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Overview

» General implementation details

— More specifics and an API at the post-ICCM
meeting

» Conceptual changes/Theory updates



Overall Design

 Divided into two sections

— Framework
« Organization
« Common components
« Constant components

— Modules
 Instantiate the system
* Implementation can vary greatly



Framework

* Mostly independent of the theory

— Scheduler
* Clock
« Event management
* Running

— Data structures
 Models
 Modules

» Buffers
 Chunks

— Communication mechanisms
« Everything goes through the scheduler



Modules

* Theory components
— Procedural, declarative, visual, efc.

* Support components
— Naming, random numbers

* Should be easy to add new ones
— Easily use the work of others
— Pick and choose components



ACT-R 5 Architecture
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ACT-R 6

* The picture for ACT-R 6 is similar

* Make explicit some of the implicit
connections

— Procedural module €<= other modules
— All buffers and Declarative module

— Maybe still don’t want them in the “official”
picture

» Specify the API and guidelines for adding
a module
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Chunks go from the buffers to
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Allow additions to be made easily
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ACT-R 6 Buffers

» Unify the operation/implementation
— Procedural module treats them all the same
— User added buffers work like the default ones

» Support the claim of ACT-R 5 that buffers
are the “source” of the DM chunks
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Buffer Implementation

» Part of the framework
— Uniform representation

* Every module’s buffer(s) act the same with
respect to the Procedural module



Differences from ACT-R 5

« Augment the description of the buffer to be not only the
module interface but chunk generation “scratch pads”

« The chunks become part of DM when they leave a buffer
— That'’s the claim of ACT-R 5 now, but it's not actually true!

— Implies that chunks in buffers exist outside of DM

« Do we want a new name to differentiate chunks in DM from those
outside of DM?

* Proposed operation: \WWhen a buffer is cleared the chunk

there is merged into DM as happens with goal chunks
now



Differences from ACT-R 5 cont.

* Unlike the ACT-R 5 "modular buffer” mechanism
for adding new buffers users cannot configure
what happens on an =buffer> or —buffer>

* The operations “on the buffers” by productions
are constant across all buffers/modules

* Only the +'s provide the communication between
the procedural module and other modules

« Should be functionally equivalent
— (see the RHS + actions later)



Buffer operation

* The buffers don’t hold a specific chunk or
a “pointer” to a specific chunk

* They hold a copy of a chunk which can be
modified freely without changing the
original
— Even for the retrieval buffer!

 All buffers are treated equally

— The old claim that DM can’t be modified is
now enforced from within productions



Why do people modify DM chunks?

* Marking for exhaustive retrieval
— Seems like a place to extend the theory
— Don’t have a real mechanism at this point

* Any other reasons 7?77



Temporary Alternative:

Declarative Finsts

Just like the visual finsts
— Memory is like perceiving the past
A parameterized number of markers for recently
retrieved chunks with a parameterized decay
time
Retrieval requests could specify it something like
+retrieval>

ISa some-chunk-type

slot value

recently-retrieved  nil

Some more specification necessary...



Productions

* No changes to the basic operation
— Conflict resolution picks one
— The one selected fires
— repeat
* No LHS retrievals
— Not backward compatible

* Unify the buffer/module mechanics
— A few syntax changes



Production LHS: =buffer

=buffer>
{chunk description}

Tests the contents of the buffer
Same as ACT-R 5

One new suggestion:
=buffer> =variable

Test that the chunk in buffer matches on all the slots
of =variable (note the name is not a slot)



Production LHS: -buffer

-buffer>

New LHS test

Tests that the buffer is empty



Production LHS: +buffer

+pbuffer>
{chunk description}

A test of the module’s state
Replaces the ACT-R 5 *-state buffers

More general

— A module may respond to queries other than module-
state tests

— Must respond with t/nil immediately
— Should not affect the chunk in the buffer



Production LHS: +buffer cont.

*All modules would be required to respond to certain requests
*Additional requests would be up to the module creator

+buffer> isa module-state Same as it is now

+buffer> isa free « Simplified tests that are equivalent to just
+buffer> isa busy testing the modality slot
+buffer> isa error * Replaces the explicit failure chunk (the

buffer should probably be left empty)

* Not quite sure what really wanted or
needed
— 777

+buffer> isa
changed/unchanged



Production LHS: the !I's

levall and !bind!

