means of modeling. Now, we
will use two buffers to hold the information. The goal buffer will be used to hold control state
information – the internal representation of what the model is doing and where it is in the task. In
this model the goal buffer will hold chunks of type read-letters. A different buffer, the imaginal
buffer, will hold the chunk which contains the problem state information, and in this model that
will be a chunk of type array.

2.3.1 The State Slot

3

ACT-R Tutorial 22-Dec-14 Unit Two

In this model, the state slot of the chunk in the goal buffer will maintain information about what
the model is doing. It can then be used to explicitly indicate which productions are appropriate at
any time. This is often done when writing ACT-R models because it is easy to specify and makes
them easier to follow. It is however not always necessary to do so, and there are other means by
which the same control flow can be accomplished. In fact, as we will see in a later unit there are
consequences to keeping extra information in the goal chunk. However, because it does make the
production sequencing in a model clearer you will see state slots in many of the models in the
tutorial even if they are not always necessary. As an additional challenge for this unit, you can try
to modify the demo2 model so that it works without needing to maintain an explicit state and thus
not even use the goal buffer at all.

2.4 The Imaginal Module

The first new module we will describe in this unit is the imaginal module. This module has a
buffer called imaginal which is used to create new chunks. These chunks will be the model’s
internal representation of information – its internal image (thus the name imaginal module). Like
any buffer, the chunk in the imaginal buffer can be modified by the productions to build that
representation using RHS modification actions as shown in unit 1.

The important thing about the imaginal buffer is how the chunk first gets into the buffer. Unlike
the goal buffer’s chunk which we have been creating and placing there in advance of the model
starting, the imaginal module will create the chunk for the imaginal buffer in response to a
request from a production.

All requests to the imaginal module through the imaginal buffer are requests to create a new
chunk. The imaginal module will create a new chunk using the chunk-type and any initial slot
values provided in the request and place that chunk into the imaginal buffer. An example of this
is shown in the encode-letter production:

(P encode-letter
 =goal>
 ISA read-letters
 state attend
 =visual>
 ISA text
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 state respond
 +imaginal>
 isa array
 letter =letter
)

4

ACT-R Tutorial 22-Dec-14 Unit Two

We will explain the details of how the text chunk gets into the visual buffer in the next section.
For now, we are interested in this request on the RHS:

 +imaginal>
 isa array
 letter =letter

This request of the imaginal buffer is asking the imaginal module to create a chunk of type array
and which has the value of the variable =letter in its letter slot. We see the request and its results
in these lines of the trace:

0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
…
0.235 PROCEDURAL MODULE-REQUEST IMAGINAL
…
0.235 PROCEDURAL CLEAR-BUFFER IMAGINAL
…
0.435 IMAGINAL CREATE-NEW-BUFFER-CHUNK IMAGINAL ISA ARRAY
0.435 IMAGINAL SET-BUFFER-CHUNK IMAGINAL ARRAY0

The production makes the request and automatically clears the buffer at that time as happens for
all buffer requests. Then, we see that the imaginal module reports that it is creating a new chunk
and that chunk is then placed into the buffer.

An important detail of the request to the imaginal module is that the chunk is not immediately
placed into the buffer as a result of the request. It took .2 seconds before the chunk was made
available. This is an important aspect of the imaginal module – it takes time to build a
representation. The amount of time that it takes the imaginal module to create a chunk is a fixed
cost, and the default time is .2 seconds (that can be changed with a parameter). In addition to the
time cost, the imaginal module is only able to create one new chunk at a time. That does not
impact this model because it is only creating the one new chunk in the imaginal buffer, but there
are times where that can matter. In such situations one may need to verify that the module is
available to create a new chunk and that is done with a query of the buffer in the conditions, as
this production does. More details on querying modules will be described later in the unit.

Thus in this model, the imaginal buffer will hold a chunk which contains a representation of the
letter which the model reads from the screen. For this simple task, that representation is not
strictly necessary because the model could use the information directly from the vision module to
do the task, but for most tasks there will be more information which must be maintained thus
requiring such a chunk to be created. In particular, for this unit’s assignment the model will need
to read multiple letters which must be considered before responding.

2.5 The Vision Module

5

ACT-R Tutorial 22-Dec-14 Unit Two

Many tasks involve interacting with visible stimuli and the vision module provides a model with a
means for acquiring visual information. It is designed as a system for modeling visual attention.
It assumes that there are lower-level perceptual processes that generate the representations with
which it operates, but it does not model those perceptual processes in detail. It includes some
default mechanisms for parsing text and other simple visual features from a window and provides
an interface that one can use to extend it when necessary.

