
ACT-R 6 Proposals

Dan Bothell
db30@andrew.cmu.edu

July 9, 2004



Overview

• General implementation details
– More specifics and an API at the post-ICCM 

meeting
• Conceptual changes/Theory updates



Overall Design

• Divided into two sections
– Framework

• Organization
• Common components
• Constant components

– Modules
• Instantiate the system
• Implementation can vary greatly



Framework
• Mostly independent of the theory

– Scheduler 
• Clock
• Event management
• Running

– Data structures
• Models
• Modules
• Buffers
• Chunks

– Communication mechanisms
• Everything goes through the scheduler



Modules

• Theory components
– Procedural, declarative, visual, etc.

• Support components
– Naming, random numbers

• Should be easy to add new ones
– Easily use the work of others
– Pick and choose components



ACT-R 5 Architecture



ACT-R 6

• The picture for ACT-R 6 is similar
• Make explicit some of the implicit 

connections
– Procedural module �� other modules
– All buffers and Declarative module
– Maybe still don’t want them in the “official”

picture
• Specify the API and guidelines for adding 

a module 



Procedural to Modules “Through”
buffers



Chunks go from the buffers to 
Declarative Memory



Allow additions to be made easily 



ACT-R 6 Buffers

• Unify the operation/implementation
– Procedural module treats them all the same
– User added buffers work like the default ones

• Support the claim of ACT-R 5 that buffers 
are the “source” of the DM chunks



Unchangeable protocol and 
operation



Buffer Implementation

• Part of the framework
– Uniform representation

• Every module’s buffer(s) act the same with 
respect to the Procedural module



Differences from ACT-R 5
• Augment the description of the buffer to be not only the 

module interface but chunk generation “scratch pads”

• The chunks become part of DM when they leave a buffer
– That’s the claim of ACT-R 5 now, but it’s not actually true!
– Implies that chunks in buffers exist outside of DM

• Do we want a new name to differentiate chunks in DM from those 
outside of DM?

• Proposed operation: When a buffer is cleared the chunk 
there is merged into DM as happens with goal chunks 
now



Differences from ACT-R 5 cont.

• Unlike the ACT-R 5 “modular buffer” mechanism 
for adding new buffers users cannot configure 
what happens on an =buffer> or –buffer>

• The operations “on the buffers” by productions 
are constant across all buffers/modules

• Only the +’s provide the communication between 
the procedural module and other modules

• Should be functionally equivalent 
– (see the RHS + actions later)



Buffer operation

• The buffers don’t hold a specific chunk or 
a “pointer” to a specific chunk

• They hold a copy of a chunk which can be 
modified freely without changing the 
original
– Even for the retrieval buffer! 

• All buffers are treated equally
– The old claim that DM can’t be modified is 

now enforced from within productions



Why do people modify DM chunks?

• Marking for exhaustive retrieval 
– Seems like a place to extend the theory
– Don’t have a real mechanism at this point

• Any other reasons ???



Temporary Alternative: 
Declarative Finsts

• Just like the visual finsts
– Memory is like perceiving the past

• A parameterized number of markers for recently 
retrieved chunks with a parameterized decay 
time

• Retrieval requests could specify it something like
+retrieval>

isa some-chunk-type
slot value
recently-retrieved nil

• Some more specification necessary…



Productions

• No changes to the basic operation
– Conflict resolution picks one
– The one selected fires
– repeat

• No LHS retrievals 
– Not backward compatible

• Unify the buffer/module mechanics
– A few syntax changes



Production LHS: =buffer

=buffer> 
{chunk description}

Tests the contents of the buffer
Same as ACT-R 5

One new suggestion:
=buffer> =variable

Test that the chunk in buffer matches on all the slots 
of =variable (note the name is not a slot)



Production LHS: -buffer

-buffer>

New LHS test 

Tests that the buffer is empty



Production LHS: +buffer

+buffer> 
{chunk description}

A test of the module’s state
Replaces the ACT-R 5 *-state buffers
More general
– A module may respond to queries other than module-

state tests
– Must respond with t/nil immediately
– Should not affect the chunk in the buffer



Production LHS: +buffer cont.
•All modules would be required to respond to certain requests
•Additional requests would be up to the module creator 

• Same as it is now

• Simplified tests that are equivalent to just 
testing the modality slot 

• Replaces the explicit failure chunk (the 
buffer should probably be left empty)

• Not quite sure what really wanted or 
needed
– ???

