ACT-R 6 Proposals

Dan Bothell
db30@andrew.cmu.edu
July 9, 2004

Overview

» General implementation details

— More specifics and an API at the post-ICCM
meeting

» Conceptual changes/Theory updates

Overall Design

 Divided into two sections

— Framework
« Organization
« Common components
« Constant components

— Modules
 Instantiate the system
* Implementation can vary greatly

Framework

* Mostly independent of the theory

— Scheduler
* Clock
« Event management
* Running

— Data structures
 Models
 Modules

» Buffers
 Chunks

— Communication mechanisms
« Everything goes through the scheduler

Modules

* Theory components
— Procedural, declarative, visual, efc.

* Support components
— Naming, random numbers

* Should be easy to add new ones
— Easily use the work of others
— Pick and choose components

ACT-R 5 Architecture

Intentional Module Declarative Module

(not identified) (Temporal/Hippocampus)
A
Goal Buffer Retrieval Buffer
(DLPFC) (VLPFC)
LN KX

‘ Matching (Striatum) ‘

| Selection (Pallidum) |

‘ Executionv(Thalamus)‘

Productions
(Basal Ganglia)

g LY
Visual Buffer Manual Buffer
(Parietal) (Motor)
Pzl ~a
Visual Module Manual Module
(Occipital/etc) (Motor/Cerebellum)

AN /

External World

ACT-R 6

* The picture for ACT-R 6 is similar

* Make explicit some of the implicit
connections

— Procedural module €<= other modules
— All buffers and Declarative module

— Maybe still don’t want them in the “official”
picture

» Specify the API and guidelines for adding
a module

Procedural to Modules “Through”
buffers

Declarative Module

Intentional Module

(not identified) (Temporal/Hippocampus)
A "
+Goal Buffer Retrieval Buﬂ.er
"(DLPFC) (VLPEC)e

¢ Ka r'e.d .o'
' ‘ Matching (Striatum) ‘

| Selection (Pallidum) |

‘ Executionv(Thalamus)‘

Productions
fsal Ganggin?

. LAY ‘9
\;Q'sual Buffer Manual Bufféy
& (Parietal) (Motor) *

v ol v

Visual Module Manunal Module
(Occipital/etc) (Motor/Cerebellum)

N Va
External World

Chunks go from the buffers to
Declarative Memory

...................’.
.o. Intentional Module Declarative Module
o (not identified) . (Temporalfl-lipp/(}sampus)
[] \ ° /
'. Goal Buffer * Retrieval Buffer é
= (DLPPFC) (VLPFC) g
r L bl :
° — °
.o 4 % ‘ Matching (Striatum) ‘ :
O. é g °
. 2 C || Selection (Pallidum) | .
° = E v °
° - é ‘ Execution (Thalamus)‘ :
° .| LAY °
Visual Buffer Manual Buffer :
{'Par)i'etal) (Mot‘gr}
rd -
Visual Module Manual Module
(Occipital/etc) (Motor/Cerebellum)

N Va
External World

Allow additions to be made easily

Intentional Module Declarative Module

(not identified) (Temporal/Hippocampus)
Y
Goal Buffer Retrieval Buffer
(DLPFC) (VLPFC)
LN X

‘ Matching (Striatum) ‘

| Selection (Pallidum) |

‘ Execution'(Thalamus)‘

Productions
(Basal Ganglia)

X LY
Visual Buffer Manual Buffer
(Parietal) (Motor)
PPzl s
Visual Module Manual Module
(Occipital/etc) (Motor/Cerebellum)

™~ S
External World

ACT-R 6 Buffers

» Unify the operation/implementation
— Procedural module treats them all the same
— User added buffers work like the default ones

» Support the claim of ACT-R 5 that buffers
are the “source” of the DM chunks

.
.
.
.
.
.
.
.
.
.
.

gowl

=
1

e

-

-
"
.
5
.
.
.
,ﬁ,
-
s
.
.4
.
-

-
.
:
=
5

G
;
wat o
-

s
e
-
-
-
.
-
-
—
'

.
-

.
-
:
-
.
.
-
-
-
-
L
-

=
-
-
-
-
.