The vision module has two buffers. There is a visual buffer that can hold a chunk that represents
an object in the visual scene and a visual-location buffer that holds a chunk which represents the
location of an object in the visual scene. As with all modules, it also responds to queries of the
buffers about the state of the module. It can also respond to more detailed queries which will not
be covered in this unit. Visual interaction is shown in the demo2 model in the two productions
find-unattended-letter and attend-letter.

2.5.1 Visual-Location buffer

The find-unattended-letter production applies whenever the goal buffer’s chunk has a state of
start (which is how the chunk is initially created):

(P find-unattended-letter
 =goal>
 ISA read-letters
 state start
 ==>
 +visual-location>
 ISA visual-location
 :attended nil
 =goal>
 state find-location
)

It makes a request of the visual-location buffer and it changes the goal state to find-location. The
following portion of the trace reflects the actions of this production:

0.050 PROCEDURAL PRODUCTION-FIRED FIND-UNATTENDED-LETTER
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.050 VISION Find-location
0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0

You should ignore the earlier line of the trace related to the vision module that looks like this:

0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

for now. That is the result of a mechanism which we will not discuss until the next unit.

6

ACT-R Tutorial 22-Dec-14 Unit Two

The visual-location request asks the vision module to find the location of an object in its visual
scene (which for this model is the current experiment’s window) that meets the specified
requirements, build a chunk to represent the location of that object if one exists, and place that
chunk in the visual-location buffer.

Looking at the trace, these events are a result of that request:

0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.050 VISION Find-location
0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0

We see the notice of the request and then the automatic clearing of the buffer due to the request
being made by the procedural module. Then the vision module reports that it is finding a location
and then it places that chunk into the buffer. Notice that there was no time involved in handling
the request – all those actions took place at time 0.050 seconds. The visual-location requests
always finish immediately which reflects the idea that there is a perceptual system operating in
parallel that makes these visual features immediately available.

If you step through the model using the Stepper you can use the “Buffer viewer” to see that the
chunk visual-location0-0-1 will be in the visual-location buffer after that last event:

VISUAL-LOCATION0-0-1
 ISA VISUAL-LOCATION
 SCREEN-X 130
 SCREEN-Y 156
 DISTANCE 1080
 KIND TEXT
 COLOR BLACK
 VALUE TEXT
 HEIGHT 10
 WIDTH 7
 SIZE 0.19999999

There are a lot of slots in a visuallocation, but most are not important for this unit, and can be
ignored. The first two, screenx and screeny, are the only ones we are concerned with right
now. They encode the exact coordinates of the object in the visual scene. The upperleft corner
of the window is screenx 0 and screeny 0. The x coordinates increase from left to right, and the
y coordinates increase from top to bottom. In general, the specific values are not that important
for the model, and do not need to be specified when making a request for a location. There is a
set of descriptive specifiers that can be used for requests on those slots, like lowest or highest, but
again those details will not be discussed until unit 3.

2.5.1.1 The attended request parameter

7

ACT-R Tutorial 22-Dec-14 Unit Two

If we look at the request which was made of the visuallocation buffer in the findunattended
letter production:

 +visual-location>
 ISA visual-location
 :attended nil

we see that in addition to specifying “isa visuallocation” it includes “:attended nil” in the request.
However, looking at the chunktype for a visuallocation we find that it does not have a slot called
attended or :attended (calling chunktype with no parameters will print out all currently defined
chunk types):

VISUAL-LOCATION
 SCREEN-X
 SCREEN-Y
 DISTANCE
 KIND
 COLOR
 VALUE
 HEIGHT
 WIDTH
 SIZE

This :attended specification is called a request parameter. It acts like a slot in the request, but
does not correspond to a slot in the chunktype specified. A request parameter is valid for any
request to a buffer regardless of the chunktype specified. Request parameters are used to supply
general information to the module about a request which may not be desirable to have in the
resulting chunk that is placed into the buffer. A request parameter is specific to the particular
buffer and will always start with a “:” which distinguishes it from an actual slot of the chunktype.
We will discuss a couple different request parameters in this unit and later units as we introduce
more buffers.

For a visuallocation request one can use the :attended request parameter to specify whether the
vision module returns the location of an object which the model has previously looked at
(attended to) or not. If it is specified as nil, then the request is for a location which the model has
not attended, and if it is specified as t, then the request is for a location which has been attended
previously. There is also a third option, new. This means that not only has the model not
attended to the location, but also that the object has recently appeared in the visual scene.