+buffer> isa module-state

+buffer> isa free
+buffer> isa busy

+buffer> isa error

+buffer> isa
changed/unchanged



Production LHS: the !’s

!eval! and !bind!

Same as always
The eval buffer idea doesn’t quite work



Production RHS: =buffer
=buffer> 

{chunk description}*

An immediate modification of the contents of the buffer
Same as ACT-R 5

Two new proposals:

=buffer> =variable
copies the chunk =variable into the buffer
(similar to how +buffer> =variable works now)

=buffer>
more on this later



Production RHS: -buffer

-buffer>

Clears the buffer

That’s all it does – no communication with 
the module



Production RHS: +buffer

+buffer> 
{chunk description}

Sends a request to a module
Similar to what happens now but with 
some minor additions/updates



Production RHS: +buffer cont.
+buffer> isa request

Just like now
Sends the request to the module and implicitly 
clears the buffer

+buffer> {slot value}+

Without an isa test it’s a request for the module 
to modify the chunk in the buffer instead of a 
request to replace the chunk in the buffer



Production RHS: the !’s
!eval!, !bind!, !output!, and !stop!

Same as now 
Except that !stop! will actually stop the whole 
system

Gone are !push!, !pop!, !focus-on!, !move-
attention!, !delete!, !copy!, !move-mouse!, !click-
mouse!, !press-key!, !retrieve!, !send-command!, 
and !restart!



RHS order of operations

1. Execute all !bind! and !eval! in the order 
provided

2. All = modifications (no constraint on ordering)
3. Send all + requests (again no guarantee on 

ordering)
4. all explicit and implicit buffer clearing
5. Any !output!s get printed
6. If there’s a !stop! halt the operation after all 

events at the current time complete 



Open production questions
• Extend the variables in productions to allow 

them in place of
– Chunk-types
– Slot names
– Buffer references (?!)

• Adds flexibility that isn’t there now
• Introduces need for more “run-time” checking
• Does anybody have a reason why they need 

such a thing?

• Current proposal is to add none of that



Strict Harvesting

If a production matches a chunk in a buffer 
on the LHS then unless it is used on the 
RHS that chunk will be automatically 
cleared from the buffer after the production 
fires



Why?
• “When” to clear a buffer a confusing issue for 

students (mostly visual/visual-location)
– Eliminates the need for most –buffer> RHS calls

• Goes well with the BLL suggestion (later)
• Solves a problem with Production compilation 
• Doesn’t really break any existing mechanism 

– “Empty” RHS modification keeps it around 
• Adding an “=buffer>” on the RHS of an ACT-R 5 production 

all that’s necessary for updating

• Current proposal is to add it



Sources of Activation

• Should all buffers be sources or only the 
Goal buffer?

• Current proposal is that all buffers have a 
parameter (like :ga/W currently) which the 
declarative memory system can use
– If they default to 0 it’s no different than now
– Interesting side note: if the retrieval buffer’s W 

were negative, then it would work to inhibit re-
retrieval of a chunk matching the current 
chunk in the buffer



Base-Level Learning

• Current mechanism is specific to the 
retrieval buffer

• Also differs from the ACT-R 4 concept of 
what constitutes a reference
– Each LHS =retrieval credits a reference
– ACT-R 4 required an actual retrieval for a 

reference
– Are people using “multiple references”???



BLL proposals

• Generalize it to all buffers
• Make explicit the distinction between the 

Procedural and Declarative modules



Simplify what constitutes a 
reference

• The merging of the chunk into DM is the only 
source of a reference
– Covers the current cases of creation and merging
– Makes the separation of Procedural and Declarative 
– Works for all buffers

• Closer to the ACT-R 4 mechanism
• Coupled with Strict Harvesting it is almost 

identical to the current ACT-R 5 if one doesn’t 
“reuse” the retrieval



ACT Equations 4.3 + 4.4

• Remove Equation 4.4 (production 
strength)
– Basically removed in ACT-R 5 already

• What about Eq 4.3 (posterior strength 
equation)

• When, which chunk, what buffer(s)?

• Remove Equation 4.3 as well



Production Compilation
• Strict Harvesting provides a way to avoid a 

serious current problem
P1 � P2 � P3 sharing a retrieval

• Extend it to more buffers
– Not just goal and retrieval
– Still want a “safe” mechanism

• Develop a general mechanism applicable to all 
buffers

• Buffers would have a parameter that specifies 
whether it is safe to compile across or not



Equation 4.3

)(
)(* *

j

jijji
ji CFassoc

ECFRassoc
R

+
+

=

)ln( jiji RS =

Back