-
=
-
-
-
-
-
-
=
-
'*:
]
-
o
o

s
g
e
.
-
-
-
-~
—
-
-
e
£
]

< 0
ey
i
P
P

-
.
-
.
7
-

[

s
e
.
.
.
-
.
s
-
D
e
e
’

"

r
[

User defined
Module

o
T
)
L]
.o
o
e
=
-

-
.
-
-

s
e
-
.
.
e
-
i

e
)
L
.
et
-
.
.
3]
I
Bt

4

=
=
-
-
-
e
-

s
e
.
-
=
-
e
-
g1

[]

Declarative Module
(Temporal/Hippocampus)

-
.
-
-
-

=
=
-
.
=
-
-

7
-
-
=

-
-

-
.
-
-

o -
- = 9 g =
-
-
.

.

-
-

|

-

.
-

—

-
-

]
-

*.:.
.
.

e

.
.
e

]
‘

@
T
o
-

9
el
=

=
e
=

.
-
-
-

2
p
.

_

—

.
-
-
5

.

-

.

e

A

=

{

s

—

o

.

5

-

-

-
-
.
-
=

. - gy e
- e
e

-
-
-
-
-
-
-
-
4
4
.

-
-
=
-
-
2
o
-
-

|

_
-
-
.
.
.
-
.
5
s
-
=
.

"
| Y
L

.

e
-
.

-
.
_
—
o
.
-
.
-
.
-
e

-
.

=

-
-
.
.
S
e
e

.
-
-
=
T
.
-
-
.
=
-
.
-
-
-
-

-
-
-
-
o
-
-
-
-
-
-
-
-
-
-

- -
TR
-

-

.
-
.
-
’
i
L
-
5
.
£
_
-
-
-
S
-~
-
e
-
-
-
=
-
5

.
Pl

.| &
.
-

¢

-

=
.

!
.
'y
|
il

)

-

-

-

.

-
25
.
e

v
.
-
-
-

.
g
:

-
-
r
:

| 4
-
)

y
i
|
-
-
-
.

-
.
-

-
-
-
.

-
-
-
-
-

-
o’
A
.
.
.
-
.
.

'
4
i

s
*,
.
=

s © | 3
s | e
e

-

'
|
-

1

N

D
|

:
.
o
_
o
.
-
|
i

-
=
v
=
i
-
-
-
-
-
-
-
-
&
-

.
L
=

&

.

L

-
-

o
-
-
-
-
-

-
5
-
.
.
-
-
-
e
-
S
-

-
-

-
-
.

-~

*
L
LR

&
o
-

-

B 0
T

.

g
5
i
31
5
o
-
i
I
i
o
1
.
.

.
=
|
-
-

i
|
|
|
|
|
|
|

1l

1
|
|
|
|
|

=
|
o
|
.
1
“
o
-
.
.

.

]
-
.
.
-
.
-
-
.
o
L
i
P
i
P
i
-
o
1
L
|
i
|
.
-
-

.

‘]
-
-

-
-

4
¥
-
.
.
L4
-

|
|
-
.
.
.
A

|
i
e

-
|

i
4
.

1 .
i B

v
-
-

.
i
-
-

-

-

-

o

-

-

.,
i
=
=
-
e
.
.

|
-
-
.
T
u
-
]
i

o
;*
.
e
.
|
-
-
.
.
-
-
.
-
-

s
-
-
.
-
-

.
-
e
.
.
.
i

Manual Module
(Motor/Cerebellum)

L
e
i
o
e
1
o
i
L
L

=
-

)
-
-
.
@
|

-

-

|
g
-
.
s

=
-

.
e
-
.
-
.
x
X
L
-
=
i

.

.
.
-

o

.
.

LBl
i
o

=
s

5
s

-
L |
i

|

.
¥

-
-
-
=

-
-

pr

=
=

i
.

o
=
-
=
-

-
.
.
-
-
-
-
:
-
5
T
-
-
=
.
-
-
-
-
-
i
o
H
e
-
:

-
.
e

)

-
-
-
-
-
-
-
o
=
-
s
-
o
=
=
0

.
-
-~
-
.*
i
y
2
|]

i
.
L

§ 1
=
-
-
-
-
-

O
A
ke
.
.
S
-
i
-
-
.
-
.
.
_
=

—

-

-

=
-
-
.
5
Ll
-
-
-
-
3
-

-
-

%
o
=
-
1

7
-

i

#

e

-
-
-
oy
-

-
-
.
)
=
-
.
-

—
-
-
1
i
(1
-
=
-

.
.
-
-
.
.
£
L
i

\
N
o
-
o
.
.
*.
=
,*,,
-
-
.
s T
i
.
.
—
-
o

-
-
-
-
-
-
-
=
-
-
-
.