The attend-letter production applies when the goal state is find-location, there is a visual-
location chunk in the visual-location buffer, and the vision module is not currently active:

(P attend-letter
 =goal>
 ISA read-letters
 state find-location
 =visual-location>

8

ACT-R Tutorial 22-Dec-14 Unit Two

 ISA visual-location
 ?visual>
 state free

==>
 +visual>
 ISA move-attention
 screen-pos =visual-location
 =goal>
 state attend
)

On the LHS of this production are two conditions that have not been seen before. The first is a
test of the visual-location buffer. Notice that the only test on the buffer is the isa slot. All that is
necessary is to make sure that there is a chunk of type visual-location in the buffer. The details
of its slot values do not matter. Then, a query is made of the visual buffer.

2.5.2 Checking a module’s state

On the LHS of attend-letter a query is made of the visual buffer to test that the state of the
vision module is free. All buffers will respond to a query for the module’s state and the possible
values for that query are busy, free, or error as was shown in unit 1. The test of state free is a
check to make sure the buffer being queried is available for a new request. If the state is free,
then it is safe to issue a new request, but if it is busy then it is usually not safe to do so.

Typically, a module is only able to handle one request to a buffer at a time. This is the case for
both the imaginal and visual buffers which require some time to produce a result. Since all
modules operate in parallel it might be possible for the procedural module to select a new
production which makes a new request to a module that is still working on a previous request. If
a production were to fire at such a point and issue another request to a module which is busy and
only able to handle one request at a time, that is referred to as “jamming” the module. When a
module is jammed, it will output a warning message in the trace to let you know what has
happened. What a module does when jammed varies from module to module. Some modules
ignore the new request, whereas others abandon the previous request and start the new one. As a
general practice it is best to avoid jamming modules. Thus, when there is the possibility of
jamming a module one should query its state before making a request.

Note that we did not query the state of the visual-location buffer in the find-unattended-letter
production before issuing the visual-location request because we know that those requests always
complete immediately and thus the visual-location state is always free. We did however test the
state of the imaginal module before making the request to the imaginal buffer in the encode-
letter production. That query is not necessary in this model and removing it will not change the
way the model performs because that is the only request to the imaginal module and that
production will not fire again because of the change to the goal buffer chunk’s state slot. Thus
there is no risk of jamming. However, omitting queries which appear to be unnecessary is a risky

9

ACT-R Tutorial 22-Dec-14 Unit Two

practice, and it is always a good idea to query the state in every production that makes a request
that could potentially jam a module even if you know that it will not happen because of the
structure of the other productions. Doing so makes it clear to anyone else who may read the
model, and it also protects you from problems if you decide later to apply that model to a different
task where the assumption which avoids the jamming no longer holds.

In addition to the state, there are also other queries that one can make of a buffer. Unit 1
presented the general queries that are available to all buffers. Some buffers also provide queries
that are specific to the details of the module and those will be described as needed in the tutorial.
One can also find all the queries to which a module responds in the reference manual.

2.5.3 Visual buffer

On the RHS of attend-letter it makes a request of the visual buffer which isa move-attention and
it specifies the screen-pos[ition] as the chunk from the visual-location buffer. A request of the
visual buffer for a move-attention is a request for the vision module to move its attention to the
specified location, create a chunk which encodes the object that is there, and place that chunk into
the visual buffer. The following portion of the trace reflects this operation:

0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
0.100 PROCEDURAL MODULE-REQUEST VISUAL
0.100 PROCEDURAL CLEAR-BUFFER VISUAL
0.100 VISION Move-attention VISUAL-LOCATION0-0-1 NIL
0.185 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL
0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0

Note that the request to move-attention is made at time 0.100 seconds but that the encoding does
not complete and result in a chunk being placed into the visual buffer until 0.185 seconds. Those
85 ms represent the time to shift attention and create the visual object. Altogether, counting the
two production firings (one to request the location and one to request the attention shift) and the
85 ms to execute the attention shift and object encoding, it takes 185 ms to create the chunk that
encodes the letter on the screen.