Same as always
he eval buffer idea doesn’t quite work




Production RHS: =buffer

=buffer>
{chunk description}*

An immediate modification of the contents of the buffer
Same as ACT-R 5

Two new proposals:
=buffer> =variable
copies the chunk =variable into the buffer

(similar to how +buffer> =variable works now)

=buffer>
more on this later



Production RHS: -buffer

-buffer>
Clears the buffer

That's all it does — no communication with
the module



Production RHS: +buffer

+buffer>
{chunk description}

Sends a request to a module

Similar to what happens now but with
some minor additions/updates



Production RHS: +buffer cont.

+buffer> isa request

Just like now

Sends the request to the module and implicitly
clears the buffer

+pbuffer> {slot value}*

Without an isa test it's a request for the module
to modify the chunk in the buffer instead of a
request to replace the chunk in the buffer



Production RHS: the I's

levall, 'bind!, loutput!, and !stop!

Same as now

Except that !stop! will actually stop the whole
system

Gone are !push!, !pop!, focus-on!, Imove-
attention!, !delete!, Icopy!, Imove-mouse!, Iclick-
mouse!, Ipress-key!, Iretrieve!, Isend-command!
and !restart!

N



RHS order of operations

Execute all Ibind! and !eval! in the order
provided

All = modifications (no constraint on ordering)

Send all + requests (again no guarantee on
ordering)

all explicit and implicit buffer clearing

Any loutput!s get printed

If there’s a !stop! halt the operation after all
events at the current time complete



Open production questions

Extend the variables in productions to allow
them in place of

— Chunk-types
— Slot names
— Buffer references (?!)

Adds flexibility that isn’t there now
Introduces need for more “run-time” checking

Does anybody have a reason why they need
such a thing?

Current proposal is to add none of that



Strict Harvesting

If a production matches a chunk in a buffer
on the LHS then unless it is used on the
RHS that chunk will be automatically
cleared from the buffer after the production

fires



Why??

“When” to clear a buffer a confusing issue for
students (mostly visual/visual-location)

— Eliminates the need for most —buffer> RHS calls
Goes well with the BLL suggestion (later)
Solves a problem with Production compilation

Doesn’t really break any existing mechanism

— "Empty” RHS modification keeps it around

» Adding an “=buffer>" on the RHS of an ACT-R 5 production
all that’s necessary for updating

Current proposal is to add it



Sources of Activation

« Should all buffers be sources or only the
Goal buffer?

* Current proposal is that all buffers have a
parameter (like :ga/W currently) which the
declarative memory system can use

— If they default to 0 it's no different than now

— Interesting side note: if the retrieval buffer's W
were negative, then it would work to inhibit re-
retrieval of a chunk matching the current
chunk in the buffer



Base-Level Learning

» Current mechanism is specific to the
retrieval buffer

* Also differs from the ACT-R 4 concept of
what constitutes a reference
— Each LHS =retrieval credits a reference

— ACT-R 4 required an actual retrieval for a
reference

— Are people using “multiple references”???



BLL proposals

 Generalize it to all buffers

* Make explicit the distinction between the
Procedural and Declarative modules



Simplify what constitutes a
reference

* The merging of the chunk into DM is the only
source of a reference
— Covers the current cases of creation and merging
— Makes the separation of Procedural and Declarative
— Works for all buffers

e Closer to the ACT-R 4 mechanism

* Coupled with Strict Harvesting it is almost
Identical to the current ACT-R 5 if one doesn’t
“reuse” the retrieval



ACT Equations 4.3 + 4.4

Remove Equation 4.4 (production
strength)
— Basically removed in ACT-R 5 already

What about Eq 4.3 (posterior strength
equation)
When, which chunk, what buffer(s)?

Remove Equation 4.3 as well



Production Compilation

Strict Harvesting provides a way to avoid a
serious current problem

P1 - P2 - P3 sharing a retrieval

Extend it to more buffers
— Not just goal and retrieval
— Still want a “safe” mechanism

Develop a general mechanism applicable to all
buffers

Buffers would have a parameter that specifies
whether it is safe to compile across or not



Equation 4.3

P assoc*R; + F(C))E,

: assoc + F(C )

Sji :ln(Rji)

Back