=
s
.

e
10

i

.
.

-

|
!

i
=

iy
=
-
=
-
-
-
-
-
-
.
i

o
:
L
e
o
'
:
-
P
L
L

=
-

-
-
.
=
=
o
.
-
)
1
-
.
-
-
—
o
i
:
1
=
o
i

-
-
-

i
B
B

-

|

-
-
-
-

.
-
.
-
.
5
-
.
=
o
.
-
<
A
—
-

-

i
-~

.
4
1

-

-

i
=

-

-
-
.
o
.
-
o
.
-
-

&
=
]
1
.

.
-
-

-
:

-
-
-
-

.
-
.
-
-
—
-
-
&
i
—
=
-
.
.
-
.
-

.
-
i
|
—
.
-
-

-
-
-
-
-
-

|

1

e
B
i

o
i

-
-
.

-
|

i

.

-

—
-

v
-
s
5
s
5
.
-
-
.
.
.
-

L
|
|
|
L
i
-
-
-
-
-

-
-
-
ke

|

?
-
-
-
.
|
:
o

e
Lo
e

=
.
-

-
—
2

|
|
|
|
|
|
o
-
-

-
-
.
-
-

.
% 4
L

-

b |
—
-

z
y
By
-
-
o
o
o

s
.

)

-

.
-

|

*
.

.
S
.
.
-
=
i
=
.
-

:

-
-

o

2

A
o
—
-
-
.
.
e

-

.
3 S R

-
-
-

=

-

-

-
-

=
-
-
-
-
-

.

-
.

.
.
—

.
e
1

1D
L i

-

.
.
-
r
L
.
.
T
|
L
it

-
- 4
4
i
H
.
.

T

-
o
=
-
o
1

|
e
L
=

e

-

i

o
4
=
i
-

-
.

]
L1

-

.
.

.
y

1
B

-

-

P
P

-
-
-
=
-
-
-

-
-

o

-
.
-

e
-

=
.
o
-
o
=

-
—
B
it e B
.

]
-

=
=
-

i

.
-

: |
L)

-

&
L
-

|
4

e

e
L
i
L
-
;|
ks
-

k-
-
§~*

L5

-
it
e

-
-
-
-
-
=
-
-

-

3
A

=
il L
.
=

-

.
-
=

i

=
=
-
L
.
.
i

.
o
-
4

-
o
-
3 .
i
g
-

-
_
-

.
=
-

-
-
.
.
.
&
i
—
=
-
-

.
-

]
—
-
-
-

P
|

-
-
]
ik
.
.
.
-
=

operation
oo...’

Intentional Module

-

-
.
.

—
o
=
=
-
-
.

e g e o ¥ i e Y
N . -

.
=
v

.
.
i
.
-
o
.
;e
e
e

-
-
-

Ei»x:

:
:
-
| o
Ll e

.

.
-
-
o
.
s

.
-

-

1

-
i

=

-

-
i

sy
-

.
¥

[

£

e

-

-

.

.

.

-

-
.
-

—
-
-

-

-
-
=
.

i
-

-
-
-
-
-

o
-
-

.
.
.

.
-
.

—

-

r

[

!

-

=

.

.

.

.

1
L
L

|
i
r

=
-
-
-

-
=z
o
o
-
-
o
i
=

|
=
-
-
.
-

-
-
-
s

-

-

-

-
-

-
-
-
.
.
.
s
-
.
-
Af*
=
o
.

1 CTIIYE Y T X

-
-
-
-
|
si
=
(]

s
i

-
-
.
-
-
o
-
-
-
5
-
-
-

i

-

.*

T
-

s
=
.
.

i
—
-
-
-
-
.
—
-
-
-
.
-
.
|
-
-
-
-

e
-
-
Bl
i
.
=
-
-
s
-
-

-

=
-
-

5
.
.
b
-
=
-
-
-
.
-
S
v

|

1L .

P

g
o
.
<
=
-
:
-

-

.
.
|
|
.