As you step through the model you will find this chunk in the visual buffer after those actions
have occurred:

TEXT0-0
 ISA TEXT
 SCREEN-POS VISUAL-LOCATION0-0-0
 VALUE "v"
 STATUS NIL
 COLOR BLACK
 HEIGHT 10
 WIDTH 7

The chunk is of type text which is a chunk-type created by the vision module for encoding text
from the screen. The screen-pos slot holds the location chunk for that object. The value slot
holds a string that contains the text encoded from the screen, in this case a single letter. The
status slot is empty, and is essentially a free slot which can be used by the model to encode

10

ACT-R Tutorial 22-Dec-14 Unit Two

additional information in that chunk. The color, height, and width slots hold information about
the visual features of the item attended.

After a visual object has been placed in the visual buffer, it can be harvested by a production like
this one:

(P encode-letter
 =goal>
 ISA read-letters
 state attend
 =visual>
 ISA text
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 state respond
 +imaginal>
 isa array
 letter =letter
)

which makes a request to the imaginal buffer to create a new chunk which will hold a
representation of the letter as was described in the section on the imaginal module.

2.6 Learning New Chunks

This process of seeking the location of an object in one production, switching attention to the
object in a second production, and harvesting the object in a third production is a common style in
ACT-R models. One important thing to appreciate is that this is one way in which ACT-R can
acquire new declarative chunks. Initially the chunks will be in the perceptual buffers, but they
will be stored in declarative memory as a permanent chunk encoding what has been perceived
once those chunks leave the buffers. That process occurs for all buffers – whenever a chunk is
cleared from a buffer it becomes part of the model’s declarative memory. Thus this is also
happening for the imaginal and goal buffers’ chunks when they are cleared.

2.7 Visual Re-encoding

There is another line in the trace of the model which shows the vision module doing something
which will be addressed in this unit:

0.970 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL
0.970 VISION No visual-object found

11

ACT-R Tutorial 22-Dec-14 Unit Two

At time 0.970 seconds there is an encoding that was not the result of a request made by a
production. This is a result of the screen being cleared after the key press at time 0.885 seconds.
When the screen is updated, if the vision module is currently attending to a location it will
automatically re-encode that location to encode any changes that may have occurred there. This
re-encoding takes 85 ms just as an explicit request to attend an item does. If the visual-object
chunk representing that item is still in the visual buffer it will be updated to reflect any changes.
If there is no longer a visual item on the display at the location where the model is attending (as is
the case here) then the trace will show a line indicating that no object was found and the vision
module will report a state of error through the visual buffer until there is another successful
encoding (very much like a memory retrieval failure in the retrieval buffer).

2.7.1 Buffer Status

You can see the current query information for the buffers using the “Buffer Status viewer” button
in the Control Panel or by calling the buffer-status command. That will show the required
queries for the buffers along with the current value (either t or nil) for such a query at this time.
Some buffers will also show additional information which can be queried and the documentation
of the module in the reference manual will describe those other queries.

2.7.2 Re-encoding Cont.

This automatic re-encoding process of the vision system requires that you be careful when writing
models that process changing displays for two reasons. The first is that you cannot be guaranteed
that the chunk in the visual buffer will not change in response to a change in the visual display.
The other is because while the re-encoding is occurring, the vision module is busy and cannot
handle a new attention shift. This is one reason it is important to query the visual state before all
visual requests to avoid jamming the vision module since there may be activity other than that
requested explicitly by the productions.

2.7.3 Stop Visually Attending

If you do not want the model to re-encode an item is it possible to make it stop attending to the
visual display. This is done by issuing a clear command to the vision module as an action:

+visual>
 isa clear

This will cause the model to stop attending to any visual items until a new move-attention request
is made and thus it will not re-encode items if the visual scene changes.

2.8 The Motor Module

12

ACT-R Tutorial 22-Dec-14 Unit Two

When we speak of motor actions in ACT-R we are only concerned with hand movements. It is
possible to extend the motor module to other modes of action, but the default mechanism is built
around controlling a pair of hands. In this unit we will only be concerned with finger presses at a
keyboard, but the fingers can also be used to press other devices and the hands can also be used to
move a mouse or other device. Information about these features or extending the motor module is
available in the reference manual and the documentation on extending ACT-R.

The buffer for interacting with the motor module is called the manual buffer. Unlike other
buffers however, the manual buffer will not have any chunks placed into it by its module. It is
used only to issue commands and to query the state of the motor module. The manual buffer is
used to request actions be performed by the hands. As with the vision module, you should always
check to make sure that the motor module is free before making any requests to avoid jamming it.
The manual buffer query to test the state of the module works the same as the one described for
the vision module:

?manual>
 state free

That query will be true when the module is available.