-
=
-

-
L0
e

|
5
|
|
|
-
L
-
.
.
.

el
.
s
-
=
|
|
-
1
i
e
-

-
-
"

5
.
-
.
S

s
-
-
-
=
=
%
-
o

£
i
-
-
.
. 1
ek

-
o
o

tal/etc)

-
-
=
.
—
S
4.
&

mae

-

r
1%

-

-
-

.

e
i
|
5
-
-
:
-
-
-
-
-
-
i
i
L

-

v
-

-
-

.

.
.
B
-

&
|
.
-
|
|
.
.
ke
ol
-
-

-
-
-

:

&

T
&

=
e
.
.
g
et
e
5
-
i
.
-
-
.

-
-

-

-
-
-
.
i
-
£
.

.
.
. =

o
e
2

%
-
_
-
*,
»
"
.
S

[

-

Lo
i
-

=
.
o
-
s
=

.;
°
.

.
-

.
-

>
-
_
)
.
.
-
.
-
-
-

-
.
-
.
e
e
-
-
.
.
o
s
s
-
s

-
-
-
-
-
-

—
-
-
-
.
-
-
-
-
-
-
-
-

-

S =
e
.

Qi1
2
-

-
-
-
-
-

-

-
S
-
-
-

-
-
-
-
-

.
-
s

.

.
s

.
S

-

. i
- - L

- -

(Occ

=

G
1
Visual Module

-

.
-

.
-

.

-
-

= = .

(not identified)

External World

Unchangeable protocol and

Buffer Implementation

» Part of the framework
— Uniform representation

* Every module’s buffer(s) act the same with
respect to the Procedural module

Differences from ACT-R 5

« Augment the description of the buffer to be not only the
module interface but chunk generation “scratch pads”

« The chunks become part of DM when they leave a buffer
— That'’s the claim of ACT-R 5 now, but it's not actually true!

— Implies that chunks in buffers exist outside of DM

« Do we want a new name to differentiate chunks in DM from those
outside of DM?

* Proposed operation: \WWhen a buffer is cleared the chunk

there is merged into DM as happens with goal chunks
now

Differences from ACT-R 5 cont.

* Unlike the ACT-R 5 "modular buffer” mechanism
for adding new buffers users cannot configure
what happens on an =buffer> or —buffer>

* The operations “on the buffers” by productions
are constant across all buffers/modules

* Only the +'s provide the communication between
the procedural module and other modules

« Should be functionally equivalent
— (see the RHS + actions later)

Buffer operation

* The buffers don’t hold a specific chunk or
a “pointer” to a specific chunk

* They hold a copy of a chunk which can be
modified freely without changing the
original
— Even for the retrieval buffer!

 All buffers are treated equally

— The old claim that DM can’t be modified is
now enforced from within productions

Why do people modify DM chunks?

* Marking for exhaustive retrieval
— Seems like a place to extend the theory
— Don’t have a real mechanism at this point

* Any other reasons 7?77

Temporary Alternative:

Declarative Finsts

Just like the visual finsts
— Memory is like perceiving the past
A parameterized number of markers for recently
retrieved chunks with a parameterized decay
time
Retrieval requests could specify it something like
+retrieval>

ISa some-chunk-type

slot value

recently-retrieved nil

Some more specification necessary...

Productions

* No changes to the basic operation
— Conflict resolution picks one
— The one selected fires
— repeat
* No LHS retrievals
— Not backward compatible

* Unify the buffer/module mechanics
— A few syntax changes

Production LHS: =buffer

=buffer>
{chunk description}

Tests the contents of the buffer
Same as ACT-R 5

One new suggestion:
=buffer> =variable

Test that the chunk in buffer matches on all the slots
of =variable (note the name is not a slot)

Production LHS: -buffer

-buffer>

New LHS test

Tests that the buffer is empty

Production LHS: +buffer

+pbuffer>
{chunk description}

A test of the module’s state
Replaces the ACT-R 5 *-state buffers

More general

— A module may respond to queries other than module-
state tests

— Must respond with t/nil immediately
— Should not affect the chunk in the buffer

Production LHS: +buffer cont.

*All modules would be required to respond to certain requests
*Additional requests would be up to the module creator

+buffer> isa module-state Same as it is now

+buffer> isa free « Simplified tests that are equivalent to just
+buffer> isa busy testing the modality slot
+buffer> isa error * Replaces the explicit failure chunk (the

buffer should probably be left empty)

* Not quite sure what really wanted or
needed
— 777

+buffer> isa
changed/unchanged

Production LHS: the !I's

levall and !bind!

Same as always
he eval buffer idea doesn’t quite work

Production RHS: =buffer

=buffer>
{chunk description}*

An immediate modification of the contents of the buffer
Same as ACT-R 5

Two new proposals:
=buffer> =variable
copies the chunk =variable into the buffer

(similar to how +buffer> =variable works now)

=buffer>
more on this later

Production RHS: -buffer

-buffer>
Clears the buffer

That's all it does — no communication with
the module

Production RHS: +buffer

+buffer>
{chunk description}

Sends a request to a module

Similar to what happens now but with
some minor additions/updates

Production RHS: +buffer cont.

+buffer> isa request

Just like now

Sends the request to the module and implicitly
clears the buffer

+pbuffer> {slot value}*

Without an isa test it's a request for the module
to modify the chunk in the buffer instead of a
request to replace the chunk in the buffer

Production RHS: the I's

levall, 'bind!, loutput!, and !stop!

Same as now

Except that !stop! will actually stop the whole
system

Gone are !push!, !pop!, focus-on!, Imove-
attention!, !delete!, Icopy!, Imove-mouse!, Iclick-
mouse!, Ipress-key!, Iretrieve!, Isend-command!
and !restart!

N

RHS order of operations

Execute all Ibind! and !eval! in the order
provided

All = modifications (no constraint on ordering)

Send all + requests (again no guarantee on
ordering)

all explicit and implicit buffer clearing

Any loutput!s get printed

If there’s a !stop! halt the operation after all
events at the current time complete

Open production questions

Extend the variables in productions to allow
them in place of

— Chunk-types
— Slot names
— Buffer references (?!)

Adds flexibility that isn’t there now
Introduces need for more “run-time” checking

Does anybody have a reason why they need
such a thing?

Current proposal is to add none of that

Strict Harvesting

If a production matches a chunk in a buffer
on the LHS then unless it is used on the
RHS that chunk will be automatically
cleared from the buffer after the production

fires

Why??

“When” to clear a buffer a confusing issue for
students (mostly visual/visual-location)

— Eliminates the need for most —buffer> RHS calls
Goes well with the BLL suggestion (later)
Solves a problem with Production compilation

Doesn’t really break any existing mechanism

— "Empty” RHS modification keeps it around

» Adding an “=buffer>" on the RHS of an ACT-R 5 production
all that’s necessary for updating

Current proposal is to add it

Sources of Activation

« Should all buffers be sources or only the
Goal buffer?

* Current proposal is that all buffers have a
parameter (like :ga/W currently) which the
declarative memory system can use

— If they default to 0 it's no different than now

— Interesting side note: if the retrieval buffer's W
were negative, then it would work to inhibit re-
retrieval of a chunk matching the current
chunk in the buffer

Base-Level Learning

» Current mechanism is specific to the
retrieval buffer

* Also differs from the ACT-R 4 concept of
what constitutes a reference
— Each LHS =retrieval credits a reference

— ACT-R 4 required an actual retrieval for a
reference

— Are people using “multiple references”???

BLL proposals

 Generalize it to all buffers

* Make explicit the distinction between the
Procedural and Declarative modules

Simplify what constitutes a
reference

* The merging of the chunk into DM is the only
source of a reference
— Covers the current cases of creation and merging
— Makes the separation of Procedural and Declarative
— Works for all buffers

e Closer to the ACT-R 4 mechanism

* Coupled with Strict Harvesting it is almost
Identical to the current ACT-R 5 if one doesn’t
“reuse” the retrieval

ACT Equations 4.3 + 4.4

Remove Equation 4.4 (production
strength)
— Basically removed in ACT-R 5 already

What about Eq 4.3 (posterior strength
equation)
When, which chunk, what buffer(s)?

Remove Equation 4.3 as well

Production Compilation

Strict Harvesting provides a way to avoid a
serious current problem

P1 - P2 - P3 sharing a retrieval

Extend it to more buffers
— Not just goal and retrieval
— Still want a “safe” mechanism

Develop a general mechanism applicable to all
buffers

Buffers would have a parameter that specifies
whether it is safe to compile across or not

Equation 4.3

P assoc*R; + F(C))E,

: assoc + F(C)

Sji :ln(Rji)

Back