The motor module actually has a more complex state than just free or busy because there are
multiple stages in the motor module, and it is possible to make a new request before the previous
one has completed by testing the individual stages. However we will not be discussing that in the
tutorial, and will only test on the overall state i.e. whether the entire module is free or busy. The
respond production from the demo2 model shows the manual buffer in use:

(P respond
 =goal>
 ISA read-letters
 state respond
 =imaginal>
 isa array
 letter =letter
 ?manual>
 state free
==>
 =goal>
 state done
 +manual>
 ISA press-key
 key =letter
)

This production fires when a letter has been encoded, the goal state is respond, and the manual
buffer indicates that the motor module is available. Then a request is made to press the key

13

ACT-R Tutorial 22-Dec-14 Unit Two

corresponding to the letter from the letter slot of the chunk in the imaginal buffer and the state
slot of the chunk in the goal buffer is changed to done. The type of action requested of the hands
is specified in the isa slot of the manual buffer request. The press-key request used here assumes
that the model’s hands are located over the home row on the keyboard and the fingers will be
returned there after the key has been pressed. There are many other requests that can be made of
the hands, but for now, key presses are all we need. If you are interested you can find more
details in the documentation of the motor module in the reference manual. The motor module
actions from the trace that result from this production firing are shown here:

0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
0.485 PROCEDURAL MODULE-REQUEST MANUAL
0.485 PROCEDURAL CLEAR-BUFFER MANUAL
0.485 MOTOR PRESS-KEY v
0.735 MOTOR PREPARATION-COMPLETE
0.785 MOTOR INITIATION-COMPLETE
0.885 MOTOR OUTPUT-KEY #(4 5)
1.035 MOTOR FINISH-MOVEMENT

When the production is fired a request is made to press the key, at time 0.485 seconds. However,
it takes 250 ms to prepare the features of the movement (preparation-complete), 50 ms to initiate
the action (initiation-complete), another 100 ms for the key to be struck (output-key), and finally
it takes another 150 ms for the finger to return to the home row (finish-movement). Thus the time
of the key press is at .885 seconds, however the motor module is still busy until time 1.035
seconds. The press-key request does not model the typing skills of an expert typist, but it does
represent one who is able to touch type individual letters competently which is often a sufficient
mechanism for modeling simple tasks.

2.9 Strict Harvesting

Another mechanism of ACT-R 6.0 is displayed in the trace of this model. It is a process referred
to as “strict harvesting”. It states that if the chunk in a buffer is tested on the LHS of a production
(also referred to as harvesting the chunk) and that buffer is not modified on the RHS of the
production, then that buffer is automatically cleared. This mechanism is displayed in the events
of the attend-letter, encode-letter, and respond productions which harvest, but do not modify
the visual-location, visual, and imaginal buffers respectively:

0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
…
0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
…
0.235 PROCEDURAL CLEAR-BUFFER VISUAL
…
0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
…
0.485 PROCEDURAL CLEAR-BUFFER IMAGINAL

14

ACT-R Tutorial 22-Dec-14 Unit Two

By default, this happens for all buffers except the goal buffer, but it is controlled by a parameter
(:do-not-harvest) which can be used to configure which (if any) of the buffers are excluded from
strict harvesting.

If one wants to keep a chunk in a buffer after a production fires without modifying the chunk then
it is valid to specify an empty modification to do so. For example, if one wanted to keep the
chunk in the visual buffer after encode-letter fired we would only need to add an =visual> action
to the RHS:

(P encode-letter-and-maintain-visual-chunk
 =goal>
 ISA read-letters
 state attend
 =visual>
 ISA text
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 state respond
 +imaginal>
 isa array
 letter =letter

 =visual>
)

2.10 More ACT-R Parameters

The model code description document for unit 1 introduced the sgp command for setting ACT-R
parameters. In the demo2 model the parameters are set like this:

(sgp :seed (123456 0))
(sgp :v t :needs-mouse nil :show-focus t :trace-detail high)

All of these parameters are used to control how the system operates and do not affect the model’s
performance of the task. These settings are used to make working with this model easier, and are
things that you may want to use when working with other models.

The first sgp command is used to set the :seed parameter. This parameter controls the starting
point for the pseudo-random number generator used by ACT-R. Typically you do not need to use
this parameter; however by setting it to a fixed value the model will always produce the same
behavior (assuming that all the variation is attributable to randomness generated using the ACT-R
mechanisms). In this model, that is why the letter “V” is always the one randomly chosen. If you

15

ACT-R Tutorial 22-Dec-14 Unit Two

remove this parameter setting from the model you will see different letters chosen when the
experiment is run. For the tutorial models, we will often set this parameter in the demonstration
model of a unit so that the model you have produces exactly the same trace as presented in the
text, but you should feel free to remove that to further investigate the models.

The second sgp call sets four parameters that are useful for debugging a model. The :v (verbose)
parameter controls whether the trace of the model is printed in the listener. If :v is t (which is the
default value) then the trace is displayed and if :v is set to nil the trace is not printed. It is also
possible to direct the trace to an external file, and you should consult the ACT-R 6.0 reference
manual for information on how to do that if you would like to do so. Without printing out the
trace the model runs significantly faster, and that will be important in later units when we are
running the models through the experiments multiple times to collect data. The :needs-mouse
parameter is used to specify whether or not the model needs to control the mouse cursor. In some
Lisp implementations, ACT-R can directly control the mouse cursor and will move it around on
its own as needed. While this is important for the model to perform some tasks, it can be difficult
to work with when it is not needed because you will be fighting with the model for control of the
cursor. So letting the system know whether or not that is necessary and turning it off when not
needed (as is done here by specifying nil) is often a useful setting. The :show-focus parameter
controls whether or not the red visual attention ring is displayed in the experiment window when
the model is performing the task. It is a useful debugging tool, but for some displays you may not
want it because it could obscure other things you want to see. Finally, the :trace-detail parameter,
which was described in the unit 1 experiment description document, is set to high so that all the
actions of the modules show in the trace.

2.11 Unit 2 Assignment

Your assignment is to extend the abilities of the model in demo2 to do a more complex
experiment. The new experiment presents three letters. Two of those letters will be the same.
The participant's task is to press the key that corresponds to the letter that is different from the
other two. The Lisp code to perform the experiment, two initial chunk-types, and an initial goal
chunk are contained in the model unit2-assignment.

To run the experiment, call the new do-unit2 function defined in the assignment model file. Like
the do-demo2 function, providing the symbol human to do-unit2 will cause the task to run you
instead of the model. When you press a key the function will return correct if you pressed the
right key and nil if you pressed the wrong key. This shows what happens when the right key was
pressed:

> (do-unit2 'human)
CORRECT

and this shows the result when the wrong key was pressed:

> (do-unit2 'human)
NIL

16

ACT-R Tutorial 22-Dec-14 Unit Two

Your task is to write a model that always responds correctly when performing the task, and to run
the model through the task you just need to call do-unit2 without including the human symbol.
In doing this you should take the model in demo2 as a guide. It reflects the way to interact with
the imaginal, vision, and motor modules and the productions it contains are similar to the
productions you will need to write. You will also need to write additional productions to read the
other letters and decide which key to press.

You are provided with a chunk-type for the goal, and an initial chunk in the goal buffer. This
chunk-type is the same as the one used in the demo2 model and only contains the control state
information:

(chunk-type read-letters state)

The initial goal provided looks just like the one used in demo2:

(goal isa read-letters state start)

There is an additional chunk-type which has slots for holding the three letters which should be
used by the imaginal module:

(chunk-type array letter1 letter2 letter3)

You do not have to use these chunk types to solve the problem. If you have a different
representation you would like to use feel free to do so. There is no one “right” model for the task.
(Nonetheless, we would like your solution to keep any control state information it uses in the goal
buffer and separate from the problem representation in the imaginal buffer.)

In later units we will consider fitting models to data from real experiments. Then, how well the
model fits the data can be used as a way to decide between different representations and models,
but that is not the only way to decide. Cognitive plausibility is another important factor when
modeling human performance – you want the model to do the task like a person does the task. A
model that fits the data perfectly using a method completely unlike a person is probably not a very
good model of the task.

17

	Unit 2: Perception and Motor Actions in ACT-R
	2.1 ACT-R Interacting with the World
	2.2 The First Experiment
	2.3 Control and Representation
	2.3.1 The State Slot

	2.4 The Imaginal Module
	2.5 The Vision Module
	2.5.1 Visual-Location buffer
	2.5.1.1 The attended request parameter

	2.5.2 Checking a module’s state
	2.5.3 Visual buffer

	2.6 Learning New Chunks
	2.7 Visual Re-encoding
	2.7.1 Buffer Status
	2.7.2 Re-encoding Cont.
	2.7.3 Stop Visually Attending

	2.8 The Motor Module
	2.9 Strict Harvesting
	2.10 More ACT-R Parameters
	2.11 Unit 2 Assignment

